Titanium-Cobalt Alloy And Associated Thixoforming Method
A titanium alloy that includes about 5 to about 27 percent by weight cobalt and titanium.
Latest The Boeing Company Patents:
- Progressive damage and failure analysis of metal parts using computed tomography
- Fiber placement tow end detection using machine learning
- Ultraviolet light-emitting module and disinfecting system
- Systems and methods for tracking objects relative to an aircraft within an air space
- System and method for dynamic display of legend
This application relates to titanium alloys and, more particularly, to thixoforming of titanium alloys.
BACKGROUNDTitanium alloys offer high tensile strength over a broad temperature range, yet are relatively light weight. Furthermore, titanium alloys are resistant to corrosion. Therefore, titanium alloys are used in various demanding applications, such as aircraft components, medical devices and the like.
Plastic forming of titanium alloys is a costly process. The tooling required for plastic forming of titanium alloys must be capable of withstanding heavy loads during deformation. Therefore, the tooling for plastic forming of titanium alloys is expensive to manufacture and difficult to maintain due to high wear rates. Furthermore, it can be difficult to obtain complex geometries when plastic forming titanium alloys. Therefore, substantial additional machining is often required to achieve the desired shape of the final product, thereby further increasing costs.
Casting is a common alternative for obtaining titanium alloy products having more complex shapes. However, casting of titanium alloys is complicated by the high melting temperatures of titanium alloys, as well as the excessive reactivity of molten titanium alloys with mold materials and ambient oxygen.
Accordingly, titanium alloys are some of the most difficult metals to be processed in a cost-effective manner. Therefore, those skilled in the art continue with research and development efforts in the field of titanium alloys.
SUMMARYIn one embodiment, the disclosed titanium alloy includes titanium and about 5 to about 27 percent by weight cobalt.
In another embodiment, the disclosed titanium alloy consists essentially of about 5 to about 27 percent by weight cobalt and the balance titanium.
In yet another embodiment, the disclosed titanium alloy consists essentially of about 13 to about 27 percent by weight cobalt and the balance titanium.
In one embodiment, the disclosed method for manufacturing a metallic article includes the steps of (1) heating a mass of titanium alloy to a thixoforming temperature, the thixoforming temperature being between a solidus temperature of the titanium alloy and a liquidus temperature of the titanium alloy, the titanium alloy including cobalt and titanium; and (2) forming the mass into the metallic article while the mass is at the thixoforming temperature.
In another embodiment, the disclosed method for manufacturing a metallic article includes the steps of (1) heating a mass of titanium alloy to a thixoforming temperature, the thixoforming temperature being between a solidus temperature of the titanium alloy and a liquidus temperature of the titanium alloy, the titanium alloy including about 5 to about 27 percent by weight cobalt and the balance titanium; and (2) forming the mass into the metallic article while the mass is at the thixoforming temperature
Other embodiments of the disclosed titanium-cobalt alloy and associated thixoforming method will become apparent from the following detailed description, the accompanying drawings and the appended claims.
Disclosed is a titanium-cobalt alloy. When the compositional limits of the cobalt addition in the disclosed titanium-cobalt alloy are controlled as disclosed herein, the resulting titanium-cobalt alloy may be particularly well-suited for use in the manufacture of metallic articles by way of thixoforming.
Without being limited to any particular theory, it is believed that the disclosed titanium-cobalt alloys are well-suited for use in the manufacture of metallic articles by way of thixoforming because the disclosed titanium-cobalt alloys have a relatively broad solidification range. As used herein, “solidification range” refers to the difference (ΔT) between the solidus temperature and the liquidus temperature of the titanium-cobalt alloy, and is highly dependent upon alloy composition. As one example, the solidification range of the disclosed titanium-cobalt alloys may be at least about 50° C. As another example, the solidification range of the disclosed titanium-cobalt alloys may be at least about 100° C. As another example, the solidification range of the disclosed titanium-cobalt alloys may be at least about 150° C. As another example, the solidification range of the disclosed titanium-cobalt alloys may be at least about 200° C. As another example, the solidification range of the disclosed titanium-cobalt alloys may be at least about 250° C. As another example, the solidification range of the disclosed titanium-cobalt alloys may be at least about 300° C.
