Proximity-Based Attribution of Rewards

A computer system uses at least one sensor to facilitate a determination of the actual use of a product by a user, and attribution of a reward based on the use. The system determines the sensor-based actual use (SBAU) of a product by a user, monitors the product's use by the user, and attributes a reward to the user or to a third party, based on the actual use of the product by the user.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Prov. Pat. App. No. 62/481,894, filed on Apr. 5, 2017 and is a continuation-in-part of U.S. patent application Ser. No. 15/200,860, filed on Jul. 1, 2016, both of which are hereby incorporated by reference herein.

BACKGROUND

Many technologies exist to support rewarding customers with points or similar benefits that are redeemable for some other benefit, such as merchandise, air travel and hotel stays, in exchange for the customer's purchase of a product or service. Airline miles rewards programs are an example of such customer loyalty programs, although it should be noted that ‘miles’ rewards is a misnomer since these programs are typically based on the purchase of a ticket for a given route (having a predetermined number of miles and/or predetermined reward value). As manufacturers, retailers and marketers now understand, a customer's journey extends well beyond the point of sale (POS).

SUMMARY OF THE INVENTION

It would be beneficial to a business to be able to reward customers for behaviors that relate to the actual use of a product (and not simply some predetermined estimate of their use of a product, for example). The benefits of motivating consumers for the actual use of a product, instead of for the purchase of a product, has the potential to increase general awareness of the product by the user and also by others, increase engagement with both the product and the brand (e.g., manufacturer or seller of the product), and increase sales due to the increased awareness and engagement, as well as redemption of rewards. In the case of a charitable or social impact tie-in, benefits could also accrue to charities, other causes, and society, in general. More positive and continuous consumer engagement with products and brands leads to greater overall customer loyalty and other benefits for the enterprise, including but not limited to increased brand equity, profits and enterprise value.

The invention relates to sensor-based actual use (SBAU)—meaning, in general, the use of at least one sensor to facilitate a determination of the actual use of a product by a user, although alternative sensor embodiments are also described. Embodiments of the invention may enable determination of SBAU of a product, monitoring of a product's use (and may also include other actions of a user of the product), and attribution of rewards based on actual product use, as examples.

The invention includes many embodiments, including but not limited to embodiments that may be associated with a wide range of products, various systems and methods for determining actual use of a product by a user (e.g., the use of any of a variety of means to determine proximity and use of a product), various system configurations and means of communication between elements of systems of the invention, methods for determination and calculation of actual use of a product by a user, reward determination means and methods, reward types, reward redemption methods, and more. Embodiments of the invention offer many benefits to users, manufacturers, retailers, marketers, and others by providing a more complete, holistic and rewarding customer experience that increases brand engagement, customer loyalty, and sales.

DRAWING FIGURES

FIG. 1 is a diagram representing one embodiment of a system for sensing, communicating, and processing user physiologic information;

FIG. 2 is a dataflow diagram of a system implemented according to one embodiment of the present invention;

FIG. 3 is a flowchart of a method performed by the system of FIG. 2 according to one embodiment of the present invention;

FIG. 4 is a diagram representing another embodiment of a system for sensing, communicating, and processing user physiologic information;

FIG. 5 is a diagram representing yet another embodiment of a system for sensing, communicating, and processing user physiologic information;

FIG. 6 is a diagram illustrating types of data that may be communicated to and from devices implemented according to embodiments of the present invention;

FIG. 7 is a diagram illustrating a system and data flows of an embodiment of the present invention;

FIG. 8 is a diagram illustrating a variation of the system of FIG. 7;

FIG. 9 is a diagram illustrating another variation of the system of FIG. 7;

FIG. 10 is a diagram illustrating a system of an embodiment of the present invention;

FIG. 11 is a graph representing three elements of physiologic data over time according to one embodiment of the present invention;

FIG. 12 is a graph representing new data values overtime, including during pre-proximity, proximity, and post-proximity according to one embodiment of the present invention;

FIG. 13 shows a representation of a first embodiment of a system of the invention;

FIG. 14 shows a representation of a second embodiment of a system of the invention;

FIG. 15 shows a representation of a first embodiment of a method of the invention, and;

FIG. 16 shows a representation of a second embodiment of a method of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to sensor-based actual use (SBAU)—meaning, in general, the use of at least one sensor to facilitate a determination of the actual use of a product by a user, although alternative sensor embodiments are also described. Embodiments of the invention may enable determination of SBAU of a product, monitoring of a product's use (and may also include other actions of a user of the product), and attribution of rewards based on actual product use, as examples.

By “sensor-based actual use” it is meant, in general for certain embodiments of the invention, the use of a technological system (e.g., system having a radio transmitter tag and mobile device-associated receiver and processor means) to determine the actual use of a product by a user. Other embodiments of the invention may use an alternative “sensor” to determine the use of a product, e.g., involving a sensor that is actuated by manual input or gesture of a user of a product. For example, one embodiment of a sensor system of the invention is an active (e.g., battery or solar powered) radiofrequency identification (RFID) tag associated with a product that transmits a signal that is received by a mobile device-associated receiver module. An alternative embodiment of a sensor of the invention is a button (e.g., physical or appearing on an interactive electronic display) that may be depressed (or otherwise interacted with) by a user of a product to indicate information relating to the use of the product. By “actual use,” it is meant, in general, a confirmed use of a product by a user, to a certain extent of use. By “extent of use” it is generally meant the extent to which a user uses (e.g., interacts with) a product, as is measurable by at least one sensor of an embodiment of the invention. Such a measure (metric) that is measureable by a sensor of the invention may be, for example: a quantity of time (e.g., minutes, hours, days) or a quantity of distance (e.g., feet, meters, miles, kilometers); another unit of measure of use of, or interaction with, a product (e.g., motion of the product while in proximity with the user, number of uses, simple indication of a use, initiation or conclusion of use, time of initiation or conclusion of use); or some combination of these. Embodiments of the invention may use any of a wide range of sensors to sense the sensor-based actual use of a product by a user. In one embodiment, for example, SBAU is determined by the use of a radio tag associated with a product, and a mobile device capable of receiving a wireless signal sent by the tag (the mobile device that is associated with a user), in order to determine proximity between the tag (and its associated product) and a mobile device (and its associated user) for a quantity of time (e.g., period of time, duration) or distance (e.g., distance that the user and the product traveled together, in proximity with one another), as examples. Such a SBAU may involve an analysis (by a processor module of an embodiment of the invention, for example) of multiple factors. Such factors may include, but are not limited to, for example: starting time of use, ending time of use, duration of use, user indication of use, user indication of a start of use, user indication of an end of use, location(s) of use, product or sensor motion or movement, sound(s), other sensor-sensed inputs, other data or parameters derived from sensors or processors of the embodiment. In an embodiment of the invention, a quantity of time or distance that a product is in proximity with a user serves as a proxy for an extent of use of the product by the user. In other embodiments of the invention, a SBAU determination may involve use of other means and methods (e.g., GPS, location determination, location tracking, user-based sensor data, product-based sensor data, user manual inputs, user voice or sound inputs, user gesture inputs), or a combination of multiple means and methods, in order to determine the SBAU of a product by a user. It should be noted that while embodiments of the invention are capable of providing reasonably precise measures of actual use, other embodiments (while still using sensors, which may be the same sensors, to determine use) provide sensor-based approximations of actual use. Embodiments of the invention also use SBAU determinations as data inputs to determine a reward to be attributed to a user, such as a quantity of points, in reward for (or acknowledgement of) the user's use of a product. Such determination of a reward is, in an embodiment of the invention, performed using rules or algorithms, which may be simple (e.g., if use, then provide fixed reward X) or complex (e.g., rewards based on a combination of factors, such as the time of day used, extent of use, prior use patterns, etc.). Reward rules, or the algorithms used to determine a reward, may be established by a sponsor (e.g., a party paying for the reward), and these rules or algorithms may be either static (e.g., not generally changing) or dynamic (e.g., manually or automatically adjusted according to some parameter, e.g., real-time demand for a product). Such rules or algorithms may be entered into or programmed into a reward calculation module or determination module of a system of an embodiment of the invention. Some embodiments of the invention also provide systems and methods for the redemption of a SBAU-based rewards by a user for something else of value, e.g., merchandise, travel, gift cards, financial credit, donation, etc. Rewards may include benefits to a third-party, such as a charitable contribution made on behalf of (or in the name of) a user, or anonymously. Another example of a reward is a socially beneficial action that is triggered by a SBAU, such as the planting of a tree or the administration of a vaccine to a child, as may be performed by a charitable organization providing such service.

The invention includes many embodiments, including but not limited to embodiments relating to a wide range of products, many different systems and methods for determining actual use of a product by a user (including but not limited to many types of types of tags that can be associated with products), various system configurations and means of communication between elements of systems of the invention, methods for calculation of actual use of a product by a user, reward types, reward determination methods, reward redemption methods, and more. Embodiments of the invention offer many benefits to users, manufacturers, retailers, marketers, and others (such a charitable organizations, and society) by offering a more complete, holistic and rewarding customer experience that increases product engagement, brand loyalty, and more.

