TWO-PART PULSED ELECTROMAGNETIC FIELD APPLICATOR FOR APPLICATION OF THERAPEUTIC ENERGY
Pulsed electromagnetic field (PEMF) apparatuses and methods of making and using them. In particular, described herein are two-part PEMF apparatuses that include a self-contained, lightweight, small, compact (e.g., in some variations, wearable) generator unit that is adapted to releasably and replaceably mate with an applicator unit. The generator unit typically includes a power source and a controller that generated PEMF waveforms to be applied, including the shape and timing of the PEMF waveforms. The applicator unit typically includes a radio frequency (RF) power amplifier, a loop antenna, and impedance matching circuitry for matching the impedances for the connection between the antenna loop and the RF power amplifier. Thus, the generator module may control the application of PEMF signals without requiring impedance matching between the separable generator unit and the applicator unit. The applicator unit can include a plurality of variable capacitors that can be used to tune the PEMF signals.
Latest Endonovo Therapeutics, Inc. Patents:
- Method and apparatus for electromagnetic treatment of multiple sclerosis
- Method and Apparatus for Electromagnetic Treatment of Living Systems
- Method and apparatus for electromagnetic enhancement of biochemical signaling pathways for therapeutics and prophylaxis in plants, animals and humans
- Biological molecules produced by electromagnetically stimulating living mammalian cells
This patent application is a continuation of U.S. patent application Ser. No. 15/137,737, filed Apr. 25, 2016, titled “TWO-PART PULSED ELECTROMAGNETIC FIELD APPLICATOR FOR APPLICATION OF THERAPEUTIC ENERGY”, which is a continuation of U.S. patent application Ser. No. 14/688,602, filed on Apr. 16, 2015 titled “TWO-PART PULSED ELECTROMAGNETIC FIELD APPLICATOR FOR APPLICATION OF THERAPEUTIC ENERGY,” now U.S. Pat. No. 9,320,913, which claims priority to U.S. Provisional Patent Application No. 61/980,433, filed on Apr. 16, 2014, titled “TWO-PART PULSED ELECTROMAGNETIC FIELD APPLICATOR FOR APPLICATION OF THERAPEUTIC ENERGY,” and U.S. Provisional Patent Application No. 62/086,987, filed on Dec. 3, 2014, titled “TWO-PART PULSED ELECTROMAGNETIC FIELD APPLICATOR FOR APPLICATION OF THERAPEUTIC ENERGY,” each of these applications is herein incorporated by reference in its entirety.
INCORPORATION BY REFERENCEAll publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
FIELDDescribed herein are pulsed electromagnetic field (PEMF) treatment apparatuses including one or more integrated coils and methods for making and for using PEMF apparatuses for the therapeutic treatment of subjects. More particularly described herein are non-invasive PEMF applicators having two parts: a PEMF generator component, including a power supply and a signal generator, that is adapted to removably couple with a wearable applicator that includes a matched RF power amplifier and impedance matched loop antenna.
BACKGROUNDWeak, non-thermal electromagnetic fields (“EMF”) can result in physiologically meaningful in vivo and in vitro bioeffects. See, e.g., U.S. patents and pending applications: U.S. Pat. No. 5,370,680, U.S. Pat. No. 5,584,863, U.S. Pat. No. 5,723,001, U.S. Pat. No. 7,740,574, U.S. Pat. No. 7,744,524, U.S. Pat. No. 7,758,490, U.S. Pat. No. 7,896,797, U.S. Pat. No. 8,343,027, U.S. Pat. No. 8,415,123; U.S. 2010-0210893, U.S. 2010-0222631, U.S. 2013-0274540, U.S. 2014-0046115, U.S. 2014-0046117, U.S. 2011-0207989, U.S. 2012-0116149, and U.S. 2012-0089201, each of which describes PEMF applicator and methods of using them. Each of these publications is herein incorporated by reference in its entirety.
