DEPOSITION SYSTEM AND METHOD USING A DELIVERY HEAD SEPARATED FROM A SUBSTRATE BY GAS PRESSURE
A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
This application is a continuation of prior U.S. patent application Ser. No. 11/620,744, filed Jan. 8, 2007, which is hereby incorporated herein by reference in its entirety.
FIELD OF THE INVENTIONThis invention generally relates to the deposition of thin-film materials and, more particularly, to apparatus for atomic layer deposition onto a substrate using a distribution head directing simultaneous gas flows onto a substrate.
BACKGROUND OF THE INVENTIONAmong the techniques widely used for thin-film deposition is Chemical Vapor Deposition (CVD) that uses chemically reactive molecules that react in a reaction chamber to deposit a desired film on a substrate. Molecular precursors useful for CVD applications comprise elemental (atomic) constituents of the film to be deposited and typically also include additional elements. CVD precursors are volatile molecules that are delivered, in a gaseous phase, to a chamber in order to react at the substrate, forming the thin film thereon. The chemical reaction deposits a thin film with a desired film thickness.
Common to most CVD techniques is the need for application of a well-controlled flux of one or more molecular precursors into the CVD reactor. A substrate is kept at a well-controlled temperature under controlled pressure conditions to promote chemical reaction between these molecular precursors, concurrent with efficient removal of byproducts. Obtaining optimum CVD performance requires the ability to achieve and sustain steady-state conditions of gas flow, temperature, and pressure throughout the process, and the ability to minimize or eliminate transients.
Especially in the field of semiconductor, integrated circuit, and other electronic devices, there is a demand for thin films, especially higher quality, denser films, with superior conformal coating properties, beyond the achievable limits of conventional CVD techniques, especially thin films that can be manufactured at lower temperatures.
Atomic layer deposition (“ALD”) is an alternative film deposition technology that can provide improved thickness resolution and conformal capabilities, compared to its CVD predecessor. The ALD process segments the conventional thin-film deposition process of conventional CVD into single atomic-layer deposition steps. Advantageously, ALD steps are self-terminating and can deposit one atomic layer when conducted up to or beyond self-termination exposure times. An atomic layer typically ranges from about 0.1 to about 0.5 molecular monolayers, with typical dimensions on the order of no more than a few Angstroms. In ALD, deposition of an atomic layer is the outcome of a chemical reaction between a reactive molecular precursor and the substrate. In each separate ALD reaction-deposition step, the net reaction deposits the desired atomic layer and substantially eliminates “extra” atoms originally included in the molecular precursor. In its most pure form, ALD involves the adsorption and reaction of each of the precursors in the absence of the other precursor or precursors of the reaction. In practice, in any system it is difficult to avoid some direct reaction of the different precursors leading to a small amount of chemical vapor deposition reaction. The goal of any system claiming to perform ALD is to obtain device performance and attributes commensurate with an ALD system while recognizing that a small amount of CVD reaction can be tolerated.
In ALD applications, typically two molecular precursors are introduced into the ALD reactor in separate stages. For example, a metal precursor molecule, MLx, comprises a metal element, M that is bonded to an atomic or molecular ligand, L. For example, M could be, but would not be restricted to, Al, W, Ta, Si, Zn, etc. The metal precursor reacts with the substrate when the substrate surface is prepared to react directly with the molecular precursor. For example, the substrate surface typically is prepared to include hydrogen-containing ligands, AH or the like, that are reactive with the metal precursor. Sulfur (S), oxygen (O), and Nitrogen (N) are some typical A species. The gaseous metal precursor molecule effectively reacts with all of the ligands on the substrate surface, resulting in deposition of a single atomic layer of the metal:
substrate−AH+MLx→substrate−AMLx−1+HL (1)
where HL is a reaction by-product. During the reaction, the initial surface ligands, AH, are consumed, and the surface becomes covered with L ligands, which cannot further react with metal precursor MLx. Therefore, the reaction self-terminates when all of the initial AH ligands on the surface are replaced with AMLx−1 species. The reaction stage is typically followed by an inert-gas purge stage that eliminates the excess metal precursor from the chamber prior to the separate introduction of a second reactant gaseous precursor material.
The second molecular precursor then is used to restore the surface reactivity of the substrate towards the metal precursor. This is done, for example, by removing the L ligands and redepositing AH ligands. In this case, the second precursor typically comprises the desired (usually nonmetallic) element A (i.e., O, N, S), and hydrogen (i.e., H2O, NH3, H2S). The next reaction is as follows:
substrate−A−ML+AHY→substrate−A−M−AH+HL (2)
This converts the surface back to its AH-covered state. (Here, for the sake of simplicity, the chemical reactions are not balanced.) The desired additional element, A, is incorporated into the film and the undesired ligands, L, are eliminated as volatile by-products. Once again, the reaction consumes the reactive sites (this time, the L terminated sites) and self-terminates when the reactive sites on the substrate are entirely depleted. The second molecular precursor then is removed from the deposition chamber by flowing inert purge-gas in a second purge stage.
