ELASTOMERIC BLOCK SYSTEM FOR MULTI-MODAL PLAY
A system or kit using elastomeric blocks for self-directed, multi-modal play is described herein. In a first example, the kit includes at least one geometric block made out of an elastomeric material with at least one hole and a faceted geometry. Variations in size, shape, and number of the at least one hole may change the performance of the kit when in use. In another example, the kit includes at least one elastomeric block with at least one hole and at least one connecting post. The at least one connecting post connects to at least one elastomeric block by being inserted into at least one hole in the block; the elastomeric material of the block clutches the connecting post. The properties of the kit enable multiple modes of play beyond simple stacking and construction, allowing the depth and complexity of play to mature and adapt to any age and ability.
This application claims the benefit of U.S. Provisional Patent Application No. 62/421,210, filed Nov. 11, 2016, the entire disclosure of which is hereby incorporated by reference.
FIELD OF INVENTIONThis application is in the field of play systems or kits with blocks and connecting posts of multiple shapes and geometries.
BACKGROUNDBlocks have been around for generations and are rightfully considered a staple category of toys. Playing with traditional blocks is an exercise in exploring the limits and physical rules of gravity and friction. More modern block systems attempt to expand the opportunities for play by introducing interconnections between blocks, either through external connecting pieces, interlocking parts, or other mechanisms like magnets. All of these systems focus exclusively on construction, being useful for play only through the use of multiple interconnected pieces. As rigid, static components dependent upon construction, they prescribe construction as the primary and nearly exclusive way to play with them. The limitations of these static, rigid materials in blocks limits the modes of play to construction and representative play based on constructing an environment with the system. Generally, traditional and modern block systems can only be played with in a construction mode or representative mode based on variations of construction.
SUMMARYA system or kit for self-directed, multi-modal play is described herein. In a first example, the kit may include at least one elastomeric block and at least one connecting post. The at least one elastomeric block may have at least one hole. The at least one connecting post may be inserted into the at least one hole of the at least one elastomeric block to connect the at least one elastomeric block to a second elastomeric block. In a second example, the kit may include at least one block, wherein the at least one elastomeric block has at least one hole and a faceted surface geometry.
Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that the different references to ‘an’ or ‘one’ embodiment in this disclosure are not necessarily the same embodiment, and such references mean at least one embodiment.
This invention is described in the following description with reference to the Figures, in which like reference numbers represent the same or similar elements. While this invention is described in terms of modes for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the present invention. The embodiments and variations of the invention described herein, and/or shown in the drawings, are presented by way of example only and are not limiting as to the scope of the invention.
Unless otherwise specifically stated, individual aspects and components of the invention may be omitted or modified, or may have substituted therefore known equivalents, or as yet unknown substitutes such as may be developed in the future or such as may be found to be acceptable substitutes in the future. The invention may also be modified for a variety of applications while remaining within the spirit and scope of the claimed invention, since the range of potential applications is great, and since it is intended that the present invention be adaptable to many such variations.
Embodiments of the invention may relate to a play system or kit including elastomeric blocks and connecting posts of multiple shapes and geometries. More specifically, embodiments of the invention may relate to elastomeric blocks that may also be used for play in multiple ways, including, but not limited to gravity blocks, construction toys, balls, spring elements, dramatic play, and representational play.
A system or kit for self-directed, multi-modal play using elastomeric blocks and connecting posts for many different modes of play may be described herein. Geometric blocks may be made out of an elastomeric material with pockets or holes removed from the solid-body geometry. The number and size of holes may change the performance of the blocks when in use, and the blocks may be shaped to encourage insertion of other objects, enabling multiple forms of interaction, for example, throwing and catching, interlocking multiple pieces together, chewing or teething, using the block as a spring or dampening element, and many other uses beyond simple stacking and construction. These multiple uses may encourage and enable modes of play, including the traditional construction toy and more. A system or kit used for multiple modes of play may also allow the depth and complexity of play to mature and adapt to any age and ability.
The elastomeric block 200 as a geometric cube may be made of elastomeric materials with holes 201 or pockets 401 removed from the body of the block. The holes 201 may be the same diameters 201a and 201c or different diameters 201b. Regardless of diameter, the holes 201 remove material from the body of the elastomeric block 200. The holes 201 may intersect internally. Passing the holes 201 through the body of the block may create variable wall thicknesses 202 inside the block. Varying wall thicknesses 202a and 202b may change the effective spring constant of the elastomeric material, thereby changing the behavior of the complete block. By adjusting the absolute and relative diameter of the holes 201, the wall thickness 202 may be adjusted, for example, the effective spring force of the block may be adjusted and tuned.
The top and cross-sectional views illustrate the inner body of a block with pockets 400. The pockets may have a constant diameter 402 extending the depth of the pocket, and the bottom of pockets may be flat 403. The behavior and geometry of the pockets 401 may be the same as that for holes 201.
Another example of the elastomeric block 200 may include a variety of holes and pockets internal to the body of the block. The diameter and depth of holes and pockets may decrease over the length 502, increase over the length 504, or oscillate 503. The profile of the holes or pockets may also vary, from geometric circles to rectangles 504 or to asymmetric or non-geometric shapes 503.
A block 700 with perforated 701 and cut 702 end-conditions of the pockets in the block may be described herein. In blocks with pockets 400, 500, and 600, the end-condition of the pocket may include geometries that are flat 502, rounded 504, perforated 701, or turned into flaps 702, allowing an object to pass through. By adjusting the size, thickness, number, and shape of the perforations or flaps, the resulting wall thickness and effective elasticity of the block may be tuned to create a target behavior. The perforations and flaps may also impact the airflow, influencing any suction force due to the pocket and deformation of the block during use.
