INTRAVASCULAR GUIDEWIRE
A guidewire for use in a medical procedure includes an elongate guide member dimensioned for insertion within a body vessel of a subject. The guide member defines a longitudinal axis and has trailing and leading end segments. The leading end segment has a reduced cross-sectional dimension relative to a cross-sectional dimension of the trailing end segment. The leading end segment includes a first core element comprising a first material and a second core element comprising a second material different from the first material and being forward of the first core element. The first material of the first core element has greater rigidity than the rigidity of the second material of the second core element, to thereby facilitate advancement of, and application of torque to, the leading end segment while minimizing deformation. The first material of the first core element may comprise a nickel-cobalt-chromium alloy or, alternatively, stainless steel. The second material of the second core element comprises a nickel-titanium or an alloy thereof.
This application is a continuation of U.S. patent application Ser. No. 13/407,182, which was filed on Feb. 28, 2012 and is entitled, “INTRAVASCULAR GUIDEWIRE,” the entire content of which is incorporated by reference herein.
BACKGROUND 1. Technical FieldThe present disclosure generally relates to intravascular devices, and, in particular, relates to an intravascular guidewire for assisting in placement of an intravascular device within, e.g., the neurovascular space, for facilitating diagnostic and/or therapeutic neurovascular procedures.
2. Description of Related ArtThe effectiveness of an intravascular guidewire in advancing through tortuous vasculature without undesired deformation or kinking is dependent upon a number of factors and design considerations. These factors include, inter-alia, the material(s) of fabrication of the guidewire, guidewire dimensions and intended use. Generally, a balance must be achieved to provide the required torsional, lateral, tensile and/or column strengths to enable easy and precise manipulation and steerability in the tortuous vasculature. Guidewires for neurovascular intravascular procedures face additional challenges due to the relatively small diameter required to navigate through the narrow and remote locations of the neurovasculature space.
SUMMARYAccordingly, the present disclosure is directed to a guidewire capable of accessing distal reaches of the vasculature, including the neurovasculature, while exhibiting sufficient torsional and lateral stiffness to enable steering of the guidewire through these tortuous regions. What is also desired is a guidewire having a distal end with improved tensile and torsional integrity, yet with the capability to readily bend in any direction.
In accordance with one embodiment of the present disclosure, a guidewire for use in a medical procedure includes an elongate guide member dimensioned for insertion within a body vessel of a subject. The guide member defines a longitudinal axis and has trailing and leading end segments. The leading end segment has a reduced cross-sectional dimension relative to a cross-sectional dimension of the trailing end segment. The leading end segment includes a first core element comprising a first material and a second core element comprising a second material different from the first material and being forward of the first core element. The first material of the first core element has greater rigidity than the rigidity of the second material of the second core element, to thereby facilitate advancement of, and application of torque to, the leading end segment while minimizing deformation. The first material of the first core element may comprise a nickel-cobalt-chromium alloy or, alternatively, stainless steel. The second material of the second core element may comprise nickel-titanium or an alloy thereof. The first core element may be directly bonded to the second core element through, e.g., a welding process, which may be devoid of any filler material.
A coil member may be coaxially mounted about the guide member and dimensioned to longitudinally extend to at least partially encompass the first and second core elements. The coil member may include a first coil segment and a second coil segment forward of the first coil segment. The first coil segment may comprise a first coil material and the second coil segment may comprise a second coil material different from the first coil material. The first coil segment may have a first torsional strength and the second coil segment may have a second torsional strength greater than the first torsional strength. The second coil segment may be required to assume a greater torsional load to compensate for, e.g., a reduced cross sectional dimension adjacent the tip of the guide member.
The leading end segment may include at least two tapered segments obliquely arranged with respect to the longitudinal axis. In one embodiment, the leading end segment includes, from leading to trailing: a remote segment; a first tapered segment extending from the first remote segment and coterminous therewith; a first generally annular segment extending from the first tapered segment and coterminous therewith; a second tapered segment extending from the second generally annular segment and coterminous therewith; and a second generally annular segment extending from the second tapered segment and coterminous therewith. In embodiments, the first core element is connected to the second core element within the second generally annular segment or may be connected within the third generally annular segment.
A sleeve may be mounted over at least a major portion of the leading end segment. The sleeve may comprise polyurethane and tungsten material. The sleeve also may define an arcuate distal tip.
Embodiments of the present disclosure will be readily appreciated by reference to the drawings wherein:
In the following description, the terms “proximal” and “distal” as used herein refer to the relative position of the guidewire in a lumen. The “proximal” or “trailing” end of the guidewire is the guidewire segment extending outside the body closest to the clinician. The “distal” or “leading” end of the guidewire is the guidewire segment placed farthest into a body lumen from the entrance site.