In summary, then, the basic ALD process requires alternating, in sequence, the flux of chemicals to the substrate. The representative ALD process, as discussed above, is a cycle having four different operational stages:
1. MLX reaction;
2. MLX purge;
3. AHy reaction; and
4. AHy purge, and then back to stage 1.
This repeated sequence of alternating surface reactions and precursor-removal that restores the substrate surface to its initial reactive state, with intervening purge operations, is a typical ALD deposition cycle. A key feature of ALD operation is the restoration of the substrate to its initial surface chemistry condition. Using this repeated set of steps, a film can be layered onto the substrate in equal metered layers that are all alike in chemical kinetics, deposition per cycle, composition, and thickness.
ALD can be used as a fabrication step for forming a number of types of thin-film electronic devices, including semiconductor devices and supporting electronic components such as resistors and capacitors, insulators, bus lines and other conductive structures. ALD is particularly suited for forming thin layers of metal oxides in the components of electronic devices. General classes of functional materials that can be deposited with ALD include conductors, dielectrics or insulators, and semiconductors.
Conductors can be any useful conductive material. For example, the conductors may comprise transparent materials such as indium-tin oxide (ITO), doped zinc oxide ZnO, SnO2, or In2O3. The thickness of the conductor may vary, and according to particular examples it can range from about 50 to about 1000 nm.
Examples of useful semiconducting materials are compound semiconductors such as gallium arsenide, gallium nitride, cadmium sulfide, intrinsic zinc oxide, and zinc sulfide.
A dielectric material electrically insulates various portions of a patterned circuit. A dielectric layer may also be referred to as an insulator or insulating layer. Specific examples of materials useful as dielectrics include strontiates, tantalates, titanates, zirconates, aluminum oxides, silicon oxides, tantalum oxides, hafnium oxides, titanium oxides, zinc selenide, and zinc sulfide. In addition, alloys, combinations, and multilayers of these examples can be used as dielectrics. Of these materials, aluminum oxides are preferred.
A dielectric structure layer may comprise two or more layers having different dielectric constants. Such insulators are discussed in U.S. Pat. No. 5,981,970 hereby incorporated by reference and copending U.S. application Ser. No. 11/088,645, hereby incorporated by reference. Dielectric materials typically exhibit a band-gap of greater than about 5 eV. The thickness of a useful dielectric layer may vary, and according to particular examples it can range from about 10 to about 300 nm. A number of device structures can be made with the functional layers described above. A resistor can be fabricated by selecting a conducting material with moderate to poor conductivity. A capacitor can be made by placing a dielectric between two conductors. A diode can be made by placing two semiconductors of complementary carrier type between two conducting electrodes. There may also be disposed between the semiconductors of complementary carrier type a semiconductor region that is intrinsic, indicating that that region has low numbers of free charge carriers. A diode may also be constructed by placing a single semiconductor between two conductors, where one of the conductor/semiconductors interfaces produces a Schottky barrier that impedes current flow strongly in one direction. A transistor may be made by placing upon a conductor (the gate) an insulating layer followed by a semiconducting layer. If two or more additional conductor electrodes (source and drain) are placed spaced apart in contact with the top semiconductor layer, a transistor can be formed. Any of the above devices can be created in various configurations as long as the necessary interfaces are created.
In typical applications of a thin film transistor, the need is for a switch that can control the flow of current through the device. As such, it is desired that when the switch is turned on a high current can flow through the device. The extent of current flow is related to the semiconductor charge carrier mobility. When the device is turned off, it is desirable that the current flow be very small. This is related to the charge carrier concentration. Furthermore, it is generally preferable that visible light have little or no influence on thin-film transistor response. In order for this to be true, the semiconductor band gap must be sufficiently large (>3 eV) so that exposure to visible light does not cause an inter-band transition. A material that is capable of yielding a high mobility, low carrier concentration, and high band gap is ZnO. Furthermore, for high-volume manufacture onto a moving web, it is highly desirable that chemistries used in the process be both inexpensive and of low toxicity, which can be satisfied by the use of ZnO and the majority of its precursors.
Self-saturating surface reactions make ALD relatively insensitive to transport non-uniformities, which might otherwise impair surface uniformity, due to engineering tolerances and the limitations of the flow system or related to surface topography (that is, deposition into three dimensional, high aspect ratio structures). As a general rule, a non-uniform flux of chemicals in a reactive process generally results in different completion times over different portions of the surface area. However, with ALD, each of the reactions is allowed to complete on the entire substrate surface. Thus, differences in completion kinetics impose no penalty on uniformity. This is because the areas that are first to complete the reaction self-terminate the reaction; other areas are able to continue until the full treated surface undergoes the intended reaction. Typically, an ALD process deposits about 0.1-0.2 nm of a film in a single ALD cycle (with one cycle having numbered steps 1 through 4 as listed earlier). A useful and economically feasible cycle time must be achieved in order to provide a uniform film thickness in a range of about from 3 nm to 30 nm for many or most semiconductor applications, and even thicker films for other applications. According to industry throughput standards, substrates are preferably processed within 2 minutes to 3 minutes, which means that ALD cycle times must be in a range from about 0.6 seconds to about 6 seconds.