The disclosed titanium-cobalt alloys become thixoformable when heated to a temperature between the solidus temperature and the liquidus temperature of the titanium-cobalt alloy. However, the advantages of thixoforming are limited when the liquid fraction of the titanium-cobalt alloy is too high (processing becomes similar to casting) or too low (processing becomes similar to plastic metal forming). Therefore, it may be advantageous to thixoform when the liquid fraction of the titanium-cobalt alloy is between about 30 percent and about 50 percent.
Without being limited to any particular theory, it is further believed that the disclosed titanium-cobalt alloys are well-suited for use in the manufacture of metallic articles by way of thixoforming because the disclosed titanium-cobalt alloys achieve a liquid fraction between about 30 percent and about 50 percent at temperatures significantly below traditional titanium alloy casting temperatures. In one expression, the disclosed titanium-cobalt alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,200° C. In another expression, the disclosed titanium-cobalt alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,150° C. In another expression, the disclosed titanium-cobalt alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,100° C. In another expression, the disclosed titanium-cobalt alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,050° C. In yet another expression, the disclosed titanium-cobalt alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature of about 1,025° C.
In one embodiment, disclosed is a titanium-cobalt alloy having the composition shown in Table 1.
Thus, the disclosed titanium-cobalt alloy may consist of (or consist essentially of) titanium (Ti) and cobalt (Co).
Those skilled in the art will appreciate that various impurities, which do not substantially affect the physical properties of the disclosed titanium-cobalt alloy, may also be present, and the presence of such impurities will not result in a departure from the scope of the present disclosure. For example, the impurities content of the disclosed titanium-cobalt alloy may be controlled as shown in Table 2.
Without being limited to any particular theory, it is believed that the cobalt addition slightly increases hardness of the as-cast and forged alloy, and contributes to the thixoformability of the disclosed titanium-cobalt alloy.
As shown in Table 1, the compositional limits of the cobalt addition to the disclosed titanium-cobalt alloy range from about 5 percent by weight to about 27 percent by weight. In one variation, the compositional limits of the cobalt addition range from about 10 percent by weight to about 27 percent by weight. In another variation, the compositional limits of the cobalt addition range from about 13 percent by weight to about 27 percent by weight. In another variation, the compositional limits of the cobalt addition range from about 15 percent by weight to about 25 percent by weight. In another variation, the compositional limits of the cobalt addition range from about 17 percent by weight to about 23 percent by weight. In yet another variation, the compositional limits of the cobalt addition range from about 17 percent by weight to about 21 percent by weight.
Example 1 Ti-13-27CoOne general, non-limiting example of the disclosed titanium-cobalt alloy has the composition shown in Table 3.
Referring to the phase diagram of
One specific, non-limiting example of the disclosed titanium-cobalt alloy has the following nominal composition:
Ti-17.5Co
and the measured composition shown in Table 4.
PANDAT™ software (version 2014 2.0) from CompuTherm LLC of Middleton, Wis., was used to generate liquid fraction versus temperature data for the disclosed Ti-17.5Co alloy, assuming both equilibrium conditions and Scheil conditions. The results are shown in
Referring to
Another specific, non-limiting example of the disclosed titanium-cobalt alloy has the following nominal composition:
Ti-18.5Co
and the measured composition shown in Table 5.
PANDAT™ software (version 2014 2.0) was used to generate liquid fraction versus temperature data for the disclosed Ti-18.5Co alloy, assuming both equilibrium conditions and Scheil conditions. The results are shown in
Referring to
Another specific, non-limiting example of the disclosed titanium-cobalt alloy has the following nominal composition:
Ti-19.5Co
and the measured composition shown in Table 6.