Time-varying electromagnetic fields, comprising EMF, ranging from several Hertz to about 100 GHz, have been found to be clinically beneficial when used as a therapy for reducing pain levels for patients undergoing surgical procedures, promoting healing in patients with chronic wounds or bone fractures, and reducing inflammation or edema in injuries (e.g. sprains). Presently several EMF devices constitute the standard armamentarium of orthopedic clinical practice for treatment of difficult to heal fractures. The success rate for these devices has been very high. The database for this indication is large enough to enable its recommended use as a safe, non-surgical, non-invasive alternative to a first bone graft. Additional clinical indications for these technologies have been reported in double blind studies for treatment of avascular necrosis, tendinitis, osteoarthritis, wound repair, blood circulation and pain from arthritis as well as other musculoskeletal injuries.
In addition, cellular studies have addressed effects of weak electromagnetic fields on both signal transduction pathways and growth factor synthesis. It has been shown that EMF stimulates secretion of growth factors after a short, trigger-like duration. Ion/ligand binding processes at intracellular buffers attached to the cell membrane are an initial EMF target pathway structure. The clinical relevance to treatments, for example, of bone repair, is up-regulation such as modulation, of growth factor production as part of normal molecular regulation of bone repair. Cellular level studies have shown effects on calcium ion transport, cell proliferation, Insulin Growth Factor (“IGF-II”) release, and IGF-II receptor expression in osteoblasts. Effects on Insulin Growth Factor-I (“IGF-I”) and IGF-II have also been demonstrated in rat fracture callus. Pulsed electromagnetic fields (“PEMF”) have also been shown to have an effect on transforming growth factor beta (“TGF-β”) messenger RNA (“mRNA”) in a bone induction model in a rat. Studies have also demonstrated up-regulation of TGF-β mRNA by PEMF in human osteoblast-like cell line designated MG-63, wherein there were increases in TGF-β1, collagen, and osteocalcin synthesis. PEMF stimulated an increase in TGF-β1 in both hypertrophic and atrophic cells from human non-union tissue.
Further studies demonstrated an increase in both TGF-β1 mRNA and protein in osteoblast cultures resulting from a direct effect of EMF on a calcium/calmodulin-dependent pathway. Cartilage cell studies have shown similar increases in TGF-β1 mRNA and protein synthesis from EMF, demonstrating a therapeutic application to joint repair. U.S. Pat. No. 4,315,503 (1982) to Ryaby, U.S. Pat. No. 7,468,264 (2008) to Brighton and U.S. Pat. Nos. 5,723,001 (1998) and U.S. Pat. No. 7,744,524 (2010) to Pilla typify the research conducted in this field.
There are currently two types of applicators adapted for applying PEMF. For example, integrated applicators in which the power supply and signal conditioner is integrated into the applicator have been proposed, including those discussed above. Such applicator may be lightweight and wearable, however the operation of the device may be limited by the power supply. Further, although fixedly coupling the signal generator and power amplifier to the antenna delivering the PEMF to the body simplifies the impedance matching between the applicator (antenna) and the power source, the result is somewhat inflexible in operation.
Modular applicators have also been designed, in which the power supply, including the power/signal amplification and waveform/signal generator is separate from the applicator, and may be connected by a cord or wire to one or more applicator. The applicators may be disposable, and typically include only the applicator (e.g., antenna) and connector. This arrangement, while conceptually simple, has various drawbacks. For example, to achieve maximum efficiencies, the impedance of all components of the radio frequency (RF) power pathway must have the same impedance. Thus, the transmission lines and RF connector must have fixed characteristic impedance values. The RF power amplifier and applicator antenna must be impedance matched (e.g., by impedance adjusting circuits) to match the impedance of the cord/transmission line. This arrangement has significant drawbacks for low-power devices. In order to achieve sufficient field strength, the antenna impedance matching circuit must have a high quality factor (“Q-factor”) with a very narrow bandwidth. With the normal component variability of high Q-factor components, carrier frequency drift, and tuning variability due to mechanical vibrations, the output field strength may be severely affected, particularly between different applicators connected to the same power supply. Thus, modular PEMF applicators that include separate applicators and power supplies typically require a somewhat complicated (and as a result, large and unwieldy or heavy) power supply portion.
Accordingly, described herein are PEMF applicator systems that may address the need for electromagnetic therapy devices (e.g., PEMF devices) that are simple, lightweight (and wearable) and include a removable/re-attachable signal generator that can couple with one (or more) antenna applicators.
