PIEZOELECTRIC CERAMIC AIR PUMP AND CONSTRUCTION METHOD THEREOF
A piezoelectric ceramic air pump comprises: a pump body, a piezoelectric ceramic crystal diaphragm, air inlet and output valves, the piezoelectric ceramic crystal diaphragm being co-central-axially mounted on the pump body to construct a working pump chamber for the piezoelectric ceramic air pump; wherein the pump body is approximately tubular, with the diameter being much greater than the axial length, air inlet and outlet ports configured to communicate the working pump chamber with an external air passage are arranged at a position of a peripheral wall of the pump body; an air inlet and outlet component respectively laminates the air inlet and outlet valves onto the air inlet and outlet ports, such that the air inlet and outlet holes are in communication with the air inlet and outlet valves and the air inlet and outlet ports to form air inlet and outlet passages in communication with the external air passage.
Latest SHENZHEN XINGRISHENG INDUSTRIAL CO., LTD. Patents:
- PET EXCREMENT COLLECTING DEVICE CAPABLE OF CLOSING EXCREMENT COLLECTING BAG
- Ball-throwing scoop for interaction with pet
- Method for adapting LED lamp tube to fluorescent lamp tube holder, LED lamp tube holder and illumination device
- Handle of toy for interaction with pet and slingshot mounted with handle
- LED illumination device capable of disassembling, assembling, combining and slidably adjusting modules, and control method
The present invention relates to variable displacement hydraulic pumps, and in particular, relates to an air pump in which an alternating current power drives a piezoelectric ceramic sheet to vibrate.
BACKGROUNDIn the prior art, in a piezoelectric ceramic air pump, the volume of a pump chamber changes due to extension, bending and deformation of a piezoelectric ceramic sheet, and a fluid is taken in or discharged from the chamber under an extrusion effect caused to the fluid in the chamber. In the operating process of the piezoelectric ceramic air pump, an air inlet valve and an air outlet valve are constantly turned on or turned off, thereby implementing constant negative-pressure-caused suction and positive-pressure-caused extrusion.
In the air passage design of the piezoelectric ceramic air pump in the prior art, generally an air suction chamber and an air discharge chamber are needed to serve as buffer spaces for air suction and air discharge, generally independent air inlet and output pipes and components are arranged, and thus the loop structure for air flows is complicated. As a result, the resistance of air flows inside the chamber is great, and thus the operating efficiency of the air pump is reduced and the flow rate of the air pump is small.
SUMMARYTo solve the technical problem that the air passage design is complicated, the resistance is great and thus the operating efficiency of the air pump is low and the flow rate is small in the prior art, the present invention provides a design solution of a highly efficient and small-sized piezoelectric ceramic air pump. The piezoelectric ceramic air pump comprises: a pump body, a piezoelectric ceramic crystal diaphragm, and air inlet and output valves; wherein the piezoelectric ceramic crystal diaphragm is co-central-axially mounted on the pump body to construct a working pump chamber for the piezoelectric ceramic air pump; the pump body is approximately tubular, with the diameter being much greater than the axial length, and air inlet and outlet ports configured to communicate the working pump chamber with an external air passage are arranged at a position of a peripheral wall of the pump body; and the air inlet and output valves are mounted at the position of the air inlet and outlet ports.
In the piezoelectric ceramic air pump, only one piezoelectric ceramic crystal diaphragm is mounted, and the piezoelectric ceramic crystal diaphragm is fitted and fixed onto the pump body via a lower pump cover, and seals and encloses the pump body to construct the working pump chamber.
In the piezoelectric ceramic air pump, two piezoelectric ceramic crystal diaphragms, including upper and lower piezoelectric ceramic crystal diaphragms are mounted; wherein the upper and lower piezoelectric ceramic crystal diaphragms are respectively fitted and fixed onto inner sides of upper and lower parts of the pump body via upper and lower pump cover; and the upper and lower piezoelectric ceramic crystal diaphragms are coaxially oppositely arranged on an outer surface of a metal substrate thereof, and seal and enclose the pump body to construct the shared working pump chamber.
In the piezoelectric ceramic air pump, the air inlet and outlet ports are adjacently or non-adjacently arranged on the peripheral wall on one side of the pump body, or the air inlet and outlet ports are oppositely arranged on peripheral walls at two ends of a diameter line of the pump body.
In the piezoelectric ceramic air pump, the piezoelectric ceramic air pump further comprises an air inlet and outlet component configured to respectively laminate the air inlet and outlet valves onto the air inlet and outlet ports, such that the air inlet and outlet holes on the air inlet and outlet component are in communication with the air inlet and outlet valves and the air inlet and outlet ports to form air inlet and outlet passages in communication with the external air passage; and the air inlet and outlet valves are independently molded or manufactured into an integral valve sheet which is provided with a positioning hole configured to perform fitting-based positioning on the peripheral wall of the pump body.