1. Product

In one embodiment of the invention, a “product” is a physical object that is useful to a person or group of people, and can be used (and its use can be measured). Examples of such physical object products include, but are not limited to: sports equipment, kayaks, snowboards, skis, bicycles, camping gear, climbing gear, other outdoor gear, computers, mobile devices, portable electronic devices, apparel, shoes, bikes, games, electronics, cameras, luggage, bags, backpacks, musical instruments, packaging associated with a consumable product (e.g., the can that contains the soup), and more. An embodiment of a product of the invention may be durable. Another embodiment of a product of the invention may be consumable (and can include packaging as an element or extension of the product). Another embodiment of a product of the invention may be a physical structure (or the area or space that such a structure defines or encompasses). Another embodiment of a product is portable and moving (e.g., the product's location changes during use of the product by a user). Another embodiment of a product remains stationary during use of the product by a user. In yet another embodiment, a product may be content, such as electronic or holographic content that is viewable by a user. In yet another embodiment, such content may be a digital image or video that is presented on an electronic display, or otherwise presented to a user. For example, in an embodiment wherein the product is electronic content (e.g., a digital image) that appears on an electronic or digital display of a mobile device of an embodiment of the invention, and includes a product-associated tag that is, for example, a soft key or virtual button that is presented on the electronic or digital display (which may be associated with or within the image), and also includes a sensor that enables a device to receive such (manual or other) input by a user to facilitate a determination by an embodiment of the invention of the user's actual use of the product, and to further facilitate a determination of a reward. In yet another embodiment, a product may include multiple elements, such as a product and its associated remote control, in which case the embodiment may conclude that the product is being used by virtue of a determination of the use of one of its elements, such as a remote control. Embodiments of the invention may include a product that can be used, interacted with, viewed, seen, heard, or that provides utility (e.g., enjoyment) to a user, and that can have its actual use determined by systems and methods of the invention (e.g., sensors). In another embodiment, a product of the invention may be an object as the term is defined in U.S. Pat. No. 9,386,401 to Gold, which is hereby incorporated by reference herein.

2. Tag

In certain embodiments of the invention, a product is associated with a tag. In one embodiment, a tag is a physical device capable of wirelessly communicating by means of an electromagnetic signal, such as transmission of a radio signal. An embodiment of a tag of the invention may be passive (e.g., having no internal power source), or active (e.g., having an internal power source, such as a battery or active power generation means, such as a solar cell or motion-based power generation means). Embodiments of a tag may also include any one or more of the following: battery, other source of power (e.g., solar, motion-generated), power conversion, antenna, processor, memory, sensor (e.g., accelerometer, temperature sensor, gyroscope), location determination means (e.g., global positioning system (GPS) or other internal or external location determination means), receiver, speaker, and microphone. An embodiment of a tag may transmit information, receive information, or transmit and receive information. Examples of information that may be transmitted from a tag include, but are not limited to: an identifier (e.g., an alphanumeric string that represents an identity of a tag or the product that the tag is associated with), data about the status or operation of the tag (e.g., battery capacity or remaining battery life), data from a sensor onboard or otherwise associated with the tag (e.g., accelerometer or temperature sensor), data from tag memory (e.g., information that has been stored in electronic memory onboard or otherwise associated with a tag), and more. Examples of information that may be transmitted to a tag of the invention include, but are not limited to: an identifier (e.g., of another device that is seeking to connect with, or connected with, a tag), product associated data (e.g., information relating to a product such as its name, identity, stock keeping unit (SKU) number, code, specifications, use, etc.), device associated data (e.g., information relating to a device that a tag is communicating with), user associated data (e.g., information relating to a user, such as an individual that is using a product that is associated with a tag), data for memory (e.g., data that is intended to be stored in memory at a tag), control data (e.g., data for the control of an aspect, feature, function, or element of a tag), purchase associated data (e.g., information relating to the price paid for the product, time of sale, place of sale, purchaser, warranty data), and more. A tag of the invention may also transmit and receive signals and information that relate to a ‘handshake’ or to protocols for enabling connection with another device, such as a mobile communication device. An embodiment of a tag of the invention may use any of a wide range of communication and other protocols and standards. Many types and variations of tag systems and methods are included by the invention.

For example, one embodiment of a tag is a radiofrequency identification (RFID) tag. A RFID tag may be either active or passive. In another embodiment of the invention, a tag is a Bluetooth-enabled tag, such as a Bluetooth Low Energy (BLE) tag. Other tag technologies include, but are not limited to, other RFID, near-field communication (NFC), low energy transmitters, Wi-Fi, beacon, and similar means that communicate using electromagnetic signals, for example. In yet another embodiment of a tag of the invention, the tag uses audible sound to communicate with a mobile device. An embodiment of a tag of the invention may communicate only its identity (and/or the identity of a product that the tag is associated with), or it may communicate other information, including transmitting and receiving information. In one embodiment, a tag broadcasts a wireless signal that contains its identity, e.g., an internet protocol (IP) address. Such an IP address may encode certain information, such as a prefix or code portion that indicates a certain owner or manufacturer of the product, for example, and may also include additional information. Such additional information may include a product identifier, for example (e.g., a code that can be looked up in a database to determine the specific product). A embodiment of an alternative tag of the invention may be a visual or other signal or display, such as an image (e.g., an image of a button) that may be seen by a user of the tag-associated product. Such a tag embodiment of the invention may also double as a sensor (be the sensor), and receive manual or other input from a user, e.g., be manually touched or otherwise interacted with by a user. In such an embodiment of a sensor of the invention, the sensor may also be a visual or other signal or display, such as an image (e.g., an image of a button) that may be manually or otherwise interacted with by a user, such as to indicate use of a product, e.g., start of use of a product, end of use of a product, instance of use of a product. In an embodiment of the invention, a product-associated tag enables a sensor (that interacts with the tag, electronically or otherwise) to be aware of (or to recognize) the presence of the product-associated tag (and by extension or implication, the product) so that a sensor may be used to facilitate a determination of the actual use of the product.

In an embodiment of the invention, a tag facilitates a determination of proximity between a unit of product that the tag is associated with (e.g., the unique unit of product that the tag is either built into or attached onto) and a mobile device, such as a mobile communication device (e.g., handheld phone), which may be or include or be wirelessly connected with wearable technology (e.g., wrist-worn physiologic parameter monitoring device). In an embodiment of the invention, proximity is used, at least in part, to determine SBAU, e.g., when a user is actually using a product. For example, in some cases, a user that is in proximity with (e.g., less than a predetermined distance from) a product may be assumed to be using a product, e.g., proximity between the product and the user (as may be determined by proximity between a tag that is associated with the product, and a mobile device that is associated with the user) is, in certain cases, a proxy for actual use of the product by the user. Proximity may be general, such as in one embodiment, the simple determination by a sensor that the tag's radio signal is being received. Proximity may also be specific, such as in another embodiment, wherein the sensor determines that a tag is within a certain range (e.g., less than a pre-specified distance), for example. As another example, a user that is in proximity to a product and also behaving in a certain way (e.g., moving from one location to another, as can be determined by a sensor on the product, the user's mobile device, a wearable technology, etc.) may be assumed to be engaging in actual use of the product. In an embodiment of the invention, a sensor associated with a tag provides first information that, in combination with second information about the proximity of a tag and a mobile device, facilitates a determination of actual use of a product by a user. Additionally, such proximity and other information may be used to determine not only actual use, but also a measure of the extent of actual use of a product by a user, such as the time a product has been used by a user, or the distance a product has traveled with a user. An embodiment of a tag of the invention provides useful data that facilitates determination of actual use of a product by a user, and such data may relate to proximity and other sensed parameters such as the movement or location of a product. It should be noted that in certain embodiments of the invention, a tag provides information (e.g., via a radio signal) that facilitates a determination of proximity, and other elements of a system of the invention (e.g., mobile device) provide other data (e.g., location, movement, sound) that together facilitate a determination that a user is actually using a product, which may also include a measure of the extent of actual use of the product by the user. Other systems, sensors and technologies may be used to determine the use of a product by a user, or the extent of use of a product by a user, including but not limited to video monitoring and analysis technology. Many variations of tag embodiments means and methods for determination sensor-based actual use of a product by a user are included by the invention.

In an embodiment of the invention, a tag facilitates a determination of a unique identity of a product (or group, category, or type of product) in order to identify the product by means of an identifier. An identity may be, for example, a name, or stock-keeping unit (SKU) or inventory number relating to a particular product, or it may be a unique identifier of an individual unit of product, as examples. An identifier may be an alphanumeric or other string, or code, that is either uniquely or generally associated with a product. For example, a unique unit of Product X may have an identifier “XGSRU486SFKG20”. As another example, a first unit and second unit of Product Y may have the same group identifier “46JN57Y”. Identifiers may be established or issued by a standards body, manufacturer, retailer, marketer, user, or other entity, or by an element of the invention. In another embodiment, a tag identifier is communicated to a tag (to be entered into electronic memory at the tag) at approximately the time of sale, or at the point of sale by a point-of-sale system. This may be done, for example, to associated a purchaser's name or identity with a tag (and associated product).