ALD offers considerable promise for providing a controlled level of highly uniform thin film deposition. However, in spite of its inherent technical capabilities and advantages, a number of technical hurdles still remain. One important consideration relates to the number of cycles needed. Because of its repeated reactant and purge cycles, effective use of ALD has required an apparatus that is capable of abruptly changing the flux of chemicals from MLx to AHy, along with quickly performing purge cycles. Conventional ALD systems are designed to rapidly cycle the different gaseous substances onto the substrate in the needed sequence. However, it is difficult to obtain a reliable scheme for introducing the needed series of gaseous formulations into a chamber at the needed speeds and without some unwanted mixing. Furthermore, an ALD apparatus must be able to execute this rapid sequencing efficiently and reliably for many cycles in order to allow cost-effective coating of many substrates.
In an effort to minimize the time that an ALD reaction needs to reach self-termination, at any given reaction temperature, one approach has been to maximize the flux of chemicals flowing into the ALD reactor, using so-called “pulsing” systems. In order to maximize the flux of chemicals into the ALD reactor, it is advantageous to introduce the molecular precursors into the ALD reactor with minimum dilution of inert gas and at high pressures. However, these measures work against the need to achieve short cycle times and the rapid removal of these molecular precursors from the ALD reactor. Rapid removal in turn dictates that gas residence time in the ALD reactor be minimized. Gas residence times, τ, are proportional to the volume of the reactor, V, the pressure, P, in the ALD reactor, and the inverse of the flow, Q, that is:
τ=VP/Q (3)
In a typical ALD chamber the volume (V) and pressure (P) are dictated independently by the mechanical and pumping constraints, leading to difficulty in precisely controlling the residence time to low values. Accordingly, lowering pressure (P) in the ALD reactor facilitates low gas residence times and increases the speed of removal (purge) of chemical precursor from the ALD reactor. In contrast, minimizing the ALD reaction time requires maximizing the flux of chemical precursors into the ALD reactor through the use of a high pressure within the ALD reactor. In addition, both gas residence time and chemical usage efficiency are inversely proportional to the flow. Thus, while lowering flow can increase efficiency, it also increases gas residence time.
Existing ALD approaches have been compromised with the trade-off between the need to shorten reaction times with improved chemical utilization efficiency, and, on the other hand, the need to minimize purge-gas residence and chemical removal times. One approach to overcome the inherent limitations of “pulsed” delivery of gaseous material is to provide each reactant gas continuously and to move the substrate through each gas in succession. For example, U.S. Pat. No. 6,821,563 entitled “GAS DISTRIBUTION SYSTEM FOR CYCLICAL LAYER DEPOSITION” to Yudovsky describes a processing chamber, under vacuum, having separate gas ports for precursor and purge gases, alternating with vacuum pump ports between each gas port. Each gas port directs its stream of gas vertically downward toward a substrate. The separate gas flows are separated by walls or partitions, with vacuum pumps for evacuating gas on both sides of each gas stream. A lower portion of each partition extends close to the substrate, for example, about 0.5 mm or greater from the substrate surface. In this manner, the lower portions of the partitions are separated from the substrate surface by a distance sufficient to allow the gas streams to flow around the lower portions toward the vacuum ports after the gas streams react with the substrate surface.
A rotary turntable or other transport device is provided for holding one or more substrate wafers. With this arrangement, the substrate is shuttled beneath the different gas streams, effecting ALD deposition thereby. In one embodiment, the substrate is moved in a linear path through a chamber, in which the substrate is passed back and forth a number of times.
Another approach using continuous gas flow is shown in U.S. Pat. No. 4,413,022 entitled “METHOD FOR PERFORMING GROWTH OF COMPOUND THIN FILMS” to Suntola et al. A gas flow array is provided with alternating source gas openings, carrier gas openings, and vacuum exhaust openings. Reciprocating motion of the substrate over the array effects ALD deposition, again, without the need for pulsed operation. In the embodiment of
While systems such as those described in the '563 Yudovsky and '022 Suntola et al. disclosures may avoid some of the difficulties inherent to pulsed gas approaches, these systems have other drawbacks. Neither the gas flow delivery unit of the '563 Yudovsky disclosure nor the gas flow array of the '022 Suntola et al. disclosure can be used in closer proximity to the substrate than about 0.5 mm. Neither of the gas flow delivery apparatus disclosed in the '563 Yudovsky and '022 Suntola et al. patents are arranged for possible use with a moving web surface, such as could be used as a flexible substrate for forming electronic circuits, light sensors, or displays, for example. The complex arrangements of both the gas flow delivery unit of the '563 Yudovsky disclosure and the gas flow array of the '022 Suntola et al. disclosure, each providing both gas flow and vacuum, make these solutions difficult to implement and costly to scale and limit their potential usability to deposition applications onto a moving substrate of limited dimensions. Moreover, it would be very difficult to maintain a uniform vacuum at different points in an array and to maintain synchronous gas flow and vacuum at complementary pressures, thus compromising the uniformity of gas flux that is provided to the substrate surface.