PANDAT™ software (version 2014 2.0) was used to generate liquid fraction versus temperature data for the disclosed Ti-19.5Co alloy, assuming both equilibrium conditions and Scheil conditions. The results are shown in
Referring to
Another specific, non-limiting example of the disclosed titanium-cobalt alloy has the following nominal composition:
Ti-20.5Co
and the measured composition shown in Table 7.
PANDAT™ software (version 2014 2.0) was used to generate liquid fraction versus temperature data for the disclosed Ti-20.5Co alloy, assuming both equilibrium conditions and Scheil conditions. The results are shown in
Referring to
Accordingly, discloses are titanium-cobalt alloys that are well-suited for thixoforming. Also, disclosed are methods for manufacturing a metallic article, particularly a titanium alloy article, by way of thixoforming.
Referring now to
At this point, those skilled in the art will appreciate that selection of a titanium alloy (Block 12) may include selecting a commercially available titanium alloy or, alternatively, selecting a non-commercially available titanium alloy. In the case of a non-commercially available titanium alloy, the titanium alloys may be custom made for use in the disclosed method 10.
As is disclosed herein, the solidification range may be one consideration during selection (Block 12) of a titanium alloy. For example, selection of a titanium alloy (Block 12) may include selecting a titanium-cobalt alloy having a solidification range of at least 50° C., such as at least 100° C., or at least 150° C., or at least 200° C. or at least 250° C., or at least 300° C.
As is also disclosed herein, the temperature at which a liquid fraction between about 30 percent and about 50 percent is achieved may be another consideration during selection (Block 12) of a titanium alloy. For example, selection of a titanium alloy (Block 12) may include selecting a titanium-cobalt alloy that achieves a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,200° C., such as a temperature less than 1,150° C., or a temperature less than 1,100° C., or a temperature less than 1,050° C.
At Block 14, a mass of the titanium alloy may be heated to a thixoforming temperature (i.e., a temperature between the solidus and liquidus temperatures of the titanium alloy). In one particular implementation, the mass of the titanium alloy may be heated to a particular thixoforming temperature, and the particular thixoforming temperature may be selected to achieve a desired liquid fraction in the mass of the titanium alloy. As one example, the desired liquid fraction may be about 10 percent to about 70 percent. As another example, the desired liquid fraction may be about 20 percent to about 60 percent. As yet example, the desired liquid fraction may be about 30 percent to about 50 percent.
At Block 16, the mass of the titanium alloy may optionally be maintained at the thixoforming temperature for a predetermined minimum amount of time prior to proceeding to the next step (Block 18). As one example, the predetermined minimum amount of time may be about 10 seconds. As another example, the predetermined minimum amount of time may be about 30 seconds. As another example, the predetermined minimum amount of time may be about 60 seconds. As another example, the predetermined minimum amount of time may be about 300 seconds. As yet another example, the predetermined minimum amount of time may be about 600 seconds.
At Block 18, the mass of the titanium alloy may be formed into a metallic article while the mass is at the thixoforming temperature. Various forming techniques may be used, such as, without limitation, casting and molding.
Accordingly, the disclosed titanium-cobalt alloy and associated thixoforming method may facilitate the manufacture of net shape (or near net shape) titanium alloy articles at temperatures that are significantly lower than traditional titanium casting temperatures, and without the need for the complex/expensive tooling typically associated with plastic forming of titanium alloys. Therefore, the disclosed titanium-cobalt alloy and associated thixoforming method have the potential to significantly reduce the cost of manufacturing titanium alloy articles.
Examples of the disclosure may be described in the context of an aircraft manufacturing and service method 100, as shown in
Each of the processes of method 100 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft manufacturers and major-system subcontractors; a third party may include without limitation any number of venders, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
The disclosed titanium-cobalt alloy and associated thixoforming method may be employed during any one or more of the stages of the aircraft manufacturing and service method 100. As one example, components or subassemblies corresponding to component/subassembly manufacturing 108, system integration 110, and or maintenance and service 116 may be fabricated or manufactured using the disclosed titanium-cobalt alloy and associated thixoforming method. As another example, the airframe 118 may be constructed using the disclosed titanium-cobalt alloy and associated thixoforming method. Also, one or more apparatus examples, method examples, or a combination thereof may be utilized during component/subassembly manufacturing 108 and/or system integration 110, for example, by substantially expediting assembly of or reducing the cost of an aircraft 102, such as the airframe 118 and/or the interior 122. Similarly, one or more of system examples, method examples, or a combination thereof may be utilized while the aircraft 102 is in service, for example and without limitation, to maintenance and service 116.
