SELF-CONTAINED PHOTOVOLTAIC DISTILLATION APPARATUS

The present disclosure describes an apparatus that may be used to generate desalinated water from a supply of untreated water using a photovoltaic cell. The front surface of the photovoltaic cell is enclosed to form an evaporation chamber. The front surface of the photovoltaic cell is exposed to sunlight or another light source. This exposure results in power generation by the photovoltaic cell and also heats the air in the evaporation chamber. Untreated water is subsequently introduced into the evaporation chamber. Upon contacting the heated air and the front surface of the photovoltaic cell, a portion of the untreated water evaporates to generate water vapor. The water vapor is then removed from the evaporation chamber and transported to a condensation chamber. The water vapor is cooled in the condensation chamber to yield desalinated water.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Non-Provisional patent application Ser. No. 15/379,630, filed on Dec. 15, 2016, the disclosure of which is hereby incorporated in its entirety by reference.

BACKGROUND Field of the Invention

The present disclosure relates to a photovoltaic cell used to provide power to a distillation apparatus.

Description of the Related Art

The present disclosure relates to a photovoltaic cell used to provide power to a distillation apparatus.

The need for clean drinking water is increasingly an issue as the global population increases. Many areas that lack fresh water suitable for use as drinking water have ready access to salt water, gray water, or other contaminated water sources. However, many such areas lack the infrastructure or financial resources to refine water obtained from such sources to a drinkable quality. Frequently, such areas have abundant sunlight. This unique combination has prompted the development of many solar-powered desalination systems to produce drinkable water.

Large scale photovoltaic desalination systems utilize the power generated from photovoltaic cells to boil water or to power other types of water purification systems. These systems require large up-front capital investment and operation of sophisticated technologies. Many remote communities across the globe lack sufficient resources to install and operate such systems.

Small scale or personal-sized solar-powered desalination systems attempt to focus sunlight into a small evaporation chamber. These devices use air as a medium to condense water vapor. Such systems function best under direct sunlight without inhibition by clouds, as these conditions are most suitable for evaporation of water. However, because the air is at a higher temperature, these conditions are least conducive to condensing water vapor. Thus such systems are often highly inefficient or otherwise not very effective.

There remains a significant need for an effective small scale or personal-sized solar-powered desalination system.

SUMMARY

The present disclosure describes an apparatus that may be used to generate desalinated water from a supply of untreated water using a photovoltaic cell. The front surface of the photovoltaic cell is enclosed to form an evaporation chamber. The front surface of the photovoltaic cell is exposed to sunlight or another light source. This exposure results in power generation by the photovoltaic cell and also heats the air in the evaporation chamber. Untreated water is subsequently introduced into the evaporation chamber. The untreated water may preferably be stored in an untreated water chamber before introduction into the evaporation chamber. The untreated water may preferably be introduced into the evaporation chamber using a pump. Upon contacting the heated air and the front surface of the photovoltaic cell, a portion of the untreated water evaporates to generate water vapor. The water vapor is then removed from the evaporation chamber and transported to a condensation chamber. The portion of the untreated water that does not evaporate may preferably be transported back into the untreated water chamber. The water vapor is cooled in the condensation chamber to yield desalinated water. The water vapor may preferably be cooled using a cooling plate.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic of an embodiment of the disclosed apparatus.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

The present disclosure describes an apparatus that may be used to generate desalinated water from a supply of untreated water using a photovoltaic cell.

It is well established that the front surface of a photovoltaic cell generates thermal energy when exposed to sunlight. By enclosing the area around the front surface of a photovoltaic cell, the air surrounding said surface may reach temperatures in excess of 140 degrees Fahrenheit.

The front surface of the photovoltaic cell is enclosed to form an evaporation chamber. The front surface of the photovoltaic cell is exposed to sunlight or another light or other electromagnetic radiation source. This exposure results in power generation by the photovoltaic cell and also heats the air in the evaporation chamber. Untreated water is subsequently introduced into the evaporation chamber. The untreated water may preferably be stored in an untreated water chamber before introduction into the evaporation chamber. The untreated water may preferably be introduced into the evaporation chamber using a pump. Upon contacting the heated air and the front surface of the photovoltaic cell, a portion of the untreated water evaporates to generate water vapor. The water vapor is then removed from the evaporation chamber and transported to a condensation chamber. The portion of the untreated water that does not evaporate may preferably be transported back into the untreated water chamber. The water vapor is cooled in the condensation chamber to yield desalinated water. The water vapor may preferably be cooled using a cooling plate.

In some preferred embodiments, electrical energy produced by the photovoltaic cell may preferably be used to power various components of the apparatus.

In some preferred embodiments, some of the energy produced by the photovoltaic cell may power the cooling plate used to condense the water vapor generated in the evaporation chamber.

In some preferred embodiments, some of the energy produced by the photovoltaic cell may be stored in a battery or other energy storage system. The energy stored in a battery may be used to power other components of the apparatus such as a wiper, humidistat, controller, motor, counterweight, pump, or other optional components described herein.

In some embodiments, the apparatus may further comprise a wiper, wherein the wiper may be used to remove residual deposits from the front surface of the photovoltaic cell. These residual deposits may be introduced via the untreated water and may otherwise obstruct light from reaching the front surface of the photovoltaic cell.

In some embodiments, the wiper may be operated by a motor or by using a counterweight. The wiper may preferably be operated according to a frequency that maximizes the difference between the energy produced by the photovoltaic cell and the energy consumed by operating the wiper.