US Patent Pub. No. 2005/0084610 to Selitser discloses an atmospheric pressure atomic layer chemical vapor deposition process. Selitser et al. state that extraordinary increases in reaction rates are obtained by changing the operating pressure to atmospheric pressure, which will involve orders of magnitude increase in the concentration of reactants, with consequent enhancement of surface reactant rates. The embodiments of Selitser et al. involve separate chambers for each stage of the process, although
One aspect of ALD processing that has been of special interest relates to temperature control of the silicon wafer substrate. Among the solutions proposed for accurate temperature control during materials deposition are those described in US Patent Application Publication No. 2004/0142558 by Granneman. In the Granneman '2558 disclosure, platens positioned above and below the wafer act as both gas sources and heating components. In pulsed deposition embodiments described in U.S. Pat. No. 6,183,565 entitled “METHOD AND APPARATUS FOR SUPPORTING A SEMICONDUCTOR WAFER DURING PROCESSING” to Granneman et al., the semiconductor wafer substrate is supported by heated gas streams during deposition, thus providing control of temperature using conductive heating, rather than radiated heat transfer, during this process. Similarly, for CVD applications, Japanese Publication Nos. 62-021237 entitled “TABLE FOR WAFER POSITIONING” to Sugimoto, 04-078130 entitled “SEMICONDUCTOR VAPOR GROWTH EQUIPMENT” to Hashimoto et al., and 61-294812 entitled “GAS PHASE FLOATING EPITAXIAL GROWTH” to Tokisue et al. describe “levitation” of a semiconductor wafer by streams of gas jets during deposition processing. It has thus been recognized that heating and transport of the semiconductor wafer during chemical deposition can be effected using gas jets. At least one commercial product used in semiconductor fabrication, the LEVITOR RTP (Rapid Thermal Processing) Reactor manufactured by ASM International N.V., Bilthoven, Netherlands, employs this “gas fluid bearing” method for its thermal transfer and wafer-handling advantages. However, this and similar devices do not provide spatial separation of gases from each other during deposition, but are based on the pulsed delivery model described earlier in this background material.
It can be appreciated that the use of air-bearing principles or, more generally, gas fluid-bearing principles, can yield a number of advantages for improved wafer transport during vapor deposition and ALD processes. However, existing solutions have been directed to pulsed deposition systems, necessitating the design of fairly complex mechanical and gas-routing systems and components. Air-bearing levitation of the wafer in such systems requires that a chamber be provided, having a base block on one side of the wafer that continuously provides an inert gas for levitating the wafer and a deposition block on the other side of the wafer for providing the repeated, rapid sequencing of reactant and purge gas cycles necessary for efficient materials deposition. Thus, it can be seen that there is a need for ALD deposition method and apparatus that can be used with a continuous process and that can provide improved gas mobility and gas flow separation over earlier solutions.
SUMMARY OF THE INVENTIONThe present invention provides a process for depositing a thin film material on a substrate, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material. The first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material. One or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head.
Another aspect of the present invention provides a deposition system for thin film deposition of a solid material onto a substrate comprising:
a) a plurality of sources for, respectively, a plurality of gaseous materials comprising at least a first, a second, and a third source for a first, a second, and a third gaseous material, respectively;
b) a delivery head for delivering the gaseous materials to a substrate receiving thin film deposition and comprising:
-
- (i) a plurality of inlet ports comprising at least a first, a second, and a third inlet port for receiving the first, the second, and the third gaseous material, respectively; and
- (ii) an output face comprising a plurality of output openings and facing the substrate a distance from the surface of the substrate, wherein the first, second, and third gaseous materials are simultaneously exhausted from the output openings in the output face;
c) an optional substrate support for supporting the substrate; and
d) maintaining a substantially uniform distance between the output face of the delivery head and the substrate surface during thin film deposition, wherein pressure generated due to flow of one or more of the gaseous materials from the delivery head to the substrate surface for thin film deposition provides at least part of the force separating the output face of the delivery head from the surface of the substrate.
In one embodiment, the system provides a relative oscillating motion between the distribution head and the substrate. In a preferred embodiment, the system can be operated with continuous movement of a substrate being subjected to thin film deposition, wherein the system is capable of conveying the support on or as a web past the distribution head, preferably in an unsealed environment to ambient at substantially atmospheric pressure.
It is an advantage of the present invention that it can provide a compact apparatus for atomic layer deposition onto a substrate that is well suited to a number of different types of substrates and deposition environments.
It is a further advantage of the present invention that it allows operation, in preferred embodiments, under atmospheric pressure conditions.