The words “associated with” may mean, for example, that a tag is attached to, or otherwise connected or associated, with a particular product, e.g., the tag is manufactured or otherwise built into the product, or adhered to the product's surface. Association of a tag with a product may be done by a manufacturer, retailer, user or other entity. In one embodiment, a tag is simply adhered to a surface of a product using an adhesive, such as a glue or strip of tape. In another embodiment, a tag is screwed or otherwise mechanically affixed onto a surface of a product. In yet another embodiment, a tag is embedded into the surface of a product, or placed or manufactured into the interior of a product.

One purpose of a tag is to transmit a wireless signal that can be received by a tag signal receiver associated with a device (also referred to as a “sensor,” “tag sensor,” and “device communication module” in this disclosure). In one embodiment, a signal communicates information (e.g., an identifier) relating to the identity of a product (or the tag itself). An identifier may be associated with a unique unit of product, or may be associated with a group or class of product. In another embodiment, a signal is used to determine proximity between a user and a product (by means of determining proximity between a tag and a sensor, for example) and, by extension, may be used to determine the user's use of the product. In yet another embodiment, a signal communicates information about the product, such as information derived from sensors based on the product (or otherwise associated with, or monitoring, the product) that sense an attribute of the product, e.g., the product's location, temperature, movement, acceleration, etc. In embodiments of the invention, other signals may communicate other information, and a product-associated tag may transmit signals relating to one or multiple types of information, either at the same or different times.

An embodiment of a tag of the invention may also receive information. This may be achieved by any of a wide range of receiver means, and for any of a variety of purposes. Communication means (transmitter or receiver) may be radios or other types of assemblies capable of communicating using electromagnetic means. In one embodiment of a tag of the invention, the tag receives a signal that causes it to transmit a (different) signal. In another embodiment of a tag of the invention receives a signal that causes it to perform some other function, such as sensing a parameter of the product that the tag is associated with, or a function of the tag itself. In general, embodiments of the invention may make use of any of a variety of tag types, tag communication module types, tag signals and communication protocols, tag sensors, tag sizes and form factors, tag placements, and more. A tag of the invention may wirelessly communicate with a mobile device, another electronic device (e.g., computer), or another tag, as examples. In the case of an embodiment having a first tag that communicates with a second tag, the first tag may share information with the second tag for the benefit of the second tag, or for the benefit of a system of the invention (e.g., for information back-up). One other use of tag-to-tag wireless communication is to enable a first product to communicate with a second product, e.g., to coordinate a product function.

An embodiment of a tag that both receives and transmits signals is represented by an electronic module that receives a signal emitted by the mobile device's speaker, and responds by emitting an audible sound that can be sensed by the mobile device's microphone, in order for the mobile device to determine, at a minimum, if the product is in proximity with the mobile device (where proximity is defined as being probabilistically within a certain predetermined distance).

A tag of the invention is, in an embodiment, determined based on its intended use, including but not limited to the type of product it is associated with, likely activity of the product (e.g., is it stationary or portable), product use environment profile (e.g., indoor controlled-temperature use, or outdoor use—which may impact casing and battery life), battery life for the tag's expected life (which influences size, etc.), proximity determination range (e.g., <1 meter), and the device (or range of devices) the tag is intended to communicate with. A tag of an embodiment of the invention may also be determined based on its related tag sensor (also called a device communication module). These are example considerations that may influence the choice of particular tag to be used in association with a particular embodiment of the invention.

Certain embodiments of the invention also include a tag that is used to locate a product, such as by detection of a direction and/or distance of the product from a mobile device (which may be determined in any of a variety of ways, such as by using tag signal strength, as received at a mobile device, to offer guidance on distance to a product) as an additional benefit of systems and methods of the invention. Such a feature of the invention adds a new feature to a product.

Certain embodiments of a tag of the invention may also involve the use of non-radio means to communicate the identity of an associated object, including but not limited to: optical codes (e.g., QR codes, bar codes), optical identification technology, video technology, video surveillance, user input, and more. In this type of embodiment of the invention, such visual or other signals would be received by a tag sensor or device communication module that is capable of sensing or receiving such signal or input types. Embodiments of the invention include alternative input types, such as visual and manual inputs. As one example of the use of an optical code to facilitate identification of a product, a bar code may be located on the surface of a physical product, or on packaging associated with a physical product. Alternatively, an optical code may also be presented digitally, e.g., shown on an electronic device display. In these two examples, the tag (that is an optical code) may be read by a sensor that is an optical code reader or sensor, for example. Other tag types (e.g., audio) may be read, sensed or detected by other types of sensors (e.g., microphone). Sensors of embodiments of the invention may be associated with processing means to process or analyzed the sensed tag information and facilitate its use.

Certain embodiments of a tag of the invention include elements that identify a location of the tag (and by extension a location of the product that the tag is associated with). Embodiments of these types of tags may use GPS technology, beacon technology, and other technologies, in order to determine a location of the tag. Such embodiments are useful, in certain situations, to determine the proximity between a product and a user since the locations of each of a product (as determined by the location of a tag that is associated with the product) and a user (as determined by the location of a mobile device that is associated with the user, for example) are determinable, as well as the times of each location determination, and proximity may be ascertained by determining that the tag and the device are in (at least approximately) the same place at the same time. Embodiments of tags that enable a ‘same time and place’ analysis and also a determination of proximity are useful in a variety of embodiments where a tag that communicates with a mobile device (at least for purposes of determination of proximity) is either infeasible or undesirable. Examples of applications where product location determination may be useful would be a large asset (e.g., one that would require an arrangement of multiple RFID tags, which may require the coordination among tags) or a product with elements that are interchangeable (e.g., an asset with a changing surface that would cause tags to be removed). Such ‘same time and place’ means and methods are also useful in instances where a user may not be associated with a mobile device or other means that is capable of receiving a signal transmitted from a tag. In yet other embodiments of the invention where a product location is fixed, an element of the invention (e.g., a database associated with a remote server) may ‘know’ a product's (fixed) location, such that a determination of proximity with a mobile device may be made when it is learned that the mobile device is in (at least approximately) the same location at the same time. Product locations can, for example, be transferred from a database of known product locations, or else entered by a user of a system of the invention. ‘Location aware’ embodiments of the invention may include tolerances and/or probabilities relating to thresholds for the determination of proximity, e.g., a tolerance of +/−0.1 meter distance between the product (or tag associated with the product) and a user (or mobile device associated with the user), for example, or a probability of 80% that a tag and mobile device are within a distance of 1.0 meters, respectively. Proximity may be defined and determined in different ways, such as by using different algorithms, by various embodiments of the invention.

In general, proximity may be determined in different ways by embodiments of the invention. For example, in one embodiment, proximity may be determined as being less that a pre-specified distance (e.g., 1.0 meter) between a tag and a mobile device (e.g., as determined by a mobile device-associated tag sensor or device communication module). As noted, other embodiments of the invention may determine proximity in light of pre-specified ranges and/or probabilities. In yet other embodiments of the invention, a distance range may be used to define proximity for the particular use case (e.g., proximity is defined as having a tag-sensor distance between 0 meters and 2 meters). Proximity will be determined differently by the various embodiments of the invention according to the particular implementation or use case. For example, proximity (as it is helpful for a determination of actual use of a product by a user) may be defined as less than 0.3 meter for a small item that is worn by a user (e.g., a bike helmet), while in another use case proximity may be defined a being 2.0 meter+/−0.2 meter for a product that is used in a way that involves a user remaining in the vicinity of the product but not always right next to (or interacting with) the product (e.g., a barbeque grill). Embodiments of the invention may define proximity in other ways, and utilize other systems and methods for determining proximity as it relates to determining the actual use of a product by a user.

Certain embodiments of tags of the invention may enable a determination of actual use of a product by a user for all mobile devices (and associated users) that interact with the product, or for only a subset of users, e.g., only the first user to use the product, only registered users, only verified product owners. In an embodiment, this may be achieved by programming the tag to only interact with (e.g., communicate tag sensor information) certain mobile devices, such as mobile devices associated with certain users or groups of users, or by similarly programming tag sensors or device communication modules to recognize or interact with (e.g., receive data from) only certain tags or types of tags. As may be recognized from these examples, many variations of systems and methods are included by embodiments of the invention.