A block 800 with holes 801, pockets 802, and an external arm 803 that acts as an connecting post integrated into the block is described herein. In the construction mode of play, integrating the connecting post as an arm 803 on the block 800 may allow connection through the clamp force 204 from the elastomeric material deformation. In another example, the elastomeric material and surface of the block may be deformed to connect blocks together through a suction force instead of with a connecting post.
Varying the hole or pocket geometry in blocks with holes 200, pockets 400, or some combination of holes and pockets 500, 600, 700, and 800 may be used to adjust and tune the clamping force and gripping characteristics of the elastomeric blocks on a range of connecting post 300 geometries. Combining different hole sizes, depths, and shapes may also be used to tune the system to a particular elasticity when bouncing or squishing in other applications.
As described herein, many of the embodiments relate to the construction mode of play of the system, but there may be other modes of play. The material and geometry may encourage and enable other modes of play beyond just construction. The embodiments described herein may also be intended for movement play, such as playing catch or tag.
The embedded electronics may extend sensory play through basic self-contained aesthetic functions, for example, lighting up or beeping. The electronics may also account for and include power sources, circuitry, sensors, and other components that may enable other forms of play by triggering interactions between blocks, posts, or a computer somewhere.
In an example of extending play through the embedded electronics, a camera or circuit may be embedded in a block and may record video or accelerometer data when the block is thrown and transmit the information to a computer or smartphone nearby.
This data collection and transmission may enable play through analysis and repetition, creating opportunities for games based on numbers and metrics. Using electronics to sense and transmit data may also extend and amplify the interactions between the physical blocks. Through sensing positioning, the blocks may be used in conjunction with a computer as a way to physically explore programming and control systems. The electronics may enable modes of play that encourage more advanced interactions within the system, further extending the depth and complexity of the system for more advanced users.
Another mode of play, for example, dramatic play, may be encouraged by the abstract nature of the geometries of the blocks. In most embodiments the lack of specific visual details may encourage abstract thought. For example, through the combination of elements with a size that easily fits in one's hand and non-representational geometry, the kit does not prescribe a specific use. Much like a cardboard box, by not looking like something specific, the kit may encourage imaginative play so that it may be turned into anything during dramatic play. One exemplary use of the invention for dramatic play may be the use of a connecting post inserted into a block as a pretend handheld microphone in dramatic play.
Another mode of play, sensory play, may be encouraged through the material, surface finish, and visual coloring of the entire system 100. In all embodiments the materials, surface finishes, translucency, and other properties may enable exploration and discovery of different sensory responses through touch, sight, sound, taste, and smell. Color variation, visual textures and translucency in both blocks 200 and connecting posts 300 may enable visual exploration. Durometer and geometry variations in blocks 200 and connecting posts 300 encourage exploration by touch. Variations in surface textures and surface finishes in blocks 200 and connecting posts 300 may also encourage exploration by touch and taste. Different rigid materials of connecting posts 300 create opportunities to explore texture, acoustic resonance, and other sensory outputs through play. Small children with low dexterity in particular may be able to play with the invention through sensory play. These descriptions are some but not all of the ways the invention encourages and enables sensory play.
The foregoing invention description includes multiple modes of play, and all modes of play are not limited to children. The invention may be used by people of any age, physical capability, or mental capability, and the mode of playing with the invention will adjust to the capabilities of the people or person playing with it.
In the foregoing description, the embodiments of the invention have been described with reference to specific embodiments thereof. It is evident that various modifications and changes can be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims
1. A kit for playing, the kit comprising:
- at least one elastomeric block, wherein the at least one elastomeric block has at least one hole; and
- at least one connecting post;
- wherein the at least one connecting post is inserted into the at least one hole of the at least one elastomeric block to connect to the at least one elastomeric block.
2. The kit of claim 1, wherein the at least one connecting post is comprised of a rigid material.
3. The kit of claim 1, wherein the at least one elastomeric block has multiple holes.
4. The kit of claim 3, wherein the multiple holes of the at least one elastomeric block intersect.
5. The kit of claim 1, wherein the at least one elastomeric block has variable wall thickness to change a spring constant.
6. The kit of claim 1, wherein the at least one elastomeric block flexes to conform to the at least one connecting post.
7. The kit of claim 1, wherein the at least one elastomeric block grips the at least one connecting post when it is inserted into the at least one hole.
8. The kit of claim 1, wherein the at least one elastomeric block is a cube shape.
9. The kit of claim 1, wherein the at least one elastomeric block is a non-cube shape.
10. The kit of claim 1, wherein the at least one elastomeric block has at least one pocket.
11. The kit of claim 10, wherein the at least one pocket has a constant diameter.
12. The kit of claim 10, wherein the at least one pocket has a flat bottom.
13. The kit of claim 10, wherein the at least one pocket has a flap.
14. The kit of claim 1, wherein the at least one connecting post is round.
15. The kit of claim 1, wherein the at least one connecting post is rectangular.
16. The kit of claim 1, wherein the at least one connecting post is curved.
17. The kit of claim 1, wherein the at least one connecting post is an assembly of multiple parts.
18. The kit of claim 1, wherein the at least one elastomeric block includes a faceted surface.
19. The kit of claim 1, wherein the at least one elastomeric block and the at least one connecting post include electronics.
20. A kit for sensory playing, the kit comprising:
- at least one elastomeric block, wherein the at least one elastomeric block has at least one hole and a faceted surface.
Type: Application
Filed: Nov 10, 2017
Publication Date: May 17, 2018
Inventor: Joseph Kendall (Austin, TX)
Application Number: 15/808,997