It is yet a further advantage of the present invention that it is adaptable for deposition on a web or other moving substrate, including deposition onto a large area substrate.
It is still a further advantage of the present invention that it can be employed in low temperature processes at atmospheric pressures, which process may be practiced in an unsealed environment, open to ambient atmosphere. The method of the present invention allows control of the gas residence time ti in the relationship shown earlier in equation (3), allowing residence time ti to be reduced, with system pressure and volume controlled by a single variable, the gas flow.
These and other objects, features, and advantages of the present invention will become apparent to those skilled in the art upon a reading of the following detailed description when taken in conjunction with the drawings wherein there is shown and described an illustrative embodiment of the invention.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the present invention, it is believed that the invention will be better understood from the following description when taken in conjunction with the accompanying drawings, wherein:
The present description is directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
For the description that follows, the term “gas” or “gaseous material” is used in a broad sense to encompass any of a range of vaporized or gaseous elements, compounds, or materials. Other terms used herein, such as: reactant, precursor, vacuum, and inert gas, for example, all have their conventional meanings as would be well understood by those skilled in the materials deposition art. The figures provided are not drawn to scale but are intended to show overall function and the structural arrangement of some embodiments of the present invention.
For the description that follows, superposition has its conventional meaning, wherein elements are laid atop or against one another in such manner that parts of one element align with corresponding parts of another and that their perimeters generally coincide.
Terms “upstream” and “downstream” have their conventional meanings as relates to the direction of gas flow.
The apparatus of the present invention offers a significant departure from conventional approaches to ALD, employing an improved distribution device for delivery of gaseous materials to a substrate surface, adaptable to deposition on larger and web-based or web-supported substrates and capable of achieving a highly uniform thin-film deposition at improved throughput speeds. The apparatus and method of the present invention employs a continuous (as opposed to pulsed) gaseous material distribution. The apparatus of the present invention allows operation at atmospheric or near-atmospheric pressures as well as under vacuum and is capable of operating in an unsealed or open-air environment.
Referring to
In one embodiment, gas inlet conduits 14 and 16 are adapted to accept first and second gases that react sequentially on the substrate surface to effect ALD deposition, and gas inlet conduit 18 receives a purge gas that is inert with respect to the first and second gases. Delivery head 10 is spaced a distance D from substrate 20, which may be provided on a substrate support, as described in more detail subsequently. Reciprocating motion can be provided between substrate 20 and delivery head 10, either by movement of substrate 20, by movement of delivery head 10, or by movement of both substrate 20 and delivery head 10. In the particular embodiment shown in
The cross-sectional view of
The cross-sectional views of
As
One aspect of operation for delivery head 10 relates to its providing gas pressure against substrate 20, such that separation distance D is maintained, at least in part, by the force of pressure that is exerted. By maintaining some amount of gas pressure between output face 36 and the surface of substrate 20, the apparatus of the present invention provides at least some portion of an air bearing, or more properly a gas fluid bearing, for delivery head 10 itself or, alternately, for substrate 20. This arrangement helps to simplify the transport requirements for delivery head 10, as described subsequently. Importantly, the effect of allowing the delivery head to approach the substrate such that it is supported by gas pressure, helps to provide isolation between the gas streams. By allowing the head to float on these streams, pressure fields are set up in the reactive and purge flow areas that cause the gases to be directed from inlet to exhaust with little or no intermixing of other gas streams.
In one embodiment, since the separation distance D is relatively small, even a small change in distance D (for example, even 100 micrometers) would require a significant change in flow rates and consequently gas pressure providing the separation distance D. For example, in one embodiment, doubling the separation distance D, involving a change less than 1 mm, would necessitate more than doubling, preferably more than quadrupling, the flow rate of the gases providing the separation distance D. As a general principle, it is considered more advantageous in practice to minimize separation distance D and, consequently, to operate at reduced flow rates.
The exploded view of
As shown in the example of
Gas diffuser unit 140 can be used to equalize the flow through the output channel providing the gaseous materials to the substrate. Copending, co-assigned USSN (docket 93328), entitled “DELIVERY HEAD COMPRISING GAS DIFFUSER DEVICE FOR THIN FILM DEPOSITION,” hereby incorporated by reference, discloses various diffuser systems that optionally can be employed.
Alternatively, the output channel can be used to provide the gaseous materials without a diffuser, as in U.S. Pat. No. 4,413,022 to Suntola et al., hereby incorporated by reference. By providing undiffused flows, higher throughputs may be obtained, possibly at the expense of less homogenous deposition. On the other hand, a diffuser system is especially advantageous for a floating head system described above, since it can provide a back pressure within the delivery device that facilitates the floating of the head.
The exploded view of
A gas diffuser plate 146, which diffuses in cooperation with plates 142 and 148, shown in
A face plate 148, as shown in
In the absence of the optional diffuser unit, the elongated emissive channels 132 in the base plate can serve as the output channels 12 for delivery head 10 instead of the third diffuser output passages 149.