3. Mobile Device

In one embodiment, a mobile device of the invention is any of a variety of mobile communication devices, or a system of connected devices, that is capable of wirelessly receiving information from a tag of the invention, and also wirelessly transmitting information. Receiving information may be performed in any of a variety of ways using a mobile device communication module (or means), and transmitting information may be performed in any of a variety of (same or other) ways using a mobile device communication module (or means). In embodiments of the invention, a mobile device communication module may be used to wirelessly transmit and/or wirelessly receive information from any of a variety of other communication modules, such as a product-associated tag of the invention and a mobile phone tower, as examples (and the mobile device communication modules used for such purposes may be the same or different, depending on the technical requirements for each module's communication counterpart). In one embodiment, a mobile device is a smartphone or similar handheld communication device (e.g., Apple iPhone). In another embodiment, a mobile device is (or includes or communicates with) a wearable communication device (e.g., Apple Watch, other body-worn device). Other types and forms of mobile devices are included in embodiments the invention. In yet another embodiment of the invention, a mobile device is a combination of technologies that work together, e.g., communicate with one another, such as a wearable device that communicates with a handheld mobile device. In such a system of distributed mobile devices (that works together), some functions are performed by one element of the system and other functions are performed by another element of the system—and such embodiments may be referred to in the singular, as a “mobile device” of a system of the invention. Embodiments of mobile devices of the invention may also be computers, tablets, readers, and other electronic means capable of wirelessly communicating information.

In an embodiment of the invention, a mobile device communicates with a tag of the invention using a device communication module (also referred to as a sensor or tag sensor, as previously described). In such an embodiment, a tag transmits one or more signals and the mobile device receives the signal(s) by means of the device communications module. A signal may include information relating to the identity of the product the tag is associated with. A signal may also facilitate determination of proximity between the tag and the mobile device (e.g., if the tag and mobile device are in proximity, the distance between them, within some predetermined distance, or in non-proximity—meaning that the tag and the mobile device are not in proximity or are farther apart than a predetermined distance). Also, embodiments of tags of the invention may communicate other information with the mobile device, including, but not limited to, information from sensors that monitor parameters associated with the product, such as its location, movement, or temperature. Other information may be communicated between a tag and a mobile device of the invention, as described.

In an embodiment, a mobile device communicates with a tag that is associated with a product (also referred to as an “object”). Such communication may be performed in order to elicit information from a tag, for example. In an embodiment, a mobile device transmits a signal, the signal is received at a tag, and the tag transmits a signal in response. This may be achieved using passive or active means, and tag signals sent in response may be transmitted at the time of elicitation, or at a later time. In one embodiment, a signal may be communicated from a mobile device to a tag of the invention to cause a processor at the tag to process the information and create a response that is communicated from the tag to the mobile device. In another embodiment, a signal may be communicated from a mobile device to a tag of the invention to cause the tag to resonate and produce a signal that is communicated (e.g., received by) the mobile device, such as to communicate a tag identifier. Other means and methods of communication between tags and mobile devices of the invention are included in embodiments of the invention. For example, an embodiment of a tag may be a virtual tag (e.g., image, virtual button, soft key, bar code, QR code, other visual code, written instruction, other instruction) that is presented on a digital (e.g., electronic) display of a mobile device. In such an embodiment, an embodiment of a tag sensor receives an input that indicates (or facilitates an understanding about) a user's use of a product. Examples of such an input include, but are not limited to: a manual input by a user (e.g., the user performing an action, providing an input to a device), a spoken input of a user, a gestural input of a user, the reading of a code (e.g., bar code, QR code) by a code reader device, and more. In embodiments of the invention, such inputs indicate a user's use of a product, or facilitate an understanding of a user's use of a product, such as an incidence of use of the product. Other means and methods of providing physical and virtual tags, and associated tag sensors and related methods, are included in embodiments of the invention.

In an embodiment, a mobile device communicates with a remote server using wireless communication means (also referred to as a “device communication module,” which may be the same or different as the device communication module that communicates with a tag of the invention). In an embodiment of the invention, the device communication module used for the communication between the mobile device and a remote server is different from the device communication module that is used for communication between the mobile device and a tag. In other embodiments, the device communication module used for communication between the mobile device and a remote server is the same as the device communication module that is used for communication between the mobile device and a tag. In embodiments of the invention, the mobile device is capable of communicating information to a remote server using any of a variety of well-established wireless communication means and methods, including, but not limited to, established communication protocols. In an embodiment of the invention, such information is communicated at the time it is received (in full or in part) from a tag or other source; alternatively, information (or a portion of the information) may be stored in memory at the mobile device and communicated at a later time. Information received by a mobile device may also be processed at the device prior to being passed on to a remote server. Information transmitted from a mobile device to a remote server may include, but is not limited to, any one or more of the following: mobile device information (e.g., a mobile device identifier), user information (e.g., a user identifier), a tag identifier, tag proximity data, tag sensed data (e.g., information about a tag or associated product, such as location or accelerometer data), time stamp (e.g., relating to any element of information), mobile device location, mobile device sensor data, associated sensor (e.g., wearable) data about a physiologic or other parameter associated with a user or the mobile device environment, and more, including combinations of information. Information communicated from a mobile device to a remote server may be in raw form, processed, encrypted, in other forms or formats, etc.

An embodiment of a mobile device of the invention may also provide other features and functions, including but not limited to enabling receipt of input from a user, such as by input means (e.g., touch screen, interactive display, physical or virtual keypad, camera, microphone), and providing output to a user, such as by an output means (e.g., an electronic display, tactile means, speaker), as examples. Mobile devices may perform other functions, as well. For example, an embodiment of a mobile device of the invention enables a user to assign an identifier or an identity to a tag that has been detected by the user's mobile device, an embodiment that may be useful in situations where a user purchases or acquires a tag and attaches the tag to a product. In this instance, if the identity of the product to which the tag has been (or is going to be) attached was previously unknown, assignment of an identity or identifier by a user, by means of an input means on a mobile device (or another computer) is useful. Other means for assigning an identity or identifier to a tag are included in embodiments of the invention. For example, such an assignment may be made (or facilitated) by manual input, voice input, reading of an optical code (e.g., a QR code or bar code) at the mobile device, communication of information from a point-of-sale or other computer system, gestural input, and more.

4. Wearable Device

Certain embodiments of the invention include a wearable device, such as a wrist-worn device, that includes one or more sensors capable of sensing one or more physiologic parameters of a user, for example. Such a wearable device may connect with a mobile device, e.g., be part of a system of devices that communicate with one another. Alternatively, such a wearable device may be a standalone device that is capable of performing at least a portion of the functions of a handheld mobile device, such as being able to communicate with a tag and a remote server of the invention. In embodiments of the invention, a wearable device may be the mobile device (and vice-versa). Examples of physiologic parameters that may be sensed by an embodiment of a wearable device include, but are not limited to: heart rate, respiration rate, temperature, blood pressure, electrodermal activity, body part movements, blood oxygen, blood chemistry, blood markers, speech, sound, facial expressions, and more, either alone or in combination. These physiologic parameters may be sensed, and information relating to any given physiologic parameter may then be communicated from a sensor to a mobile device, and then—at approximately the same time or at a later time—communicated to a remote server in one embodiment of the invention. Embodiments of a wearable device may use non-invasive or invasive technologies to determine various physiologic parameters. Alternatively, an embodiment of a wearable device of the invention may communicate information directly to a remote server (in which case the wearable device serves as a mobile device of the invention, for example). At a wearable device, mobile device or remote server, additional analysis may be performed to transform first data into second data, e.g., processing of raw heart rate data into heart rate variability (HRV) data. Physiologic data may be associated with a user, or may be aggregated and attributed to a group of users, for example.

Importantly, certain physiologic parameters can be used to determine a user's sentiments or emotional status, to varying degrees. For example, heart rate variability is influenced by the autonomic nervous system, and analysis of HRV can offer insights about a person's emotions. Other physiologic data, such as electrodermal activity (also known as galvanic skin response and by several other names) can also provide insights as to a person's emotions, either alone or in combination with HRV. These and other physiologic and non-physiologic factors can be used alone or in combination to determine a user's emotional status. This information proves valuable for understanding a person's satisfaction or other sentiments relative to use of a particular product, having an experience, etc. In an embodiment of the invention, HRV and other data, in raw or processed form, is communicated by a wearable device or mobile device of the invention to a remote server. Such information may be associated with a particular product. This concept is described in detail in U.S. Pat. No. 9,386,401 to Gold.

Physiologic data sensed by a wearable device or other means of the invention may be used to determine actual use of a product. For example, a change in a user's sentiment combined with a determination of proximity between a user and a product, may contribute to an understanding of actual use. Likewise, an embodiment of the invention can use physiologic data, such as a user's heart rate, in order to determine a user's extent of use of a product. For example, by knowing a user's heart rate during a period of proximity (and actual use) of a product by a user, a determination of extent of use of the product can be made by calculating the total heartbeats, or average beats per minute (bpm), of the user's heart during the user's use of the product. A higher number of heartbeats, or a higher bpm, may correlate with a greater extent of use, for example.

5. Remote Server

An embodiment of a remote server of the invention is a computer, server or electronic processing means (or system of co-located or distributed computers, servers or electronic processing means) that is capable of communicating (using any of a variety of communication means, protocols, etc., including wireless means) with one or multiple mobile devices, and/or other computers. A remote server of the invention is associated with electronic storage, e.g., a database. An embodiment of such a database of the invention may, for example, store information relating to mobile devices, products, tags, users, sensed data, and more. Additional information stored in a database may relate to assigning rewards or points to a user.