SUMMARY OF THE DISCLOSUREDescribed herein are two-part (e.g., modular) PEMF applicator apparatuses and methods of making and using them. In particular, described herein are PEMF applicators that may include: a generator module that includes a power supply (e.g., battery, capacitive power supply, etc.) and signal conditioning (e.g., pulse generator), including timing and control circuitry, but that does not include power amplification or tuning (e.g. impedance matching); and an applicator component that includes power amplification and impedance matching between the amplifier(s) and the delivery antenna(s). The generator and applicator components maybe removably coupleable to each other and the combined generator and applicator can be worn or supported on a subject's body as a lightweight component or part of a delivery component such as a garment (hat, clothing, etc.) or bandage (brace, cast, etc.).
In general, the generator component may include a power supply such as a battery or set of batteries (E.g., AAA alkaline batteries), and may include a processor for preparing the signals (including waveform shaping and timing) to be delivered. The generator component may include a housing that is adapted to mate with an applicator housing that is attached or includes the applicator. Thus, the generator may include a releasable coupling that mates with a coupling on the applicator component to secure the two together. The generator may also be adapted to receive and/or transmit information (e.g., to a microprocessor for control, and/or recording or storing information). The generator may also include one or more indicators for indicating the status of the apparatus (e.g., on/off, delivering PEMF, low power, etc.). The applicator may also include a processor (microprocessor, CPU, etc.) which be used to control operation of the device, including shaping and/or timing of the PEMF waveforms delivered by the applicator.
In general, the applicator unit may include a complimentary coupler for attaching to the generator component. For example, the applicator may include a plug (male, female or hybrid) that couples with the generator. The applicator also includes one or more antenna. In particular, the applicator may include a loop antenna formed of a loop of wire (e.g., having a diameter of 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 10 inches, 11 inches, 12 inches, etc.). The wire antenna may be flexible/shapeable, and may be positioned over or adjacent to the subject. In some variations the antenna may be integrated into a holder such as a garment or brace. For example, the applicator (including the antenna) may be adapted to fit into a hat or cap to be worn on a subject's head.
The applicator component also typically includes a power amplifier for amplification of signals received by the RF generator of the generator module. The power amplifier may be tuned (automatically or manually) and is integrated into the applicator module/component with the antenna and an impedance match component that matches the impedance of the antenna of the applicator with the power amplifier.
Additional details are provided below including by reference to the figures.
Described herein are pulsed electromagnetic field (PEMF) apparatuses and methods of making and using them. In particular, described herein are two-part PEMF apparatuses that include a wearable (e.g., lightweight, small, compact form) generator unit that is adapted to releasably and replaceably mate with an applicator unit. The generator unit, which may also be referred to as a generator module, or generator component, typically includes a power source (e.g., battery, capacitor, etc.), and a controller (e.g., microcontroller and/or microprocessor) and/or waveform generator that generates the RF waveform to be applied as well as controlling the timing. The generator unit may also include a communication module (e.g., wireless module) for communicating with a separate controller/processor for transmitting data (including stimulation history) and/or receiving instructions (including waveform parameters and timing control). The generator unit may also include memory, for storing instructions and/or stimulation history.
In general, the generator unit may be configured so that it does not include any RF power amplification or minimal RF power amplification. Thus, the generator may also be configured so that it does not have impedance matching circuitry. The absence of power amplification and impedance matching circuitry may be an advantage. Surprisingly, the inventors have found that this allows the applicator (e.g., applicator module) to be removable from the generator without suffering radio frequency power losses due to transmission line impedance mismatching.
The applicator unit may also be referred to as an applicator module, antenna unit, antenna module, antenna component and/or applicator component. In general, the applicator unit includes an antenna (such as a wire loop antenna, for inductive or capacitive coupling to the subject's tissues). The antenna may be flexible and may be formed of a loop (e.g., a four inch diameter loop, a five inch diameter loop, a six inch diameter loop, a seven inch diameter loop, an eight inch diameter loop, a nine inch diameter loop, a ten inch diameter loop, an eleven inch diameter loop, a twelve inch diameter loop, etc.) of wire. The wire loop may be bendable and/or configurable, for placement over or against the tissue. The antenna is connected to an impedance matching circuit (including, e.g., tuning circuitry) and connection to an RF power amplifier, which may also include tuning circuitry. Thus, the applicator unit may include impedance matching circuitry for connecting a radio power amplifier to an applicator by intrinsically pairing a high Q-factor impedance matching circuit to the power amplifier and the antenna. The applicator unit can include a plurality of tuning capacitors that can be tuned to provide the desired electric field and frequency. In some embodiments the applicator unit can include a plurality of ports that each allow for access to tuning capacitors in the applicator unit. The tuning capacitors can be tuned by accessing them through the ports. The tuning capacitors can be variable capacitors. A probe can be used to measure the induced voltage of the antenna. The probe can be placed around the middle of the antenna or coil. The tuning capacitors can be adjusted until the induced voltage is at a desired level. In some cases tuning is done such that the induced voltage is greater than about 120 mV.