Referring back to
Referring to
The exploded view of
Returning to
S-P-S-E-S-R-S-E-(S)
(With the last separator plate in this sequence not shown in
S-P-S-E1-S-R1-S-E1-S-P-S-E2-S-R2-S-E2-S-P-S-E1-S-R1-S-E1-S-P-S -E2-S-R2-S-E2-S-P-S-E1-S-R1-S-E1-S-P-S
where R1 and R2 represent reactant plates 166 in different orientations, for the two different reactant gases used, and E1 and E2 correspondingly represent exhaust plates 164 in different orientations.
Exhaust channel 154 need not be a vacuum port, in the conventional sense, but may simply be provided to draw off the flow from its corresponding output channel 12, thus facilitating a uniform flow pattern within the channel. A negative draw, just slightly less than the opposite of the gas pressure at neighboring elongated emissive channels 152, can help to facilitate an orderly flow. The negative draw can, for example, operate with draw pressure at the source (for example, a vacuum pump) of between 0.2 and 1.0 atmosphere, whereas a typical vacuum is, for example, below 0.1 atmosphere.
Use of the flow pattern provided by delivery head 10 provides a number of advantages over conventional approaches, such as those noted earlier in the background section, that pulse gases individually to a deposition chamber. Mobility of the deposition apparatus improves, and the device of the present invention is suited to high-volume deposition applications in which the substrate dimensions exceed the size of the deposition head. Flow dynamics are also improved over earlier approaches.
The flow arrangement used in the present invention allows a very small distance D between delivery head 10 and substrate 20, as was shown in
It is desirable that when a large number of plates are assembled in a stacked-plate embodiment, the gas flow delivered to the substrate is uniform across all of the channels delivering a gas flow (I, M, or O channels). This can be accomplished by proper design of the apertured plates, such as having restrictions in some part of the flow pattern for each plate which are accurately machined to provide a reproducible pressure drop for each emissive output or exhaust channel. In one embodiment, output channels 12 exhibit substantially equivalent pressure along the length of the openings, to within no more than about 10% deviation. Even higher tolerances could be provided, such as allowing no more than about 5% or even as little as 2% deviation.
Although the method using stacked apertured plates is a particularly useful way of constructing the article of this invention, there are a number of other methods for building such structures that may be useful in alternate embodiments. For example, the apparatus may be constructed by direct machining of a metal block, or of several metal blocks adhered together. Furthermore, molding techniques involving internal mold features can be employed, as will be understood by the skilled artisan. The apparatus can also be constructed using any of a number of stereolithography techniques.
One advantage offered by delivery head 10 of the present invention relates to maintaining a suitable separation distance D (
In
It can be appreciated that there would be advantages to providing a gas fluid bearing, so that delivery head 10 is substantially maintained at a distance D above substrate 20. This would allow essentially frictionless motion of delivery head 10 using any suitable type of transport mechanism. Delivery head 10 could then be caused to “hover” above the surface of substrate 20 as it is channeled back and forth, sweeping across the surface of substrate 20 during materials deposition.
As shown in
Alternately, delivery head 10 may be positioned in some other orientation with respect to substrate 20. For example, substrate 20 could be supported by the air bearing effect, opposing gravity, so that substrate 20 can be moved along delivery head 10 during deposition. One embodiment using the air bearing effect for deposition onto substrate 20, with substrate 20 cushioned above delivery head 10 is shown in
The alternate embodiment of
As was particularly described with reference to
Typically, ALD requires multiple deposition cycles, building up a controlled film depth with each cycle. Using the nomenclature for types of gaseous materials given earlier, a single cycle can, for example in a simple design, provide one application of first reactant gaseous material O and one application of second reactant gaseous material M.
The distance between output channels for O and M reactant gaseous materials determines the needed distance for reciprocating movement to complete each cycle. For the example delivery head 10 of
A delivery head 10 may have only enough output channels 12 to provide a single cycle. Alternately, delivery head 10 may have an arrangement of multiple cycles, enabling it to cover a larger deposition area or enabling its reciprocating motion over a distance that allows two or more deposition cycles in one traversal of the reciprocating motion distance.
For example, in one particular application, it was found that each O-M cycle formed a layer of one atomic diameter over about ¼ of the treated surface. Thus, four cycles, in this case, are needed to form a uniform layer of 1 atomic diameter over the treated surface. Similarly, to form a uniform layer of 10 atomic diameters in this case, then, 40 cycles would be required.
An advantage of the reciprocating motion used for a delivery head 10 of the present invention is that it allows deposition onto a substrate 20 whose area exceeds the area of output face 36.
In
Advantageously, delivery head 10 can be fabricated at a smaller size than is possible for many types of deposition heads. For example, in one embodiment, output channel 12 has width w1 of about 0.005 inches (0.127 mm) and is extended in length to about 3 inches (75 mm).