It should be noted that in certain embodiments of the invention proximity is determined at the remote server. This is desirable in situations when a product's location is determined other than by a direct detection of proximity between a product-associated tag and a user-associated mobile device. An example of this is when a product location is determined (tracked) by means other than a product-associated tag or mobile device that is in proximity with the tag and product, such as by means of beacon or other locating means (e.g., GPS) that can determine a location of the product and communicate this information to the remote server independently of the mobile device. In this example, the remote server can use the product location information, along with information about the user's mobile device location, to determine proximity.

6. Rewards

In an embodiment of the invention, a reward is benefit conveyed to a user of a product, based on the user's use of the product. An embodiment of a reward may be virtual in nature, such as a ‘point’ assigned to a user for each unit of time or distance of use of a product, or for each instance or day of product use. Another embodiment of a reward may be an offer conveyed from a sponsor (e.g., a company making the offer) to a user, such as a discount for the purchase of selected merchandise or services, or another form of promotion. Yet another embodiment of a reward is a benefit that is provided to a third party (e.g. not the user of the product), such as a benefit of funding to a charitable organization or cause. Other embodiments of rewards may relate to, for example: free product, trial product, upgrade for a product or service, experience, event, workshop, gathering, invitation, prize, social media mention, compliment, ‘thank you’ for using a product, congratulations on some accomplishment (which may be associated with the use of a product), societal benefit, donation to a charitable organization or cause, facilitation of a societal benefit or other third-party benefit, and more. A reward of points may also be used to make a donation, or a reward may be a donation that is made on the user's behalf, e.g., in appreciation of a user or in the name of the user.

In an embodiment, a reward may be a virtual currency, such as virtual ‘dollars’ or points, which can be converted by a user into another benefit, such as an experience or tangible object, e.g., merchandise. An embodiment of a reward of the invention may be physical in nature, however the right to the award may be conveyed to a user virtually, such as by a notice on the user's mobile device, e.g., a notice, coupon or other conveyance that is displayed on an electronic display of a user's mobile device. In an embodiment of the invention, issuance of a reward is based on the SBAU of a product by a user. In an embodiment, a reward is based on a determination of the actual use of a product by a user. Such actual use is determined by sensors of the invention, such as by a sensor that senses proximity between a mobile device associated with a user and a tag associated with a product, as an example. Such actual use may be determined in other embodiments by other means, or a determination including proximity in combination with other factors that may include, but are not limited to: sensed parameters at the tag (e.g., product movement), sensed parameters at the mobile device (e.g., device locations or movement), sensed parameters at the user (e.g., a physiologic parameter, such as heart rate or heart rate variability), environmental factors (e.g., weather related), sensed parameters relating to a product that is digital in nature (e.g., digital image viewed, video watched to completion, specific interaction with digital content shown on a display), a user input at the mobile device or at other input means (e.g., an interactive display) of an embodiment of the invention, any combination of these, and more.

In an embodiment that relates to rewards that are points, a point represents a store of value that may be attributed to (assigned to, credited to the account of) a particular user. In an embodiment of the invention, accumulated points are redeemed by (debited from the account of) a user in exchange for some other benefit. In an embodiment, some number of points are redeemed by a user for merchandise. In another embodiment, some number of points are exchanged for a service or experience. In another embodiment, redemption of points by a user may be for a discount on a purchase or other economic benefit. And in yet another embodiment of the invention, points may be used to make a charitable donation in the user's name or on the user's behalf. For example, a user uses a product for 100 minutes, earns 1 point for each minute of actual use of the product, accumulates 100 points as a result, and exchanges the 100 points for a T-shirt showing the logo of the sponsor of the points. As another example, a user earns 1,000 points, learns that these points may be exchanged for a $100 donation to a specified charity, and selects this option to make the donation to the charity. Embodiments of the invention provide users with the ability to view or otherwise learn about rewards (e.g., product rewards, service rewards, how points may be exchanged for various benefits), select rewards, redeem rewards, and track rewards. In an embodiment this may be achieved using an interactive display on a mobile device or other user interface means of the invention. Other reward types, and other means and methods for acquiring, viewing, selecting and redeeming rewards, are included in embodiments of the invention.

In an embodiment of the invention, based on a user's use of a product, a reward may be offered that involves a selection of a particular benefit by the user of the product. Such a reward may, for example, benefit the user, or alternatively may benefit a third party, such as a charitable organization or cause. Embodiments of rewards of the invention (of this and other types) may be capped. For example, a user may only be able to receive a certain reward per a predetermined unit of time (e.g., per day) or extent of use (e.g., per view), or for the reward lifetime.

A point is a quantitative representation of a unit that is, in one embodiment of the invention, associated with a particular use (or type of use) of a product. Such use is determined at least in part by determining proximity between a particular product (e.g., by means of a tag that is associated with the particular product) and a particular user (e.g., by means including a mobile device associated with the particular user). In embodiments of the invention, other means and methods are used for an accurate determination of use of a product by a user. In one embodiment, for example, proximity data is combined with mobile device location data to conclude that a user is not only in proximity with a tag and its associated product, but that the user and product are moving together. Such an analysis is one example of how proximity and other information may be used as a proxy for a user's use of a product. As noted, other information, such as data sensed from a mobile device or from a sensor associated with a product and its tag, may also be useful for a determination of SBAU by a user.

Relating to an embodiment of the invention, use of a product is an ongoing situation, meaning that use of a product occurs over a period of time. As such, embodiments of systems and methods of the invention determine use of a product by a user over time, and issue rewards accordingly. For example, an embodiment of the invention monitors for use of a product by a user to assign points to the user according to a time-based formula, e.g., 1 point awarded for each 1 minute of product use. As another example, another embodiment of the invention monitors for use of a product by a user to assign points to the user according to a distance-based formula, e.g., 100 points awarded for each 1 kilometer of distance that the user travels with the product. While the first example may be appropriate to reward points to a user for using a musical instrument, for example, the second example may be more appropriate to reward points to a user for using a particular bicycle or running shoe. In yet another embodiment, a user is incentivized by the offer of a reward that is free merchandise for using a product for 20 hours. Another embodiment provides a user with a free service, such as a bike tune-up, for riding a bike (an example product associated with a tag of the invention) for 200 kilometers. In these embodiments, the reward is a virtual representation of the right for the user (or an assignee) to receive such benefits. Such representation of a reward may be a virtual notice or coupon (e.g., one presented on an electronic display, such a mobile device display, for example) that may include a unique optical code, e.g., a bar code or QR code that is readable by a merchant system to authenticate the benefit being provided to the user. In other embodiments, a reward may be embodied by the presentation itself, such as a notice of thanks or congratulations to a user, wherein the benefit is primarily psychological or intangible. In some embodiments of the invention, the reward is a presentation on an element of the invention, such as a notice (e.g., output) given to a user on a mobile device display, or by means of a speaker or other output means. In other embodiments of the invention, a reward is a representation of some other benefit that may be received by a user, such as a notice or coupon that appears on a mobile device display or other output means, for example, that may then be used by the user to acquire the benefit (e.g., an item of merchandise, service, discount, participation in some event). In an embodiment of the invention, some types of rewards, including but not limited to points, may be assignable, e.g., may be transferred from the account of a first user to the account of a second user (for the benefit of the second user), and may even be bought and sold. Such a transfer of points or other reward (or right to a reward) may be achieved by use of a reward transfer means and method, wherein a user using a device of the invention indicates a reward (e.g., a quantity of points) and a recipient to which the reward is being assigned, in order to facilitate the transfer from the first user to the second user by re-assignment of ownership data relating to the reward being transferred in a database or other electronic memory means of a system of the invention. In this and other embodiments of the invention, reward ownership (e.g., assignment of a point or other reward to a particular user, the owner of the reward) is recorded in electronic memory, such as a database, of a system of the invention, and block chain and other recordation methodologies may also be used. A sponsor of a reward may initially deposit a certain quantity of the reward in an account (e.g., a database entry or other recordation of the reward ownership), and the sponsor's account may be debited at the same time as a user's account is credited to indicate transfer of ownership of a reward. For example, a sponsor may initially own (e.g., control or possess in their account) a quantity of 1,000 notices (e.g., coupons) for free oil changes, e.g., providing the holder of the notice with the ability to receive a free oil change at any of the sponsor's participating oil change service locations. In this example, a user of a system of the invention drives her car 5,000 miles to earn a free oil change per a promotion offered by the sponsor, to thereby earn a reward of a free oil change from the sponsor. In this example, a system of the invention transfers one notice representing the right for the holder to receive a free oil change, to the user who earned the reward by means of a determination of SBAU. This is achieved by debiting the account of the sponsor for one notice, and crediting the account of the user for one notice, resulting in the sponsor having a balance of 999 notices that can be offered as rewards in the future. The addition (credit) of one reward to the account of the user who earned the reward, and the subtraction (debit) of one reward from the account of the sponsor, are recorded in memory of a system of the invention. As mentioned, block chain, or other mechanisms for recordation or persistent documentation of a transaction, may be used.