The antenna can be engaged with a ring-shaped structure to hold the antenna while still allowing movement of the antenna within the ring-shaped structure and movement axially relative to the ring-shaped structure. The ring shaped structures can engage with the hat or be held in place relative to the hat with a clip or other fastener or attachment structure. The ring-shaped structure can non-rigidly engage with the antenna while still allowing movement of the antenna such that the antenna is more comfortable to wear and makes the antenna less likely to deform or break. The ring-shaped structure can be connected to a structure worn by the user to position the antenna relative to a target treatment location on the user. In some cases a plurality of ring-shaped structures can be used to engage the antenna to the structure worn by the user. The ring-shaped structures can be made out of materials such as metal, plastic, polymers, etc. In some cases the ring-shaped structure can be a flexible polymer material, such as a shrink wrap or shrink tubing. In some embodiments the ring-shaped structure can provide some friction to reduce movement between the ring-shaped structure and the antenna while still allowing the antenna to slide relative to the ring-shaped structure.
The generator module is typically adapted to releasably and replaceably mate with the applicator module. Any appropriate connector between the two units may be used, including prongs, plugs, snaps, magnets, Velcro, fasteners, or the like. The connector typically makes an electrical connection between the two so that signals can be transmitted between the generator and the applicator units. Multiple connectors may be used. The connector may be a mechanical connector, an electrical connector, a magnetic connector, or some combination thereof. The connector may also provide physical stability between the two units, preventing physical disruption of the connection. In some variations the apparatus may be configured so that either or both the generator module and the applicator module include a housing that engages with the opposite module.
One variation of a PEMF applicator apparatus is shown in
Thus, the generator unit may user controls and outputs. For example, the generator unit may include an output (such as a display screen, LED, indicator light(s), speaker, etc.). The generator unit may also include one or more inputs, including buttons, dials, sliders, switches, etc. The outer portion of the generator may include a housing. Examples of status indicators may include power (power on, power level, charge level) stimulation indicators (indicating when stimulation is being applied), transmission indicators (indicating when data is being received/transmitted by the apparatus), or the like. For example, in
In
An example of an applicator unit is shown in
The connector 407 may be any appropriate connector, and typically electrically couples the generator to the applicator unit. Thus electrical signals may be transmitted to the applicator unit from the generator (e.g., the waveform to be applied). In some variations, as well the applicator unit has a touch sensor, data may be transmitted from the applicator unit to the generator unit.
The tuning of the device can be changed by adjusting the capacitance of one or more capacitors in the applicator unit. The one or more holes 431 can provide access to the tuning capacitors within the applicator unit. The tuning capacitors can be variable capacitors. In some embodiments there are two variable capacitors with a first variable capacitor connected to a first end of the loop antenna 405 and a second variable capacitor connected to a second end of the loop antenna 405. The variable capacitors can be adjusted such that the loop antenna 405 produces a PEFM signal or waveform with desired characteristics. The use of a plurality of tuning capacitors allows for the operator or user to quickly adjust the capacitance of the device to allow for more control over the treatment conditions. For example, tuning the capacitors allows for the user to adjust the device properties by balancing between the generator unit and applicator unit.
In some embodiments the tuning can be performed by placing a probe on the coil. In some cases the probe is placed on the middle of the coil. The probe can be placed on the desired area of the coil that will be closest to the target treatment area of the user. In one example the coil can be tuned such that the applied field results in an induced voltage on the probe that is greater than about 120 mV. In some embodiments the tuning capacitors allow for individual tuning of the applicator to the proper frequency by adjusting the capacitors.