In a preferred embodiment, ALD can be performed at or near atmospheric pressure and over a broad range of ambient and substrate temperatures, preferably at a temperature of under 300° C. Preferably, a relatively clean environment is needed to minimize the likelihood of contamination; however, full “clean room” conditions or an inert gas-filled enclosure would not be required for obtaining good performance when using preferred embodiments of the apparatus of the present invention.
Referring to
In another embodiment that can be particularly useful for web fabrication, ALD system 70 can have multiple delivery heads 10, or dual delivery heads 10, with one disposed on each side of substrate 66. A flexible delivery head 10 could alternately be provided. This would provide a deposition apparatus that exhibits at least some conformance to the deposition surface.
In another embodiment, one or more output channels 12 of delivery head 10 may use the transverse gas flow arrangement that was disclosed in U.S. application Ser. No. 11/392,006, filed Mar. 29, 2006 by Levy et al. and entitled “APPARATUS FOR ATOMIC LAYER DEPOSITION,” cited earlier and incorporated herein by reference. In such an embodiment, gas pressure that supports separation between delivery head 10 and substrate 20 can be maintained by some number of output channels 12, such as by those channels that emit purge gas (channels labeled I in
The apparatus of the present invention is advantaged in its capability to perform deposition onto a substrate over a broad range of temperatures, including room or near-room temperature in some embodiments. The apparatus of the present invention can operate in a vacuum environment, but is particularly well suited for operation at or near atmospheric pressure.
Thin film transistors having a semiconductor film made according to the present method can exhibit a field effect electron mobility that is greater than 0.01 cm2/Vs, preferably at least 0.1 cm2/Vs, more preferably greater than 0.2 cm2/Vs. In addition, n-channel thin film transistors having semiconductor films made according to the present invention are capable of providing on/off ratios of at least 104, advantageously at least 105. The on/off ratio is measured as the maximum/minimum of the drain current as the gate voltage is swept from one value to another that are representative of relevant voltages which might be used on the gate line of a display. A typical set of values would be −10V to 40V with the drain voltage maintained at 30V.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention as described above, and as noted in the appended claims, by a person of ordinary skill in the art without departing from the scope of the invention. For example, while air bearing effects may be used to at least partially separate delivery head 10 from the surface of substrate 20, the apparatus of the present invention may alternately be used to lift or levitate substrate 20 from output surface 36 of delivery head 10. Other types of substrate holder could alternately be used, including a platen for example.
EXAMPLES Comparative Example C1For comparison to the present invention, a film of Al2O3 was grown on a silicon wafer using a control APALD (Atmospheric Pressure Atomic Layer deposition) as disclosed in U.S. application Ser. No. 11/392,006, filed Mar. 29, 2006 by Levy et al. and entitled “APPARATUS FOR ATOMIC LAYER DEPOSITION”. The APALD device was configured to have 11 output channels in a configuration as follows:
Channel 1: Purge Gas
Channel 2: Oxidizer containing gas
Channel 3: Purge Gas
Channel 4: Metal precursor containing gas
Channel 5: Purge Gas
Channel 6: Oxidizer containing gas
Channel 7: Purge Gas
Channel 8: Metal precursor containing gas
Channel 9: Purge Gas
Channel 10: Oxidizer containing gas
Channel 11: Purge Gas
The film was grown at a substrate temperature of 150° C. Gas flows delivered to the APALD coating head were as follows:
(i) A nitrogen inert purge gas was supplied to channels 1,3,5,7,9,11 at a total flow rate of 2000 sccm (standard cubic centimeters per minute).
(ii) A nitrogen based gas stream containing trimethylaluminum (TMA) was supplied to channels 4 and 8. This gas stream was produced by mixing a flow of 300 sccm of pure nitrogen with a flow of 7 sccm of nitrogen saturated with TMA at room temperature.
(iii) A nitrogen based gas stream containing water vapor was supplied to channels 2, 6, and 10. This gas stream was produced by mixing a flow of 300 sccm of pure nitrogen with a flow of 25 sccm of nitrogen saturated with water vapor at room temperature.
The coating head with the above gas supply streams was brought to a fixed position of approximately 30 micrometers above the substrate, using a micrometer adjustment mechanism. At this point, the coating head was oscillated for 175 cycles across the substrate to yield an Al2O3 film of approximately 900A thickness.
A current leakage test structure was formed by coating aluminum contacts on top of the Al2O3 layer using a shadow mask during an aluminum evaporation. This process resulted in aluminum contact pads on top of the Al2O3 that were approximately 500A thick with an area of 500 microns×200 microns.
The leakage current from the silicon wafer to the Al contacts was measured by applying a 20V potential between a given aluminum contact pad to the silicon wafer and measuring the amount the current flow with an HP-4155C® parameter analyzer.
For this sample at a 20 V potential, the leakage current was 8.2×10−8 A.
Example E1A film of Al2O3 was grown on a silicon wafer using the APALD device of the present invention. The APALD device was configured analogously to the device of comparative example C1. The film was grown at a substrate temperature of 150° C. Gas flows delivered to the APALD coating head were as follows:
(i) A nitrogen inert purge gas was supplied to channels 1, 3, 5, 7, 9, and 11 at a total flow rate of 3000 sccm.