In some embodiments, the apparatus may further comprise a humidistat, wherein the humidistat may be used to monitor and adjust the humidity and temperature within the evaporation chamber. The rate of introduction of untreated water may preferably be controlled by the humidistat to optimize performance of the apparatus by maintaining high temperature and high humidity in the evaporation chamber.

In some embodiments, the apparatus may further comprise one or more aerators, wherein the one or more aerators may be used to introduce air bubbles into the untreated water stream entering the evaporation chamber. The introduction of air bubbles into the untreated water stream will increase the surface area of contact between the heated air in the evaporation chamber and the untreated water. This results in a higher rate of evaporation.

FIG. 1 illustrates an embodiment 100 of the disclosed apparatus. Evaporation Chamber 101 is situated between Photovoltaic Cell 102 and Glass Plate 103. Untreated Water Chamber 104 contains untreated water. Photovoltaic Cell 102 is exposed to sunlight. Subsequently, the air within Evaporation Chamber 101 is heated both by contact with the front surface of Photovoltaic Cell 102 and directly by the entering sunlight. The untreated water in Untreated Water Chamber 104 is then introduced into Evaporation Chamber 101 using Pump 105. Upon contacting the heated air and the front surface of Photovoltaic Cell 102, a portion of untreated water evaporates in Evaporation Chamber 101 to generate water vapor. The water vapor diffuses into Condensation Chamber 106 and subsequently condenses on Cooling Plate 107. The portion of untreated water that does not evaporate is transported back into Untreated Water Chamber 104 via Recirculation Reservoir 108. Desalinated water is collected in Treated Water Chamber 109.

Example

Untreated salt water with 35 ppt salt was generated using Instant Ocean. Power generated by the photovoltaic cell was used by a controller and 12 volt DC water pump to pump untreated water into the evaporation chamber. A cooling plate comprising thermoelectric modules situated between two copper plates was employed in the condensation chamber. When the cooling plate was exposed to current, the thermoelectric modules rendered one copper plate cool and the other copper plate hot. The thermoelectric modules were configured so that the cool plate was on the inside of the condensation chamber. The cool plate was used to condense water vapor generated in the evaporation chamber. The salinity of the condensed water vapor was measured and determined to be 1.1 ppt.

The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention disclosed herein. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the disclosure. For example, various modifications may be made to the materials used, the selection of components used, the configuration of various components, and the interaction between components. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein. All references cited herein are expressly incorporated by reference.

Claims

1. A distillation apparatus comprising:

a. a photovoltaic cell;
b. an evaporation chamber; and
c. a condensation chamber.

2. The distillation apparatus of claim 1, wherein the evaporation chamber is sealed to prevent a substantial influx or outflow of air from the evaporation chamber.

3. The distillation apparatus of claim 1, wherein the condensation chamber further comprises a cooling plate.

4. The distillation apparatus of claim 2, wherein the condensation chamber further comprises a cooling plate.

5. The distillation apparatus of claim 4 further comprising an untreated water chamber, wherein untreated water stored in the untreated water chamber is introduced into the evaporation chamber by a pump.

6. The distillation apparatus of claim 5 further comprising a treated water chamber, wherein the treated water chamber is used to collect treated water.

7. The distillation apparatus of claim 6, wherein untreated water enters the evaporation chamber substantially close to the top of the evaporation chamber, and wherein untreated water that does not evaporate is collected in a recirculation reservoir situated substantially close to the bottom of the evaporation chamber, wherein said untreated water that does not evaporate is transported from the recirculation reservoir to the untreated water chamber.

8. The distillation apparatus of claim 4, wherein the cooling plate comprises one or more thermoelectric modules situated between two metal plates.

9. The distillation apparatus of claim 8, wherein the metal plates are copper plates.

10. The distillation apparatus of claim 7, wherein the untreated water comprises salt water or gray water.

11. The distillation apparatus of claim 7 further comprising a battery, wherein the battery is configured to store energy generated by the photovoltaic cell.

12. The distillation apparatus of claim 7 further comprising a humidistat, wherein the humidistat is configured to control the rate at which untreated water enters the evaporation chamber.

13. The distillation apparatus of claim 7 further comprising one or more aerators, wherein the one or more aerators may be used to introduce air bubbles into the stream of untreated water that enters the evaporation chamber.

14. The distillation apparatus of claim 7 further comprising a wiper, wherein the wiper is configured to clean the front surface of the photovoltaic cell at a specified frequency.

15. The distillation apparatus of claim 14, wherein the wiper is operated by a motor or by using a counterweight.

16. The distillation apparatus of claim 11 further comprising a humidistat, wherein the humidistat is configured to control the rate at which untreated water enters the evaporation chamber.

17. The distillation apparatus of claim 16 further comprising one or more aerators, wherein the one or more aerators may be used to introduce air bubbles into the stream of untreated water that enters the evaporation chamber.

18. The distillation apparatus of claim 17 further comprising a wiper, wherein the wiper is configured to clean the front surface of the photovoltaic cell at a specified frequency.

Patent History
Publication number: 20180170770
Type: Application
Filed: Jun 5, 2017
Publication Date: Jun 21, 2018
Inventor: Nevin Hedlund (Oakbrook Terrace, IL)
Application Number: 15/614,599
Classifications
International Classification: C02F 1/14 (20060101);