Embodiments of systems and methods of the invention that reward a user for using a product may assign rewards to a user in any of a variety of ways. In one embodiment, a reward is rewarded based on the actual amount of time that a user uses a product. In another embodiment, rewards are allocated according to the distance that a user travels with a product. In yet another embodiment, a reward is given to a user for interacting with the product in some other way, e.g., handling the product, consuming the product. Rewards may be allocated by a sponsor, such as a company, e.g., a sporting goods company may issue points for SBAU of its camping equipment. Such a party (that allocates points) is, in an embodiment of the invention, responsible for paying for the rewards that a user redeems for those points. For example, a sponsor may pay up front to have a certain quantity of rewards on deposit in the system, which may then be issued to users who earn the rewards (such as by meeting certain predetermined actual use requirements relating to a particular product). In another embodiment of the invention, a sponsor may pay as rewards are issued, e.g., whenever a user earns a reward, the sponsor of that reward pays for the reward or otherwise assumes responsibility for delivery of the benefit conferred by the reward to the user.

In an embodiment of the invention, a first party may allocate a reward and a second party may be responsible for (e.g., cover the cost of) redemption of the reward by a user. In a variation of an embodiment, a user may acquire a reward from multiple sponsors for use of the same product at the same time. For example, a user may receive a first reward from a first sponsor, and a second reward from a second sponsor, for using a single product. Alternatively, a first party may take credit for issuing a reward to a user for using a particular product during a first use, and a second sponsor may take credit for issuing points to the same user during a second use of the product. In yet another embodiment, a user may receive points from one or multiple sponsors for using a combination of products, e.g., a particular tent and a particular backpack. In embodiments of the invention, rewards include limitations relating to their redemption, such as points being redeemable for merchandise only from a specified party, such as the company that issued (sponsored and paid for) the points. Rewards may also expire if unused after a certain period of time, e.g., after 5 years. Rewards may also be transferrable or assignable in certain embodiments of the invention. It should be noted that embodiments of the invention consider rewards to be an intangible representation of value assignable to a user (or to the user's account) that are translatable (e.g., may be exchanged or redeemed for) something else of value, such as merchandise or performance of a service. In an embodiment, when a user uses a particular product and has been determined to meet certain SBAU criteria for use of the product in order to earn a reward, a system of the invention credits the reward to the user's account. As discussed, this may be an electronic transaction of a system and methods of the invention, based on use of a particular product and the point assignment rules associated with that product (and/or the particular user). This electronic transaction is, in embodiments of the invention, secure, and may use block chain or similar methodologies to ensure integrity of the reward and/or persistence of the transaction. In an embodiment a user may learn about reward-related information in any of a variety of ways, such as on a mobile device display. Reward information may be presented in a variety of ways, as well, including but not limited to a list of a user's rewards, a breakdown of rewards according to when they were awarded (e.g., today's or this week's points earned vs. all-time total points earned), a display of the party (e.g., sponsor) that assigned the points, a map or other visualization showing where the rewards were earned, a timeline that shows when the rewards were earned, a visualization that shows how the rewards were earned, and more. As discussed, users may receive rewards from multiple parties and this information may be displayed. An embodiment of the invention will also share information about the rewards rules (e.g., 1 point per minute of product use, points expire after 5 years, points redeemable for merchandise at certain retailers only), and may also include a directory of products for which rewards may be earned, directory of rewards being offered, or a directory of sponsors that are offering rewards for use of their own or other products. Such directories facilitate a user's awareness of rewards being offered, and their use of products to earn such rewards.

In embodiments of the invention, a user may also be able to share rewards through social media channels, such as Facebook, to publicize the reward, for example. Reward points may also be posted for sale on reward exchanges. In addition, users may receive reports showing rewards awarded, such as during a prior week, including the logos or other information of reward sponsors (e.g., a company covering the economic cost of some particular allocation of points). An embodiment of a report is an email or text message, delivered daily or weekly, that provides a user with an update about SBAU of products and any rewards that have been earned, along with rewards awaiting redemption, for example. Such reports may be helpful to users and raise awareness for sponsors.

Notably, the benefits to companies for sponsoring rewards for use of their product (or even products that they don't directly manufacture or sell) include: motivating the use of a product, motivating the purchase of a product, providing positive reinforcement (e.g., rewards) to a user for use of a product, promoting new purchases of products or services from a sponsor or another entity, offering goodwill to consumers, and more. In addition, embodiments of the invention enable users, sponsors and other parties to learn information relating to various products, such as where a product has been located and used, the frequency of use of a product, the duration of use of a product, how a product is used (e.g., the type or intensity of use of a product, which may be determined from certain sensor data at the tag or mobile device, or by means of user input, such as by a survey that is completed by a user, as examples), and sentiments of a user while a product is being used (by means of a wearable that detects user emotions, for example), as examples. In embodiments of the invention, users also receive benefits that go beyond any rewards that are redeemable for merchandise or otherwise. For example, users may learn which products they use the most, which products serve their needs best, which products make them happier, healthier, or more productive, as examples. Any one or more of these benefits may be presented to a user at a mobile device, such as by displaying the time a user engages with a particular product, percentage of time a user engages with a product, the user's extent of interaction with a product, the user's emotional status during the user's use of a product (which may include comparisons with other products, or use of a product at other times), and more. Another example is a visual display that shows a ‘heat map’ of a particular product and its usage data, or of a particular user or group of users along with data related to the user or group of users (e.g., benchmark data). A user can also benefit from information about where the user actually uses a product, or a set of products, which may include showing product usage on a map or heat map on a mobile device display, as examples. Yet another example of information that may be useful in certain embodiments of the invention is a summary or representation (e.g., heat map) showing the rewards that individual users, or groups of users, select. In such an example, an understanding about user reward selections may be especially valuable, such as in the case where users select third-party beneficiaries such as charitable organizations or causes. Embodiments of the invention may indicate which causes an individual, or group of individuals, select, and may further report how funds or other resources get allocated to such causes (e.g., charitable organizations or socially beneficial activities). Systems and methods of the invention offer many benefits to users, manufacturers, retailers, marketers, charitable organizations, society, and others—to improve business and personal performance, and people's lives.

Sample Use Cases

Embodiments of the inventions can be used in association with a wide range of physical and virtual products, and for a variety of purposes including, but not limited to, providing benefits to users, manufacturers, marketers, retailers, third parties (e.g., charities, causes, society), and others. The following sample use cases provide examples of how embodiments of the invention can be used.

In one embodiment of a use case, a tag is associated with a bicycle. The tag in this example is a Bluetooth tag that broadcasts (advertises) a signal encoding an identifier. This signal is detected by a receiver module at a mobile device that is associated with a user. The mobile device, based on receipt of the tag signal, determines that the tag is in proximity with the mobile device. Subsequently, based on a determination that the mobile device is moving and that the tag remains in proximity, a determination is made that the user is actually using the bicycle. This is an example of a determination of sensor-based actual use of a product by a user. Following the determination of actual use, a first parameter is sensed, such as a location of the mobile device, by means of a GPS receiver at the mobile device. A second parameter may also be sensed by another sensor at approximately the same time. Sensed parameters may be sensed at the tag, at the mobile device, at an external sensor, or at another sensor means that is an element of an embodiment of a system of the invention. The first parameter is also sensed at other times during the use of the product by the user, and the second parameter may also be sensed at other times during the use of the product by the user. Various parameters may also be sensed before and/or after actual use of the product by the user. In this example, based on the information collected about the parameter (location of the mobile device in this case), the system of the invention determines an extent of use. In this sample use case, a representative extent of use is a measure of a distance that the user has traveled on (or with) the bicycle, e.g., 10 kilometers. Another representative extent of use is a measure of the time that the user has spent using the bicycle, e.g., 1 hour. Using such information about the extent of use of a product by a user, a system and methods of the invention can then determine a reward that can be issued to the user. Such a reward can take any of a variety of forms. As one example, the user receives a notice of congratulations for riding the first 10 kilometers on the new bicycle. As another example, the user receives a certain amount of points, e.g., 10 points representing 1 point for each kilometer of bicycle use. As yet another example, a notice (coupon or voucher) for a specific reward is presented to the user, such as a notification that the user is entitled to visit a certain bicycle shop for a free tune-up (service), or a free t-shirt (merchandise). An additional example of a reward is a donation that has been made in the name of the user in honor of the user's use of the bicycle. In some cases, such as the note of congratulations, the reward is immediately available to the user (such as being viewable by the user on a display of the user's mobile device). In other instances, a reward needs to be redeemed by the user, either by taking further action on a mobile device (e.g., selecting a reward for delivery), or by presenting a coupon or voucher or other notice, which may include an optical code or associated with a wirelessly transmissible code (e.g., a communication from the user's mobile device) that communicates or confirms the user's right to receive the reward or benefit.