In the piezoelectric ceramic air pump, the piezoelectric ceramic crystal diaphragm seals and encloses the pump body via a first sealing ring arranged on one side of the piezoelectric ceramic crystal diaphragm to construct the working pump chamber; and the lower pump cover is fitted and fixed onto the pump body via a second sealing ring.
In the piezoelectric ceramic air pump, a spacer that is configured to support and isolate the upper and lower piezoelectric ceramic crystal diaphragms and parallel thereto is provided in the pump body, wherein an opening is provided on the spacer in the vicinity of the air inlet and outlet valves, such that the working pump chamber is shared by the upper and lower piezoelectric ceramic crystal diaphragms; and the upper and lower piezoelectric ceramic crystal diaphragms are laminated on the spacer respectively via third and fourth sealing rings, and seal and enclose the pump body via the opening to construct the working pump chamber with a cross section in the shape of a horizontal U.
In the piezoelectric ceramic air pump, an annular boss that supports the upper and lower piezoelectric ceramic crystal diaphragms and inwardly protrudes is coaxially arranged on an inner wall of the pump body, and the upper and lower piezoelectric ceramic crystal diaphragms are laminated on the annular boss via third and fourth sealing rings, and seal and enclose the pump body to construct the working pump chamber in the shape of an oval; and the upper and lower pump cover are respectively laminated and fixedly connected onto the pump body via fifth and sixth sealing rings.
In the piezoelectric ceramic air pump, an end portion of the air outlet port on the pump body is an annular-surfaced arc shape, such that the pump body is in line contact with the end portion of the air outlet port when the air outlet valve is turned off; and an end portion of the air outlet component is also an annular-surfaced arc shape, such that the pump body is in line contact with an end portion of the air inlet hole when the air inlet valve is turned off.
In the piezoelectric ceramic air pump, the piezoelectric ceramic crystal diaphragm further comprises an insulating layer and a silver plating layer arranged on the metal substrate, wherein a piezoelectric ceramic layer is arranged between the insulating layer and the silver plating layer, and electrodes of the piezoelectric ceramic crystal diaphragm are respectively led out from the metal substrate and the silver plating layer.
A technical solution employed by the present invention to solve the technical problem in the prior art may also be a construction method of a piezoelectric ceramic air pump, based on a main structure comprising a pump body, a piezoelectric ceramic crystal diaphragm, and air inlet and output valves, the piezoelectric ceramic crystal diaphragm being co-central-axially mounted on the pump body to construct a working pump chamber for the piezoelectric ceramic air pump; wherein the method comprises step A: adjacently arranging air inlet and output ports configured to communicate the working pump chamber and an external air passage on a peripheral wall on one side of the pump body, wherein the air inlet and outlet valves are mounted at the position of the air inlet and outlet ports.
The method further comprises step B: mounting two piezoelectric ceramic crystal diaphragms, including upper and lower piezoelectric ceramic crystal diaphragms; wherein the upper and lower piezoelectric ceramic crystal diaphragms are coaxially oppositely arranged on an outer surface of a metal substrate thereof, and seal and enclose the pump body to construct the shared working pump chamber.
The method further comprises step C: arranging a spacer that is configured to support and isolate the upper and lower piezoelectric ceramic crystal diaphragms and parallel thereto in the pump body, wherein an opening is provided on the spacer in the vicinity of the air inlet and outlet valves, such that the dead cavity of the shared working pump chamber is reduced and the pumping efficiency is improved.
The method further comprises step D: simultaneously compressing towards each other or expansion-wise axially moves away from each other by the upper and lower piezoelectric ceramic crystal diaphragms within each power source semi-cycle when an alternating current excitation voltage is applied to the upper and lower piezoelectric ceramic crystal diaphragms.
The method further comprises step E: respectively laminating the air inlet and outlet valves onto the air inlet and outlet ports, such that the air inlet and outlet holes on the air inlet and outlet component are in communication with the air inlet and outlet valves and the air inlet and outlet ports to form air inlet and outlet passages in communication with the external air passage; and the air inlet and outlet valves are manufactured into an integral valve sheet which is provided with a positioning hole configured to perform fitting-based positioning on the peripheral wall of the pump body.
Compared with the prior art, the present invention achieves the following beneficial effects:
1. The air inlet and outlet ports for communication between the working pump chamber and the external air passage are arranged on the peripheral wall of the pump body, and the inlet and outlet valves are arranged thereon, such that the air inlet and outlet passages for communication between the working pump chamber and the external fluid are simplified, the pipeline in which the fluid flows is shortened, the resistance of the pipeline is reduced, the volume of the dead cavity is decreased, and the efficiency of fluid pumping is improved.