The generator unit may be combined with applicator unit, as illustrated in
In operation, the functions of the PEMF delivery apparatus may be divided between a generator unit and an applicator unit.
In general, any of the apparatuses described herein may be adapted to operate in a power-saving mode, for example, the applicator and/or generator unit may include a sensor (e.g., capacitive touch sensor) to determine when the unit is in contact with a subject's body. This optional touch sensor may be integrated into the applicator to allow automatic regulation of operation depending on when the apparatus is being worn or not. In general, the generator unit may include a standby mode that consumes little power (e.g., 1 to 19 uA). Standby mode may be entered when the device is not being worn and/or between stimulation periods.
In use, the applicator unit may be attached to a subject's body on, over and/or around the target tissue. Thus, an applicator unit, including the antenna, may be coupled to the patient so that the applicator can be worn. For example, in some variations the target tissue includes the subject's head, for delivery of PEMF to the brain and neural tissue. If the target is the head, for example, the applicator may be worn as part of a cap, hat, helmet, or bandage (see, e.g.,
The generator unit with the power supply is held on the outside of the cap. In some cases the generator unit can also be held via a mechanical attachment to the cap, such as using Velcro or other fasteners. The magnetic connection can be used in addition to or instead of a mechanical connection between the generator unit/power supply and the cap. The magnetic connection can securely hold the generator connected to the applicator unit and coil. The magnetic connection allows the generator unit and applicator to be easily and quickly connected.
In the embodiments illustrated in
The power supply/generator may be easily swapped out or removed by the user. The generator is held on the right front side of the cap 900 illustrated in
As described herein the generator unit can have a lightweight and small profile. The illustrated generator unit 902 weighs less than about 3 ounces and has a height of less than about 2 inches, a width of less than about 3 inches, and a thickness of less than about 0.5 inches. The generator unit 902 includes a power supply that can include one or more replaceable batteries to power the device. In some embodiments AAA batteries are used. In some embodiments the generator unit can be made smaller and lighter depending on the size of the batteries used for the power supply. The battery can be replaced by removing the generator unit from the hat.
Although many of the variations and examples described above are specific to hat or wearable devices, any of these apparatuses may be non-wearable. For example, in some variations the apparatuses are integrated into furniture (e.g., bedding, chairs, etc.) or sleeping devices (e.g., pillows, bedding, mattresses, cushions, etc.), and particularly those configured so that the user places his or her head on the device.
For example, in some variations, the apparatus is configured as a pillow or mattress (e.g., bedding). In
Any of these apparatuses may also be two-part therapeutic PEMF apparatuses. For example, in
Any of these pillows may also be marked to indicate “top” or “bottom” or specifically indicate where the applicator is, so that the user can position their head close to the loop. As mentioned, the applicator may be held within the pillow near an outer surface, or in or between a cover (e.g., pillow case) over a cushion of the pillow. In
For example, in
In use, any of the two part-devices described herein may be configured so that a first part that is attached to the hat, garment, furniture, pillow, etc., and the second part may be removably attached to the first part to provide power and/or signals to the applicator of the first part. The same second part may be used interchangeably with multiple first parts.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements, these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is+/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
Claims
1. A modular apparatus for applying pulsed electromagnetic field (PEMF) energy to a subject, the apparatus comprising:
- a generator unit including a signal generator configured to generate a PEMF waveform and a first connector; and
- an applicator unit including a second connector adapted to mate with the first connector, a radio frequency (RF) power amplifier adapted to receive waveform information from the generator unit though the second connector and generate PEMF signals therefrom, a loop antenna connected to the RF power amplifier and adapted to deliver the PEMF signals to the subject wearing the applicator unit, impedance matching circuitry configured to match the impedance between the RF power amplifier and the loop antenna;
- wherein the generator unit is configured to releasably connect to the applicator unit to drive transmission of PEMF signals from the applicator unit based on the PEMF waveforms.
Type: Application
Filed: Aug 10, 2017
Publication Date: May 24, 2018
Applicant: Endonovo Therapeutics, Inc. (Woodland Hills, CA)
Inventors: Andre' A. DIMINO (Woodcliff Lake, NJ), Matthew E. DRUMMER (Fort Lee, NJ)
Application Number: 15/674,276