In another sample use case of the invention, a user receives a reward that is a certain number of points. In this embodiment, proximity is, at least in part, a proxy for the use of a product by a user. In this embodiment, the proximity determination includes an associated first starting time (e.g., first date and time), and also an associated first ending time (e.g., second date and time). The period of time in between the first starting time and the first ending time is first duration of use of the product by the user. In this embodiment, location of the user's mobile device is determined at the first starting time, the first ending time, and at intervals in between the first starting time and first ending time. The various locations are analyzed to determine changes in location (e.g., distance traveled by the user, and by the product that is determined to be in proximity with the user during the particular timeframe). By knowing the duration of time and/or the distance traveled during which the first product and first user are in proximity, a reward of a certain quantity of points may be calculated according to a formula (e.g., 100 points per minute of product use, or 2.5 points per mile traveled with the product). Various algorithms may be used to determine a reward quantity (e.g., number of points) that a user is assigned based on the user's actual use (SBAU) of a product. Reward formulas, such as the number of points that a user is rewarded for use of a particular product, may be static or dynamic. An example of a static formula is one that has been manually entered into a system and generally remains unchanged. An example of a dynamic formula is one in which rewards go up as use of a particular product goes down, to incentivize use of the product, for example. Other information that may lead to a change in the value of a reward for use of a product in a dynamic reward system include, but are not limited to, a company's desire to get early users for a product, weather (e.g., incentivizing use of a product on a rainy day), a user's performance (e.g., being at the top of a leaderboard), recognizing users who are influencers (e.g., users who post positive reviews of a product on social media), and more. A reward may be determined using an algorithm (e.g., automatically by a system and methods of an embodiment of the invention), or manually such as by input from an administrative user of a system of the invention, as well as by other means. In general, the extent of use of a product by a user is represented by measureable quantities of one or more of the following: time, distance, user interaction with a product, and other measures of extent of use. An example of a measure (metric) of extent of use of a product by a user is a measure of a period of time (e.g., number of minutes) that a user uses or interacts with a product. Another example of a measure (metric) of extent of use of a product by a user is a measure of the distance (e.g., number of kilometers) that a user travels with a product. Measures used to determine the extent of use of a product by a user may be applied alone or in combination, such as by combining the amount of time and distance traveled to determine a measure of an extent of use. A measure of extent of use may be real and directly measurable (e.g., a quantity of minutes a product is used by a user) or artificial and calculated (e.g., determined by means of an algorithm that results in some other measure of extent of use).

Use of a product by a user may be one-time, or ongoing, meaning that the user may use a particular product to some extent regularly or periodically, e.g., once a day or once a month, on average. An embodiment of the invention detects both proximity and non-proximity to determine discrete instances of use, and the extent of use for each instance of use. For example, a user may use a product for 2 hours on one day, and 5 hours on another day. Each of these instances of use is associated with a different extent of use. In embodiments of the invention, reward points are allocated to a user based on extent of use, which may be different from one instance of use to another. As noted, the formula for the quantity of points provided to a user may remain stable (e.g., 1 point per mile of product use every time), or may be dynamic and change (e.g., 10 points per minute for the first instance of use, 9 points per minute for the second instance of use, 8 points per minute for the third instance of use, etc.)

In another embodiment, a user is incentivized to share wearable device sensor data at least during the period of time during which the user is in proximity with a particular product. This wearable device data, e.g., user physiologic data, may, for example, be communicated via a mobile device to a remote sensor. Any of the data including, but not limited to, user information, product proximity data, product/user location information, sensed physiologic information, and more, may be collected, stored, analyzed and output for the benefit of a human user or other connected computer. For example, a user may learn the quantity of points in the user's account by means of a mobile device display, or using any of a variety of other output means. Points that are assigned (e.g., credited) to a user may be used (e.g., debited, exchanged, traded) for merchandise or other benefits, similar to the way airline frequent flyer points are earned and used. For example, a user may earn 10,000 points for using (e.g., being in proximity with) many different products over a 12 month period. The user earned these points—perhaps at different rates for using different products and/or sharing different information—over the period and the points are assigned to the user's account (e.g., electronically credited for the benefit of the user). The user may choose to use or apply points to acquire new merchandise or receive some other benefit. Representative examples of rewards that a user may acquire with points may include: merchandise, travel, discounts, services, experiences, and more.

In another example of a use case of embodiments of the invention, a product is a first digital (e.g., electronic) image presented on a digital (e.g., electronic) display, such as a mobile device display, for example. Other embodiments of an image may be a group of multiple (rotating or selectable) images, or a video (that may be played, paused, etc.). An embodiment of a product-associated tag, in this use case, may be a second image positioned on the same electronic display that is showing the image. Such a tag may be located near (over, under or to the side of the first image), or superimposed on the first image. Such tag provides a means for facilitating an interaction that provides information about the use of the product, for example. In this use case, the tag may also be a tag sensor. An embodiment of a tag sensor may be an image that is selectable by a user of the product. Such selection of the tag sensor of this embodiment may be by means of a manual selection (e.g., touch) by a user on an interactive display, for example. Other selection methods are possible, including by voice, gesture, and other means. In this embodiment, selection of the tag sensor provides a way to understand the use of the product (e.g., the viewing of the image in this use case), and to subsequently determine the extent of use of the product. In this use case example, the extent of use of the product may be represented as an instance of use, or a response to a query posed in or by the first image, as examples. Based on the tag sensor input, the tag sensor provides information to the device that is communicated to the remote server. This information is then used to determine a reward or other benefit to be provided to a user or third party. An example of a reward in this use case may be a donation of funds made to a charity on behalf of (e.g., in the name of) a user, or based on the use of the product by the user. In certain embodiments of the invention, multiple tags and tag sensors may be used, whether associated with one or multiple images), in order to facilitate a selection of a particular tag (and sensing of the selection by the particular tag sensor) in order to facilitate a particular reward or benefit. For example, image A (associated with cause A) may be associated with tag A and tag sensor A, and image B (associated with cause B) may be associated with tag B and tag sensor B. If a user selects (provides input to select) tag B, as detected by tag sensor B, then a reward will be facilitated for the benefit of cause B. A reward or benefit may be determined by a simple parameter such as a single use (e.g., viewing) of an image or video, or may be based on a more complex understanding of extent of use (e.g., completion of viewing of a video).

Benefits of the invention include, but are not limited to, motivating users with rewards in exchange for the user using a product. In addition, users can share information relating to a product including, but not limited to: product details, proximity information, product use information, location information, personal information, physiologic information, user sentiment, and more. This information may be communicated to a user such as a manufacturer, marketer or retailer. In an embodiment of the invention, at least a portion of the information is shared with the user's knowledge and consent (some information, such as the mobile device identifier may, for example, be standard and required for operation of the mobile device relative to a wireless communication system). An embodiment of the invention includes means for a user to understand what information is being shared and how it is being used.

FIG. 13 shows a representation of a first embodiment 1300 of a system of the invention. In this figure, user X 13130 is associated with device X 13110, and user Y 13230 is associated with device Y 13210. In this FIG. 13, Product A 13100 is associated with a Tag A 13102, and Product B 13200 is associated with Tag B 13202. Tag A signal may be detected by Device Communication Module X1 13112, and also by Device Communication Module Y1 13212, as represented by wireless signal pathways 13104 and 13106, respectively. Similarly, Tag B signal may be detected by Device Communication Module X1 13112, and also by Device Communication Module Y1 13212, as represented by pathways 13204 and 13206, respectively. In one variation of the embodiment shown in FIG. 13, a tag transmits a signal that is only received by a Device Communication Module. In another variation of the embodiment shown in FIG. 13, a tag communicates bi-directionally with a Device Communication Module, meaning that information is exchanged both ways between these elements of the invention. In this embodiment, User X 13130 may also be associated with a Sensor X 13132 that communicates with Device Communication Module X1 13112 using path 13134, and User Y 13230 may also be associated with a Sensor Y 13232 that communicates with Device Communication Module Y1 13212. Sensor X 13132 and/or Sensor Y 13232 may determine a user's location, for example. Alternatively, Sensor X 13132 and/or Sensor Y 13232 may measure at least one physiologic parameter of a user. Other sensor types are included by embodiments of the invention. Information received at a device communication module is then shared with other device elements. In the embodiment shown in FIG. 13, these elements include a Processor 13114, 13214, Electronic Storage 13116, 13216, Input Means 13118, 13218, and Output Means 13120, 13220. In an embodiment of the invention, information is shared using a Bus 13122, 13222 or other means for sharing data between elements of a device of the invention. Device X 13110 includes a Device Communication Module X2 13124, and Device Y 13210 includes a Device Communication Module Y2 13224. Each of these communication modules 13124, 13224 facilitates communication between a device of the invention and a Remote Server 13150 of the invention via paths 13140, 13240. Remote server 13150 includes a Remote Server Communication Module 13152 that is connected with (in this embodiment) a Use Determination Module 13154, Reward Determination Module 13156, a Reward Management Module 13158, a Processor 13160, and Electronic Storage 13162 (e.g., memory, which may include a database).