The guidewire of the present disclosure has particular application in a neurovascular procedure, but may be used in any interventional, diagnostic, and/or therapeutic procedure including coronary vascular, peripheral vascular, and gastro-intestinal applications in addition to a neurovascular application.
In the figures below, the full length of the guidewire is not shown. The length of the guidewire can vary depending on the type of interventional procedure, though typically it ranges in length from 30 to 400 centimeters (cm). Common lengths of guidewires for coronary, peripheral and neurovascular interventions may range from 170 to 300 cm in length. These lengths permit the use of standardized rapid exchange or over-the-wire catheter systems. The length of the shaped distal end also may vary, for example, from about 5 to about 80 cm in length.
In accordance with one application of the present disclosure, the maximum outer diameter of the guidewire ranges from about 0.008 inches to about 0.018 inches. These diameters are standard for guidewires used, e.g., in a neurovascular procedure. Other diameters are contemplated for cardiovascular, peripheral vascular, and gastrointestinal applications. The diameter of the guidewire may remain relatively constant over a major portion of the length of the guidewire; however, the leading or distal end incorporates a generally tapered or narrowed configuration to permit flexure while navigating the tortuous vasculature.
The various embodiments of the disclosure will now be described in connection with the drawing figures. It should be understood that for purposes of better describing the disclosure, the drawings may not be to scale. Further, some of the figures include enlarged or distorted portions for the purpose of showing features that would not otherwise be apparent.
Referring now to
In
Guidewire 10 includes actuator 12 and guide member 14 extending from the actuator 12. Actuator 12 may incorporate various features includes handles, slides or the like, to facilitate handling and/or movement of guide member 14. For example, actuator 12 may be used to translate and/or rotate guide member 14 during placement within the vasculature.
Referring now to
With reference now to
Remote segment 20 may define various configurations. In the embodiment of
With particular reference to
Second core element 38 may comprise a shape memory or superelastic alloy or polymer. One suitable shape memory alloy (SMA) or superelastic metal is Nitinol (NiTi), a nickel/titanium alloy, which is commercially available in various diameters or sizes. Superelastic alloys such as NiTi are relatively flexible capable of effectively tracking tortuous vasculature encountered while exhibiting advantageous restoration capabilities. Shape memory or superelastic metal or polymer such as NiTi may also be suitable for applications in which it is desired that leading end segment 18 have a pre-determined curvature. Shape memory alloys including NiTi can be heat set into a desired shape, straightened for delivery to a site, and then released to resume the heat-set shape. Other materials for second core element 38 may include an alloy consisting of Nickel, Titanium, and Cobalt commercially available from SAES Smart Materials, Inc, of New Hartford, N.Y.
First core element 36 is preferably fabricated from a more rigid material having a greater elastic modulus, torsional and/or lateral rigidity than the material of second core element 38. In one embodiment, first core element 36 is fabricated from MP35N, a nickel-cobalt alloy. MP35N is a cold worked, age hardenable nickel-cobalt base alloy having a combination of strength, toughness, durability and corrosion resistance. A typical composition of MP35N is 35% Nickel (Ni), 35% Cobalt (CO), 20% Chromium (Cr) and 10% Molybdenum (MO). Wire fabricated from MP35N is commercially available in various diameter sizes from, e.g., Fort Wayne Metals of Fort Wayne, Ind. The more rigid first core element 36 enhances pushability through the vasculature and torque transmission as will be discussed. Other suitable materials for first core element 36 include stainless steel, titanium and alloys thereof, and the Nickel Titanium Cobalt alloy identified hereinabove. The properties of these materials may be altered through the use of additive materials, manufacturing processes or the like to provide the required lateral strength and stiffness to realize the desired characteristics of first core element 36 discussed hereinabove.
First core element 36 may be bonded to second core element 38 at bonding location 40 within second annular segment 28 through various means including bonding, welding, adhesives or the like. In one embodiment, first core element 36 is secured to second core element 38 through a welding process such as a laser or radio frequency (RF) welding process. The welding process contemplated is devoid of filler or bonding materials, thereby providing a direct connection or mating of the elements of first and second core elements 36, 38 during application of heat. The ends of each of first and second core elements 36, 38 to be joined may be subjected to an acid wash to remove impurities, and/or edges prior to welding of the components.
