APPARATUS AND PROCESSES FOR APPLYING SUBSTANCES WITHIN MAMMALIAN TISSUE
An apparatus for applying a substance to internal mammalian tissue is provided. The apparatus includes a member having a flexible, absorbent, porous portion connected to a non-porous portion. The apparatus may be used to treat atrial fibrillation or other non-atrial fibrillation issues with internal mammalian tissue.
The present application is a continuation of co-pending U.S. patent application Ser. No. 14/826,337, filed Aug. 14, 2015, which is a continuation of U.S. patent application Ser. No. 12/906,671, filed Oct. 18, 2010, now U.S. Pat. No. 9,119,943, issued Sep. 1, 2015, all of which are incorporated by reference herein in their entirety.
FIELD OF THE DISCLOSUREThe disclosure relates to apparatus and processes for applying substances within mammalian tissue to chemically treat atrial fibrillation, or to chemically treat other types of non-atrial fibrillation issues involving internal mammalian tissue.
BACKGROUND OF THE DISCLOSUREAtrial fibrillation is one of the most common arrhythmias in the world and is recognized as one of the most serious medical epidemics. Atrial fibrillation is a leading cause of stroke, thromboembolism, mortality, and debilitation. Common debilitating symptoms of atrial fibrillation include but are not limited to palpitations, dyspnea, dizziness, chest pain, weakness, and long term debility associated with stroke and congestive heart failure. There is a large economic burden to society associated with atrial fibrillation including: medical care costs resulting from medical therapy, symptom relief, hospitalizations, and invasive procedure and device therapy; lost time from the workforce; and long term care costs associated with morbidity of stroke, heart failure, and debilitation.
The current drug-related therapies for atrial fibrillation require relatively high doses of drugs systemically to effect the substrate tissue in the atrium in order to have any positive effect. However, these drugs have serious side effects, and are largely inadequate. One therapy for atrial fibrillation comprises ventricular rate control drugs. However, common side effects of this therapy include bradycardia, weakness, low energy levels, and other side effects. Moreover, this treatment may require pacemaker implantation which is invasive and costly. Another adjunctive therapy for atrial fibrillation comprises blood thinners. However, blood thinners have significant side effects and may lead to minor and catastrophic bleeding complications, may require frequent blood tests, and may have a narrow and difficult to achieve therapeutic window to achieve therapeutic blood levels. Still another therapy for atrial fibrillation comprises antiarrhtyhmic drugs. However, antiarrhtyhmic drugs have a limited effectiveness in maintaining normal heart rhythm, and have a wide range of toxic systemic side effects. Moreover, antiarrhtyhmic drugs may induce pro-arrhythmia, and have negative drug interactions with other medications.
The current procedural therapies for atrial fibrillation are also largely inadequate. One procedure for atrial fibrillation comprises electrical cardioversion. This procedure requires sedation or general anesthesia. Moreover, atrial fibrillation commonly reoccurs after electrical cardioversion. Another procedure for atrial fibrillation comprises invasive catheter ablation such as: radiofrequency ablation; cryothermy; ultrasound ablation; laser ablation; or electrical ablation. Catheter ablation is intended to ablate arrhythmogenic cells in or around the left atrium. The majority of cases are known to originate from the endocardium or myocardium within or around the pulmonary veins. Creating circumferential ablation lesions around pulmonary veins is intended to cause electrical isolation of the abnormal cells within the pulmonary veins, rending these trigger zones unable to propagate abnormal electrical impulses into the left atrium, making them incapable of causing atrial fibrillation. Pulmonary vein ablation for atrial fibrillation remains a promising therapy, but has proven to be each of the following: limited in efficacy; have risks and complications associated with an invasive procedure; require specialized skill and training leading to higher costs, and a lower number of patients that can be treated due to the lack of operators with this specialized training; require a long procedure time to effectively map, through electrophysiology mapping, specific trigger zones around the pulmonary vein ostia prior to delivering the catheter based injury; and often require repeat procedures for a successful outcome. Moreover, current catheter ablation techniques are limited in their success in part due to the inability to deliver the ablative injury to all substrate tissue that causes atrial fibrillation. This limitation may leave potential gaps in the target area of ablation that is not treated. This is often caused due to limitations in controlling the catheter tip and the inability to provide multiple burns at the end of the catheter in the same spot due to the risk of perforation. Frequently, patients are required to return for multiple repeat procedures in attempts to ablate missed areas. Current catheter-based therapies are hampered by their inability to consistently, effectively, and predictably create circumferential, continuous, or curvilinear ablation lines to eradicate origins of irregular electrical activity, and to isolate the target tissue from further propagating abnormal electrical impulses. Serious complications related to current ablation therapies include: left atrial perforation leading to hemopericardium and cardiac tamponade; pulmonary vein stenosis; left atrial-espohageal fistula; thromboembolic events, such as stroke and myocardial infarction, resulting directly from injury created by current equipment and techniques, and other complications.
An apparatus and process is needed to effectively treat atrial fibrillation, or other types of non-atrial fibrillation issues involving mammalian tissue, while avoiding one or more of the side-effects associated with the current treatments.