2. The number of piezoelectric ceramic crystal diaphragms may be flexibly set to one or two according to the flow rate in practice, and a lot of components are shared in the piezoelectric ceramic air pump, thereby lowering the cost of manufacturing air pumps with different powers.
Embodiments of the present invention are further described in detail with reference to the accompanying drawings.
In a piezoelectric ceramic air pump and a construction method thereof according to a first preferred embodiment as illustrated in
In the piezoelectric ceramic air pump and the construction method thereof according to the first preferred embodiment as illustrated in
In a piezoelectric ceramic air pump and a construction method thereof according to a second preferred embodiment as illustrated in
In the first and second preferred embodiments, the upper pump cover 21 and the lower pump cover 23 are respectively laminated and fixedly connected onto the pump body 10 via a fifth sealing ring 25 and a sixth sealing ring 27.
In a third preferred embodiment of the piezoelectric ceramic air pump as illustrated in
In some other embodiments as illustrated in
As illustrated in
In an embodiment as illustrated in
In a piezoelectric ceramic air pump and a construction method thereof according to a preferred embodiment as illustrated in
In the prior art, the piezoelectric ceramic air pump has a small flow rate which is generally between 0.3 L/min and 0.5 L/min. The piezoelectric ceramic air pump in the technical solution of the present invention has a reasonable deployment of air passages, and thus the operating efficiency of the air pump is improved. Therefore, the piezoelectric ceramic air pump according to the present invention is a highly efficient miniature air pump. A sample designed according to the solution of a preferred embodiment of the present invention is compared with a conventional piezoelectric ceramic air pump in the prior art under the same conditions. The comparison test, as listed in Table 1, reveals that although the desired sample has two piezoelectric ceramic diaphragms, the actual power consumption is two-fold lower than that of a single piezoelectric ceramic diaphragm, and the output flow rate is two-fold greater than that of the single piezoelectric ceramic crystal diaphragm. Apparently, the technical solution according to the present invention is superior over the prior art, with the flow rate output capability and the energy efficiency being both better over the prior art.
Described above are exemplary embodiments of the present invention, but are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process variation made based on the specification and drawings of the present invention, which is directly or indirectly applied in other related technical fields, fall within the scope of the present invention.
Claims
1. A piezoelectric ceramic air pump, comprising: a pump body, a piezoelectric ceramic crystal diaphragm, and air inlet and output valves, the piezoelectric ceramic crystal diaphragm being co-central-axially mounted on the pump body to construct a working pump chamber for the piezoelectric ceramic air pump; wherein
- the pump body is approximately tubular, with the diameter being much greater than the axial length, and air inlet and outlet ports configured to communicate the working pump chamber with an external air passage are arranged at a position of a peripheral wall of the pump body;
- the air inlet and output valves are mounted at the position of the air inlet and outlet ports; and
- the piezoelectric ceramic air pump further comprises an air inlet and outlet component configured to respectively laminate the air inlet and outlet valves onto the air inlet and outlet ports, such that the air inlet and outlet holes on the air inlet and outlet component are in communication with the air inlet and outlet valves and the air inlet and outlet ports to form air inlet and outlet passages in communication with the external air passage; and the air inlet and outlet valves are independently molded or manufactured into an integral valve sheet which is provided with a positioning hole configured to perform fitting-based positioning on the peripheral wall of the pump body.
2. The piezoelectric ceramic air pump according to claim 1, wherein
- only one piezoelectric ceramic crystal diaphragm is mounted, and the piezoelectric ceramic crystal diaphragm is fitted and fixed onto the pump body via a lower pump cover, and seals and encloses the pump body to construct the working pump chamber.
3. The piezoelectric ceramic air pump according to claim 1, wherein
- two piezoelectric ceramic crystal diaphragms, including upper and lower piezoelectric ceramic crystal diaphragms, are mounted; wherein the upper and lower piezoelectric ceramic crystal diaphragms are respectively fitted and fixed onto inner sides of upper and lower parts of the pump body via upper and lower pump cover; and
- the upper and lower piezoelectric ceramic crystal diaphragms are coaxially oppositely arranged on an outer surface of a metal substrate thereof, and seal and enclose the pump body to construct the shared working pump chamber.
4. The piezoelectric ceramic air pump according to claim 1, wherein
- the air inlet and outlet ports are adjacently or non-adjacently arranged on the peripheral wall on one side of the pump body, or the air inlet and outlet ports are oppositely arranged on peripheral walls at two ends of a diameter line of the pump body.
5. The piezoelectric ceramic air pump according to claim 2, wherein
- the piezoelectric ceramic crystal diaphragm seals and encloses the pump body via a first sealing ring arranged on one side of the piezoelectric ceramic crystal diaphragm to construct the working pump chamber; and the lower pump cover is fitted and fixed onto the pump body via a second sealing ring.