The disclosed titanium-cobalt alloy and associated thixoforming method is described in the context of an aircraft; however, one of ordinary skill in the art will readily recognize that the disclosed titanium-cobalt alloy and associated thixoforming method may be utilized for a variety of applications. For example, the disclosed titanium-cobalt alloy and associated thixoforming method may be implemented in various types of vehicle including, for example, helicopters, passenger ships, automobiles, marine products (boat, motors, etc.) and the like. Various non-vehicle applications, such as medical applications, are also contemplated.
Although various embodiments of the disclosed titanium-cobalt alloy and associated thixoforming method have been shown and described, modifications may occur to those skilled in the art upon reading the specification. The present application includes such modifications and is limited only by the scope of the claims.
Claims
1. A titanium alloy comprising:
- about 5 to about 27 percent by weight cobalt; and
- titanium.
2. The titanium alloy of claim 1 wherein said cobalt is present at about 10 to about 27 percent by weight.
3. The titanium alloy of claim 1 wherein said cobalt is present at about 13 to about 27 percent by weight.
4. The titanium alloy of claim 1 wherein said cobalt is present at about 15 to about 25 percent by weight.
5. The titanium alloy of claim 1 wherein said cobalt is present at about 17 to about 23 percent by weight.
6. The titanium alloy of claim 1 wherein said cobalt is present at about 17 to about 21 percent by weight.
7. The titanium alloy of claim 1 wherein oxygen is present as an impurity at a concentration of at most about 0.25 percent by weight.
8. The titanium alloy of claim 1 wherein nitrogen is present as an impurity at a concentration of at most about 0.03 percent by weight.
9. The titanium alloy of claim 1 consisting of said cobalt and said titanium.
10. A method for manufacturing a metallic article comprising:
- heating a mass of titanium alloy to a thixoforming temperature, said thixoforming temperature being between a solidus temperature of said titanium alloy and a liquidus temperature of said titanium alloy, said titanium alloy comprising cobalt and titanium;
- forming said mass into said metallic article while said mass is at said thixoforming temperature.
11. The method of claim 10 further comprising maintaining said mass at said thixoforming temperature for at least 60 seconds prior to said forming said mass into said metallic article.
12. The method of claim 10 further comprising maintaining said mass at said thixoforming temperature for at least 600 seconds prior to said forming said mass into said metallic article.
13. The method of claim 10 further comprising selecting said titanium alloy such that a difference between said solidus temperature and said liquidus temperature is at least 200° C.
14. The method of claim 10 further comprising selecting said titanium alloy such that a difference between said solidus temperature and said liquidus temperature is at least 250° C.
15. The method of claim 10 further comprising selecting said titanium alloy to have a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,200° C.
16. The method of claim 10 further comprising selecting said titanium alloy to have a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,100° C.
17. The method of claim 10 wherein said cobalt is present in said titanium alloy at about 5 to about 27 percent by weight.
18. The method of claim 10 wherein said cobalt is present in said titanium alloy at about 13 to about 27 percent by weight.
19. The method of claim 10 wherein said cobalt is present in said titanium alloy at about 17 to about 23 percent by weight.
20. The method of claim 10 wherein said titanium alloy consists of said cobalt and said titanium.
Type: Application
Filed: Mar 29, 2017
Publication Date: Oct 4, 2018
Applicants: The Boeing Company (Chicago, IL), Universidade Estadual De Campinas (Campinas)
Inventors: Rubens Caram, JR. (Campinas), Kaio Niitsu Campo (Campinas), Caio Chausse de Freitas (Campinas), Catherine J. Parrish (San Jose dos Campos)
Application Number: 15/473,078