SUMMARY OF THE DISCLOSUREIn one embodiment, an apparatus for applying a substance to internal mammalian tissue comprises a member having a flexible, absorbent, porous portion connected to a non-porous portion.
In another embodiment, a balloon-catheter for applying a substance to internal mammalian tissue comprises: an inflatable and deflate-able balloon comprising a flexible, absorbent, porous portion connected to a non-porous portion to form a cavity; and a catheter connected to the balloon.
In an additional embodiment, a guide-wire is provided having a portion for being magnetized, and another portion which is non-magnetic.
In an additional embodiment, a method of applying a substance to internal mammalian tissue is provided. In one step, a member is deployed within a mammal. In another step, a flexible, absorbent, porous portion of the member is disposed against internal tissue of the mammal. In an additional step, a substance, disposed in a cavity between the flexible, absorbent, porous portion of the member and a non-porous portion of the member, is infused through the flexible, absorbent, porous portion to contact the internal mammalian tissue.
These and other features, aspects and advantages of the disclosure will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the disclosure. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the disclosure, since the scope of the disclosure is best defined by the appended claims.
As illustrated in
As illustrated in
As shown in
As shown in
As shown in
One or more embodiments of the disclosure may allow for the chemical treatment of atrial fibrillation, or other non-atrial fibrillation internal mammalian tissue issues, using a malleable, expansile, absorbent surface which consistently contacts the targeted endocardial and pulmonary vein tissue to deliver the chemical to the targeted cell tissue, without leaving gaps, and without relying on the current technique of delivering multiple ablative injury lines. This treatment allows the chemical to be narrowly applied to only the targeted tissue through a much easier and less-costly method than current treatments using standard interventional cardiology techniques which may be performed by any operator trained in catheter based cardiac procedures, as well as electrophysiologists, allowing for the treatment of patients worldwide, many of which currently lack access to treatment. This treatment may allow for the avoidance of serious side effects associated with current drug treatments as a result of eliminating the need for high dose systemic ingestion of drugs, thus avoiding side effects and toxicities. Moreover, this treatment may reduce the risk of serious side effects associated with current catheter based ablation techniques due to the use of the apparatus 10. The treatment may have the following benefits over current catheter based ablation techniques: being less-traumatic to the myocardium; not requiring focal contact of a catheter tip to atrial tissue; not requiring delivery of radiofrequency based thermal injury, or cold cryo based injury; not requiring electrical mapping of the targeted tissue; may be applied directly to each of the pulmonary vein Ostia and surrounding left atrial tissue; may allow anti-arrhythmic medications or other substances to be directly applied to the targeted tissue to interfere with the cellular membrane electro-chemical properties which trigger the myocardial cell fibrillation; may allow any number of substances to be applied, together or sequentially, to the tissue for varied durations and at varied concentrations; and may allow effective treatment of the atrial fibrillation without injuring the cell function itself resulting in averting the potential for the complication of pulmonary vein stenosis, cardiac perforation, or injury related embolization.
It should be understood, of course, that the foregoing relates to exemplary embodiments of the disclosure and that modifications may be made without departing from the spirit and scope of the disclosure as set forth in the following claims.
Claims
1. A method of applying a substance to internal mammalian tissue, the method comprising:
- deploying a member within a mammal;
- disposing a flexible, absorbent, porous portion of the member against internal tissue of the mammal; and
- infusing a substance, disposed in a cavity between the flexible, absorbent, porous portion of the member and a non-porous portion of the member, through the flexible, absorbent, porous portion to contact the internal mammalian tissue.
2. The method of claim 1, wherein the member is a balloon-catheter comprising a balloon attached to a catheter.
3. The method of claim 2, wherein the deploying comprises delivering the balloon towards the internal mammalian tissue, with the balloon stowed in an unexpanded state within a sheath, by following a lumen of the balloon along a guide-wire.
4. The method of claim 3, wherein the deploying further comprises pushing the catheter to move the balloon outside the sheath towards the internal mammalian tissue.
5. The method of claim 4, wherein the disposing comprises pushing the catheter until the flexible, absorbent, porous portion of the balloon is disposed against the internal mammalian tissue.
6. The method of claim 2, wherein the method is used to treat arrhythmia, the deploying comprises moving the balloon-catheter through a pulmonary vein of the mammal towards an endocardial surface of the left atrium, the disposing comprises disposing the flexible, absorbent, porous portion of the balloon against at least one of pulmonary vein ostial tissue or the endocardial surface of the left atrium, and the infusing comprises infusing the substance through the flexible, absorbent, porous portion of the balloon into contact with at least one of the pulmonary vein ostial tissue or the endocardial surface of the left atrium.
7. The method of claim 6, further comprising flowing blood from the pulmonary vein through a lumen of the balloon into the left atrium.
8. The method of claim 6, wherein the substance alters physiologic properties of the at least one pulmonary vein ostial tissue or the endocardial surface of the left atrium.
9. The method of claim 8, wherein the substance is CLASS 1, CLASS 2, CLASS 3, CLASS 4, or any other substance used for treating atrial fibrillation.