6. The piezoelectric ceramic air pump according to claim 3, wherein
- a spacer that is configured to support and isolate the upper and lower piezoelectric ceramic crystal diaphragms and parallel thereto is provided in the pump body, wherein an opening is provided on the spacer in the vicinity of the air inlet and outlet valves, such that the working pump chamber is shared by the upper and lower piezoelectric ceramic crystal diaphragms; and
- the upper and lower piezoelectric ceramic crystal diaphragms are laminated on the spacer respectively via third and fourth sealing rings, and seal and enclose the pump body via the opening to construct the working pump chamber with a cross section in the shape of a horizontal U.
7. The piezoelectric ceramic air pump according to claim 3, wherein
- an annular boss that supports the upper and lower piezoelectric ceramic crystal diaphragms and inwardly protrudes is coaxially arranged on an inner wall of the pump body, and the upper and lower piezoelectric ceramic crystal diaphragms are laminated on the annular boss via third and fourth sealing rings, and seal and enclose the pump body to construct the working pump chamber in the shape of an oval; and
- the upper and lower pump cover are respectively laminated and fixedly connected onto the pump body via fifth and sixth sealing rings.
8. The piezoelectric ceramic air pump according to claim 1, wherein
- an end portion of the air outlet port on the pump body is an annular-surfaced arc shape, such that the pump body is in line contact with the end portion of the air outlet port when the air outlet valve is turned off; and an end portion of the air outlet component is also an annular-surfaced arc shape, such that the pump body is in line contact with an end portion of the air inlet hole when the air inlet valve is turned off.
9. The piezoelectric ceramic air pump according to claim 1, wherein
- the piezoelectric ceramic crystal diaphragm further comprises an insulating layer and a silver plating layer arranged on the metal substrate, wherein a piezoelectric ceramic layer is arranged between the insulating layer and the silver plating layer, and electrodes of the piezoelectric ceramic crystal diaphragm are respectively led out from the metal substrate and the silver plating layer.
10. A construction method of a piezoelectric ceramic air pump, based on a main structure comprising a pump body, a piezoelectric ceramic crystal diaphragm, and air inlet and output valves, the piezoelectric ceramic crystal diaphragm being co-central-axially mounted on the pump body to construct a working pump chamber for the piezoelectric ceramic air pump; wherein the method comprises step A:
- adjacently arranging air inlet and output ports configured to communicate the working pump chamber and an external air passage on a peripheral wall on one side of the pump body, wherein the air inlet and outlet valves are mounted at the position of the air inlet and outlet ports; and
- wherein the method further comprises step E:
- respectively laminating the air inlet and outlet valves onto the air inlet and outlet ports, such that the air inlet and outlet holes on the air inlet and outlet component are in communication with the air inlet and outlet valves and the air inlet and outlet ports to form air inlet and outlet passages in communication with the external air passage; and the air inlet and outlet valves are manufactured into an integral valve sheet which is provided with a positioning hole configured to perform fitting-based positioning on the peripheral wall of the pump body.
11. The construction method of a piezoelectric ceramic air pump according to claim 10, further comprising step B:
- mounting two piezoelectric ceramic crystal diaphragms, including upper and lower piezoelectric ceramic crystal diaphragms; wherein the upper and lower piezoelectric ceramic crystal diaphragms are coaxially oppositely arranged on an outer surface of a metal substrate thereof, and seal and enclose the pump body to construct the shared working pump chamber.
12. The construction method of a piezoelectric ceramic air pump according to claim 11, further comprising step C:
- arranging a spacer that is configured to support and isolate the upper and lower piezoelectric ceramic crystal diaphragms and parallel thereto in the pump body, wherein an opening is provided on the spacer in the vicinity of the air inlet and outlet valves, such that the dead cavity of the shared working pump chamber is reduced and the pumping efficiency is improved.
13. The construction method of a piezoelectric ceramic air pump according to claim 11, further comprising step D:
- simultaneously compressing towards each other or expansion-wise axially moves away from each other by the upper and lower piezoelectric ceramic crystal diaphragms within each power source semi-cycle when an alternating current excitation voltage is applied to the upper and lower piezoelectric ceramic crystal diaphragms.
14. The construction method of a piezoelectric ceramic air pump according to claim 12, further comprising step D:
- simultaneously compressing towards each other or expansion-wise axially moves away from each other by the upper and lower piezoelectric ceramic crystal diaphragms within each power source semi-cycle when an alternating current excitation voltage is applied to the upper and lower piezoelectric ceramic crystal diaphragms.
Type: Application
Filed: Jan 29, 2016
Publication Date: Jul 26, 2018
Applicant: SHENZHEN XINGRISHENG INDUSTRIAL CO., LTD. (Shenzhen, Guangdong Province)
Inventor: Tiansheng WEI (Shenzhen, Guangdong Province)
Application Number: 15/742,495