FIG. 14 shows a representation of a second embodiment of a system of the invention. This embodiment 1400 is similar to the embodiment 1300 shown in FIG. 13, with two notable differences. First, in lieu of Tag A 13102 and Tag B 13202 wirelessly communicating with Device Communication Modules 13112, 13212, respectively, as a means for determining proximity (which may then be used to determine actual use of a product by a user), embodiment 1400 uses a Product Location Detection Module 14170 to sense proximity between a tag (or its associated product) and a device (or its associated user) in order to facilitate a determination of use. In a variation of this embodiment, Product Location Detection Module 14170 facilitates a determination of actual use of a product by a user. In either instance, the second notable difference between this embodiment 1400 and embodiment 1300 is that the Product Location Detection Module 14170 communicates data via path 14172 directly to the Remote Server 14150. This embodiment 1400 enables proximity or use determination without the need for a tag to communicate with a device.

FIG. 15 shows a representation of a first embodiment 1500 of a method of the invention. In this embodiment of a method, step 15300 shows at a first mobile device detecting a first wireless signal that is broadcast from a first tag, step 15312 shows determining that a first tag is in proximity with the first mobile device, step 15318 shows at a first sensor sensing first parameter first data, step 15320 shows at a second sensor sensing second parameter first data, step 15326 shows determining that the first tag is in proximity with the first mobile device, step 15332 shows at a first sensor sensing first parameter second data, step 15334 shows at a second sensor sensing second parameter second data, and step 15340 shows determining that the first tag is not in proximity with the first device. Optionally, step 15348 shows at a first sensor sensing first parameter third data (following the determination of non-proximity), and step 15350 at a second sensor sensing second parameter third data. In embodiment 1500, each element of sensed data may in step 15354 be communicated (e.g., by means of a mobile device) into storage to make up first data. Then in step 15356, some or all of the first data may be communicated to the remote server as second data. At the remote server, in step 15358 a determination of sensor-based actual use (SBAU) is made, in step 15360 a determination of a reward is made (e.g., the particulars of a reward), and in step 15362 an attribution of the reward to the user is performed. Step 15364 represents communicating third data to a first client device. Third data may be all or a subset of second data, or may be or include derivative information such as an analysis of the second data, which may be in combination with other data from other sources.

FIG. 16 shows a representation of a second embodiment 1600 of a method of the invention relating to the accounting for a reward. Following step 16400 creation of a reward by crediting the reward to an ‘available reward’ account associated with a sponsor, and step 15362 (as shown in FIG. 3 embodiment 1500) determination of a reward, attribution of a reward to the user may be performed as step 16410. In this step, two sub-steps occur: first, in step 16412 there is a debit of the reward from the ‘available reward’ account associated with a sponsor, and second, in step 16414 there is a credit of the reward to an ‘available reward’ account associated with the user. At some point following the credit (attribution or issuance) of the reward to the user, the user may elect to redeem the reward. Step 16430, redemption of the reward by the user includes two sub-steps: first, in step 16432, a debit of the reward from the ‘available reward’ account associates with the user is performed, and second, as step 16434, a credit of the reward to a ‘redeemed reward’ account associated with the sponsor is performed. A notice that the reward has been redeemed may also be shared with the user in order to notify the user (or confirm) that the reward has been redeemed. Reference to a reward in this embodiment means, in general, a representation of a reward in electronic memory of a system of the invention, such as a database entry. A reference to an account similarly means data in electronic memory that is associated with a particular entity, e.g., a user or sponsor.

These embodiments of systems and methods of the invention are representative only, and many other systems and methods of the invention are included by embodiments of the invention.

Broadening Language

Embodiments of the invention may be implemented in a wide variety of ways and using all kinds of different technologies. The description above is intended to represent examples of elements of the invention and processes associated with such elements, and is not intended to be limiting in any way. The invention includes other variations of the systems and methods that are described.

It is to be understood that although the invention has been described above in terms of particular embodiments, the foregoing embodiments are provided as illustrative only, and do not limit or define the scope of the invention. Various other embodiments, including but not limited to the following, are also within the scope of the claims. For example, elements and components described herein may be further divided into additional components or joined together to form fewer components for performing the same functions.

Any of the functions disclosed herein may be implemented using means for performing those functions. Such means include, but are not limited to, any of the components disclosed herein, such as the computer-related components described below.

The techniques described above may be implemented, for example, in hardware, one or more computer programs tangibly stored on one or more computer-readable media, firmware, or any combination thereof. The techniques described above may be implemented in one or more computer programs executing on (or executable by) a programmable computer including any combination of any number of the following: a processor, a storage medium readable and/or writable by the processor (including, for example, volatile and non-volatile memory and/or storage elements), an input device, and an output device. Program code may be applied to input entered using the input device to perform the functions described and to generate output using the output device.

Embodiments of the present invention include features that are only possible and/or feasible to implement with the use of one or more computers, computer processors, and/or other elements of a computer system. Such features are either impossible or impractical to implement mentally and/or manually. For example, embodiments of the present invention sense and monitor information at a rate that is not humanly possible, and in ways that are not humanly possible. Such features cannot be performed mentally or manually.

Any claims herein which affirmatively require a computer, a processor, a memory, or similar computer-related elements, are intended to require such elements, and should not be interpreted as if such elements are not present in or required by such claims. Such claims are not intended, and should not be interpreted, to cover methods and/or systems that lack the recited computer-related elements. For example, any method claim herein that recites that the claimed method is performed by a computer, a processor, a memory, and/or similar computer-related element, is intended to, and should only be interpreted to, encompass methods which are performed by the recited computer-related element(s). Such a method claim should not be interpreted, for example, to encompass a method that is performed mentally or by hand (e.g., using pencil and paper). Similarly, any product claim herein that recites that the claimed product includes a computer, a processor, a memory, and/or similar computer-related element, is intended to, and should only be interpreted to, encompass products which include the recited computer-related element(s). Such a product claim should not be interpreted, for example, to encompass a product that does not include the recited computer-related element(s).

Each computer program within the scope of the claims below may be implemented in any programming language, such as assembly language, machine language, a high-level procedural programming language, or an object-oriented programming language. The programming language may, for example, be a compiled or interpreted programming language.

Each such computer program may be implemented in a computer program product tangibly embodied in a machine-readable storage device for execution by a computer processor. Method steps of the invention may be performed by one or more computer processors executing a program tangibly embodied on a computer-readable medium to perform functions of the invention by operating on input and generating output.

Suitable processors include, by way of example, both general and special purpose microprocessors. Generally, the processor receives (reads) instructions and data from a memory (such as a read-only memory and/or a random access memory) and writes (stores) instructions and data to the memory. Storage devices suitable for tangibly embodying computer program instructions and data include, for example, all forms of non-volatile memory, such as semiconductor memory devices, including EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROMs. Any of the foregoing may be supplemented by, or incorporated in, specially designed ASICs (application-specific integrated circuits) or FPGAs (Field-Programmable Gate Arrays). A computer can generally also receive (read) programs and data from, and write (store) programs and data to, a non-transitory computer-readable storage medium such as an internal disk (not shown) or a removable disk. These elements will also be found in a conventional desktop or workstation computer as well as other computers suitable for executing computer programs implementing the methods described herein, which may be used in conjunction with any digital print engine or marking engine, display monitor, or other raster output device capable of producing color or gray scale pixels on paper, film, display screen, or other output medium.

Any data disclosed herein may be implemented, for example, in one or more data structures tangibly stored on a non-transitory computer-readable medium.

Embodiments of the invention may store such data in such data structure(s) and read such data from such data structure(s).

Claims

1. A system for providing a reward to a user based on the user's use of a product, comprising:

a. a physical product;
b. a tag associated with the product, the tag capable of wirelessly communicating information to a mobile device;
c. a first communication wirelessly communicated by the tag to the mobile device, wherein the first communication comprises first information to facilitate a determination of proximity between the tag and the mobile device;
d. a second communication wirelessly communicated by the tag to the mobile device, wherein the second communication comprises second information to facilitate a determination of an identity of the tag [or the product];
e. a third communication wirelessly communicated by the tag to the mobile device, wherein the third communication comprises third information relating to a use of the product by a user;
f. a fourth communication wirelessly communicated by the mobile device to a remote server, wherein the fourth communication comprises fourth information derived from: first information, second information, and third information;
g. Based at least in part on the fourth information, determining an extent of use of the product by the user; and,
h. based on the determination of an extent of use of the product by the user, determining a reward.
Patent History
Publication number: 20180227735
Type: Application
Filed: Apr 5, 2018
Publication Date: Aug 9, 2018
Inventors: Steven K. Gold (Lexington, MA), Charles DiPietro (Stoneham, MA)
Application Number: 15/945,885
Classifications
International Classification: H04W 4/80 (20180101); H04W 4/02 (20180101); H04L 29/08 (20060101); H04W 84/18 (20090101);