(ii) A nitrogen based gas stream containing trimethylaluminum was supplied to channels 4 and 8. This gas stream was produced by mixing a flow of −400 sccm of pure nitrogen with a flow of 3.5 sccm of nitrogen saturated with TMA at room temperature.
(iii) A nitrogen based gas stream containing water vapor was supplied to channels 2, 6, and 10. This gas stream was produced by mixing a flow of −350 sccm of pure nitrogen with a flow of 20 sccm of nitrogen saturated with water vapor at room temperature.
The coating head with the above gas supply streams was brought into proximity with the substrate and then released, so that it floated above the substrate based upon the gas flows as described earlier. At this point, the coating head was oscillated for 300 cycles across the substrate to yield an Al2O3 film of approximately 900 Å thickness.
A current leakage test structure was formed by coating aluminum contact pads on top of the Al2O3 layer with the same procedure and contact pad size as in example C1.
At a 20 V potential, the leakage through the Al2O3 dielectric was 1.3×10−11 A. As can be seen from this test data, the gas elevation coating head of this example produces a film with significantly lower current leakage, which is desired for the production of useful dielectric films.
PARTS LIST10 delivery head
12 output channel
14, 16, 18 gas inlet conduit
20 substrate
22 exhaust channel
24 exhaust conduit
28a, 28b, 28c gas supply
30 actuator
32 supply line
36 output face
50 chamber
52 transport motor
54 transport subsystem
56 control logic processor
60 Atomic Layer Deposition (ALD) system
62 web conveyor
64 delivery head transport
66 web substrate
70 Atomic Layer Deposition (ALD) system
74 substrate support
90 directing channel for precursor material
91 exhaust directing channel
92 directing channel for purge gas
96 substrate support
98 gas fluid bearing
100 connection plate
102 directing chamber
104 input port
110 gas chamber plate
112, 113, 115 supply chamber
114, 116 exhaust chamber
120 gas direction plate
122 directing channel for precursor material
123 exhaust directing channel
130 base plate
132 elongated emissive channel
134 elongated exhaust channel
140 gas diffuser unit
142 nozzle plate
143, 147, 149 first, second, third diffuser output passage
146 gas diffuser plate
148 face plate
150 delivery assembly
152 elongated emissive channel
154 elongated exhaust channel
160 separator plate
162 purge plate
164 exhaust plate
166, 166′ reactant plate
168 aperture
170 spring
180 sequential first exhaust slot
182 sequential second exhaust slot
184 sequential third exhaust slot
A arrow
D distance
E exhaust plate
F1, F2, F3, F4 gas flow
H height
I third inert gaseous material
K direction
M second reactant gaseous material
O first reactant gaseous material
P purge plate
R reactant plate
S separator plate
w1, w2 channel width
X arrow
Claims
1. An atomic layer deposition system for depositing a thin film onto a substrate comprising:
- a delivery head having an output face with a means for providing a series of gas flows and a means for moving the substrate relative to the series of gas flows, wherein:
- at least a portion of the output face provides the series of gas flows in the order of a gas flow of a first reactant gas, a gas flow of a purge gas, a gas flow of a second reactant gas; wherein each of the gas flows flow from an associated output opening in the output face to one or more associated exhaust openings in the output face and is located between the output face and a surface of the substrate, and wherein
- the distance between of the substrate and the output face is at least in part controlled by one or more of the gas flows during thin film deposition.
2. The atomic layer deposition system of claim 1 wherein the gas flows are parallel to the direction of the relative motion of the substrate.
3. The atomic layer deposition system of claim 2 wherein the output face has alternating output openings and exhaust openings.
4. The atomic layer deposition system of claim 2 wherein each of the gas flows shares an exhaust opening with an adjacent gas flow.
5. The atomic layer deposition system of claim 2 wherein the gas flow has a portion which is in the direction of substrate travel and a portion that is 180 degrees to the direction of the relative motion of the substrate.
6. The atomic layer deposition system of claim 1 wherein in the series of gas flows in the portion of the output face, a portion of the purge gas flow is exhausted with the first reactant gas flow in a first common exhaust opening and a portion of the purge gas flow is exhausted with the second reactant gas flow in a second common exhaust opening.
7. The atomic layer deposition system of claim 1 wherein the gas flows are transverse to the direction of the relative motion of the substrate.
8. The atomic layer deposition system of claim 7 wherein there are exhaust openings at the edge of the output face.
9. The atomic layer deposition system of claim 7 wherein the gas flow has a portion which flows toward an edge of the substrate and a portion that flows toward an opposite edge of the substrate.
10. The atomic layer deposition system of claim 7 wherein the gas flows are perpendicular to the direction of the relative motion of the substrate.
Type: Application
Filed: Jan 29, 2018
Publication Date: May 31, 2018
Inventor: David H. Levy (Rochester, NY)
Application Number: 15/881,872