10. The method of claim 3, wherein disposing comprises attracting and moving a ferromagnetic portion of the balloon towards a magnetized portion of the guide-wire to dispose the flexible, absorbent, porous portion of the balloon against the internal mammalian tissue.
11. The method of claim 3, wherein the deploying further comprises moving the balloon outside the sheath towards the internal mammalian tissue, and the infusing the substance comprises expanding the balloon with the substance, the method further comprising: deflating the balloon after the substance has been infused through the flexible, absorbent, porous portion of the balloon into contact with the internal mammalian tissue; retracting the balloon back into the sheath; and removing the sheath and the balloon-catheter from the mammal by following the lumen of the balloon along the guide-wire.
12. The method of claim 11, wherein the retracting the balloon back into the sheath comprises moving a stepped-up portion of the guide-wire against a surface of the lumen having a smaller width than the stepped-up portion of the guide-wire to force the balloon back into the sheath.
13. A method of applying a substance to internal mammalian tissue, the method comprising:
- deploying an apparatus within a mammal;
- delivering a member of the apparatus towards the internal mammalian tissue, with the member stowed in an unexpanded state, by following a first lumen;
- disposing a porous portion of the member against internal tissue of the mammal;
- flowing a fluid originating from the mammal through a second lumen;
- delivering a substance into a cavity disposed between the porous portion of the member and a non-porous portion of the member through a third lumen to move the member to an expanded state; and
- infusing the substance through the porous portion to contact the internal mammalian tissue.
14. The method of claim 13, wherein the member is a balloon-catheter comprising a balloon attached to a catheter.
15. The method of claim 13, wherein the delivering the member further comprises delivering the member within a sheath when in the unexpanded state by following the first lumen along a guide-wire.
16. The method of claim 15, further comprises moving the member outside the sheath.
17. The method of claim 13, wherein the method is used to treat arrhythmia, the delivering the member further comprises moving the member through a pulmonary vein of the mammal towards an endocardial surface of the left atrium, the disposing the porous portion further comprises disposing the porous portion of the member against at least one of pulmonary vein ostial tissue or the endocardial surface of the left atrium, and the infusing further comprises infusing the substance through the porous portion of the member into contact with at least one of the pulmonary vein ostial tissue or the endocardial surface of the left atrium.
18. The method of claim 17, wherein flowing further comprising flowing blood from the pulmonary vein through the second lumen into the left atrium.
19. The method of claim 15, wherein the delivering the member further comprises attracting and moving a ferromagnetic portion of the apparatus towards a magnetized portion of the guide-wire to dispose the porous portion of the member against the internal mammalian tissue.
20. The method of claim 15, further comprising: deflating the member to the unexpanded state after the substance has been infused through the porous portion of the member; retracting the member back into the sheath; and
- removing the sheath and the member from the mammal by following the first lumen along the guide-wire.
21. The method of claim 20, wherein the retracting the member further comprises moving a stepped-up portion of the guide-wire against a surface of the first lumen having a smaller width than the stepped-up portion of the guide-wire to force the member back into the sheath.
22. A method of applying a substance to internal mammalian tissue, the method comprising:
- deploying an apparatus within a mammal;
- delivering a member of the apparatus, with a guide-wire, towards the internal mammalian tissue with the member stowed in an unexpanded state;
- attracting and moving a ferromagnetic portion of the apparatus towards a magnetized portion of the guide-wire to dispose the porous portion of the member against the internal mammalian tissue;
- delivering a substance into a cavity disposed between the porous portion of the member and a non-porous portion of the member through a lumen to move the member to an expanded state; and
- infusing the substance through the porous portion to contact the internal mammalian tissue.
23. The method of claim 22, wherein the member is a balloon-catheter comprising a balloon attached to a catheter.
24. The method of claim 1, wherein the delivering the member further comprises delivering the member within a sheath when in the unexpanded state.
25. The method of claim 24, further comprises moving the member outside the sheath.
26. The method of claim 22, wherein the method is used to treat arrhythmia, the delivering the member further comprises moving the member through a pulmonary vein of the mammal towards an endocardial surface of the left atrium, the method further comprising disposing the porous portion of the member against at least one of pulmonary vein ostial tissue or the endocardial surface of the left atrium, and the infusing further comprises infusing the substance through the porous portion of the member into contact with at least one of the pulmonary vein ostial tissue or the endocardial surface of the left atrium.
27. The method of claim 26, further comprising flowing blood from the pulmonary vein through a second lumen into the left atrium.
28. The method of claim 24, further comprising: deflating the member to the unexpanded state after the substance has been infused through the porous portion of the member; retracting the member back into the sheath; and removing the sheath and the member from the mammal by following the lumen along the guide-wire.
29. The method of claim 28, wherein the retracting the member further comprises moving a stepped-up portion of the guide-wire against a surface of the lumen having a smaller width than the stepped-up portion of the guide-wire to force the member back into the sheath.
Type: Application
Filed: Jun 20, 2018
Publication Date: Oct 18, 2018
Inventor: Cameron Haery (Highland Park, IL)
Application Number: 16/013,342