The provision of first and second core elements 36, 38 of different materials having different elastic modulus, rigidities and/or torsional strengths within leading end segment 18, in combination with the dimensioning of the components of the leading end segment 18, provides significant benefits with respect to pushability, lateral strength, torque transfer and flexibility of the guidewire 10. For example, in one embodiment, second core element 38 encompasses about 10% to about 20% of the overall length of leading end segment 18. In embodiments, second core element 38 may extend from remote end 20 a distance “m” (
As mentioned hereinabove, in the embodiment depicted in
With continued reference to
Distal coil segment 46 extends from proximal coil segment 44 and encompasses the remainder of leading end segment 18 of guide member 14. Distal coil segment 46 may be fabricated from a number of materials. In one embodiment, distal coil segment 46 is fabricated from the commercially available radiopaque Biomed material sourced by Johnson-Matthey of London, England, and is offered in 3 grades, namely, grade 1400 including 86% Palladium (Pd), 14% Rhenium(Re), grade 1000 including 90% Pd, 10% Re and grade 500 including 95% Pd, 5% Re. The wire of distal coil segment 46 has a diameter greater than the wire of proximal coil segment 44. In one embodiment, the diameter of distal coil segment 46 ranges from about 0.0012 inches to about 0.0025 inches, and may be about 0.0015 inches. Distal coil segment 46 may also have a rectangular or flattened cross-section. The radiopacity of distal coil segment 46 may assist in placement of leading end segment 18 within the vasculature through the use of imaging means, e.g., fluoroscopically during the interventional procedure.
Proximal coil segment 44 and distal coil segment 46 may provide lateral and/or torsional support to leading end segment 18. In one embodiment, the lateral strength (or resistance to bending) of distal coil segment 46 is less than the lateral strength of proximal coil segment 44 to permit flexing of second core element 38 of leading end segment 18. The outer diameters of proximal and distal coil segments 44, 46 may approximate each other and may be substantially equivalent to the diameter of third annular segment 32 to provide a smooth transition. The configurations of proximal and distal coil segments 44, 46 may be changed to provide varied properties if desired. In an embodiment, proximal and distal coil segments 44, 46 may be wound or otherwise disposed about leading end segment 18 in differing or opposite directions. In embodiments, adjacent turns of the coils of each of proximal and distal coil segments 44, 46 are in contacting relation (i.e., they are devoid of spacing between the adjacent coil turns). In one embodiment, proximal and distal coil segments 44, 46 may be joined at their interface. In addition, proximal and distal coil segments 44, 46 may be attached to leading end segment 18 of guide member 14 along various locations. Attachment may be effected though the use of adhesives, welding, soldering or the like. Distal coil segment 46 may be operatively connected or secured to remote end 20 of leading end segment 18 through a soldering process or with the use of an adhesive such as an epoxy, cyanoacrylate adhesive or an ultraviolet (UV) light curable adhesive. The soldering or adhesive element is represented schematically as element 48 in
Outer sheath 42 encloses leading end segment 18 and proximal and distal coil segments 44, 46. Outer sheath 42 may be fabricated from any suitable material. In one embodiment, outer sheath 42 is a polyurethane sleeve which may or may not be loaded with tungsten, e.g., in microbead form. If loaded with tungsten, outer sheath 42 provides an additional element of radiopacity to leading end segment 18 of guide member 14. Outer sheath 42 may be thermoformed over leading end segment 18 and proximal and distal coil segments 44, 46 through conventional thermoform techniques. Outer sheath 42 defines an atraumatic arcuate leading end surface 50 to minimize the potential of trauma or abrasion of the vessel walls. In one embodiment, the diameter of outer sheath 42 is less than the diameter of proximal or trailing end segment 16 of guide member 14 to provide a smooth transition between the components.
The Table provided below identifies ranges of dimensions of the components of the leading end segment 18 for various guidewire sizes in accordance with the principles of the present disclosure. In the Table, D is represented as a percentage (%) of the diameter of the trailing end segment 16 and L represents the specific length of the component. For example, the diameter of first annular segment 24 may range from about 10% to about 30% of the diameter of trailing end segment 16 and have a length ranging from about 2 cms. to about 10 cms. All ranges are approximate. Preferred dimensions for the specific guidewire sizes may be at the midpoint of the specified ranges. Variations of these dimensions are envisioned. The first core element 36 is fabricated from MP35N and the second core element 38 is fabricated from NiTi. As noted, the overall length of first core element 36 may range from about 10 cms. to about 40 cms. and the overall length of second core element 38 may range from about 20 cms. to about 290 cms.
It is further envisioned that a lubricious coating may be disposed over components of guide member 14 including outer sheath 42. Suitable lubricious coatings include hydrophilic materials such as polyvinylpyrrolidone (PVP), polyethylene oxide, polyethylene glycol, cellulosic polymers, and hydrophilic maleic anhydride, or hydrophobic materials such as silicone, PTFE, or FEP. These coatings are typically applied by dip coating or spray methods, and heat curing may be used. For example, cure temperatures up to about 70 degrees C. are used for silicone coatings, and several hundred degrees may be required for PTFE coatings. In addition to the lubricious coating, bioactive coatings may be applied over all or part of the guidewire. Such coatings also may incorporate materials such as heparin, hirudin and its analogs, or other drugs. These coatings typically are applied by dip coating. Bioactive coatings are desirable to prevent blood clotting or for delivery of drugs to a specific site.
The above description and the drawings are provided for the purpose of describing embodiments of the present disclosure and are not intended to limit the scope of the disclosure in any way. It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the disclosure. Thus, it is intended that the present disclosure cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.
Claims
1-20. (canceled)
21. A guidewire comprising:
- an elongate guide member dimensioned for insertion within a body vessel of a subject, the guide member comprising a proximal segment and a distal segment, the distal segment having a reduced cross-sectional dimension relative to a cross-sectional dimension of the proximal segment, the distal segment including: a first core element comprising a first material; and a second core element comprising a second material different from the first material, the second core element being distal to the first core element, wherein a proximal end of the second core element is directly welded to a distal end of the first core element such that the second material of the second core element is directly bonded to the first material of the first core element, the first material of the first core element having greater rigidity than the rigidity of the second material of the second core element.
22. The guidewire of claim 21, wherein the first material of the first core element comprises a nickel-cobalt-chromium alloy.
23. The guidewire of claim 21, wherein the first material of the first core element comprises stainless steel.
24. The guidewire of claim 23, wherein the second material of the second core element comprises an alloy including nickel and titanium.
25. The guidewire of claim 21, wherein the distal segment is devoid of any filler material between the proximal end of the second core element and the distal end of the first core element.
26. The guidewire of claim 21, further comprising a coil member coaxially mounted about the guide member and dimensioned to longitudinally extend to at least partially encompass and engage with each of the first and second core elements.
27. The guidewire of claim 26, wherein the coil member includes a first coil segment and a second coil segment forward of the first coil segment, the first and second coil segments comprising different materials.
28. The guidewire of claim 26, wherein the first coil segment has a first torsional strength and the second coil segment has a second torsional strength greater than the first torsional strength.
29. The guidewire of claim 21, wherein the distal segment includes at least two tapered segments that taper in outer diameter.
30. The guidewire of claim 29, wherein the distal segment includes, from distal to proximal:
- a first remote segment;
- a first tapered segment extending from the first remote segment;
- a first generally annular segment extending from the first tapered segment;
- a second tapered segment extending from the first generally annular segment; and
- a second generally annular segment extending from the second tapered segment.
31. The guidewire of claim 30, wherein the first core element is directly welded to the second core element within the second generally annular segment.
32. The guidewire of claim 30, wherein the distal segment further comprises:
- a third tapered segment extending from the second generally annular segment; and
- a third generally annular segment that extends from a third tapered segment,
- wherein the first core element is directly welded to the second core element within the third generally annular segment.
33. The guidewire of claim 30, wherein the remote segment defines one of a polygonal cross-section or an annular cross-section.
34. The guidewire of claim 30, wherein the remote segment is heat set into a predetermined arcuate configuration.
35. The guidewire of claim 21, further comprising a sleeve mounted over at least a major portion of the distal segment.
36. The guidewire of claim 35, wherein the sleeve comprises polyurethane and tungsten material.
37. The guidewire of claim 21, wherein the first and second core elements do not overlap in an axial direction, the axial direction extending parallel to a longitudinal axis of the elongate guide member.
38. A guidewire comprising:
- an elongate guide member dimensioned for insertion within a body vessel of a subject, the guide member comprising a proximal segment and a distal segment, the distal segment having a reduced cross-sectional dimension relative to a cross-sectional dimension of the proximal segment, the distal segment including: a first core element comprising a first material; and a second core element comprising a second material, the first material of the first core element having greater rigidity than a rigidity of the second material of the second core element, wherein the second core element is distal to the first core element, wherein a proximal-most end of the second core element is directly bonded to a distal-most end of the first core element such that the second material of the second core element is directly bonded to the first material of the first core element.
39. The guidewire of claim 38, wherein the first material of the first core element comprises a nickel-cobalt-chromium alloy or stainless steel, and the second material of the second core element comprises an alloy including nickel and titanium.
40. The guidewire of claim 38, wherein the proximal-most end of the second core element is bonded to the distal-most end of the first core element through a welding process, the welding process devoid of any filler material.
41. The guidewire of claim 38, further comprising a coil member coaxially mounted about the guide member and dimensioned to longitudinally extend to at least partially encompass and engage with each of the first and second core elements.
42. The guidewire of claim 38, wherein the first core element is directly welded to the second core element within an annular segment of the guide member.
Type: Application
Filed: Jun 22, 2018
Publication Date: Oct 18, 2018
Inventor: Alan Eskuri (Irvine, CA)
Application Number: 16/015,727