Expanded Plastic Foam Construction Toy
The disclosed technology relates to a construction toy made of expanded plastic foam extrusions. These extrusions are assembled with or without fasteners into a wide variety of configurations and optionally the extrusions are cut safely to a desired size.
The disclosed technology relates generally to building toys and more specifically to light weight toys made of expanded plastic foam such as polyethylene or polyurethane.
BACKGROUNDChildren's blocks have forever been a source of creative play. Albert Einstein, Frank Lloyd Wright, Charles Eames, Buckminster Fuller and other thought leaders famously credit their childhood blocks as a valuable educational resource from their early youth. While playing with blocks is often an immersive experience, few sets of blocks allow for the construction of structures that are full size play sets. The risk of such a structure falling on a child has typically prevented this scale of immersive play set.
The logs or blocks are great for inside or outside play. While the playset is designed for the real world, a computer based playset for the computer world is one option. In this way, children can plan their designs on the computer, make them in the real world and play with them in either environment. Accordingly, there exists the need for building toys that allow for full size play sets without the risk of injury from falling pieces or injury from jumping off structures.
Accordingly, it is one objective of the disclosed technology to provide a toy building set having a hollow plastic extrusion log and the hollow plastic extrusion log comprising a front side and a backside. Also comprising a first end and a second end as well as topside and a bottom side. Each top and bottom side having a substantially flat planar surface and a plurality of apertures in the substantially flat planar surface and the apertures extending from an outer surface of the log to an inner hollow surface of the log.
The plurality of apertures extending the length of the top and bottom sides' substantially flat planar surface, wherein the log is stackable by aligning the bottom side of said log with an adjacent topside of a log to thereby construct the desired lightweight self-supporting structure. The log is made of expanded polyethylene foam.
It is a further objective of the disclosed technology to have toy building set with a hollow plastic extrusion log wherein the log front side is curved and the backside is a substantially flat planer surface having a plurality of apertures extending from the outer surface of the log to the inner hollow surface of the log. A plurality of apertures extends the length of the backside of said log.
Another advantage of the disclosed technology is a toy building set wherein at least two adjacent logs are removably attached to a connector. The connector is multidirectional thus enabling the adjacent log to be rotated toward a specific direction and configured to interchangeably attach to each log. Wherein, the log is stackable with adjacent logs and connectors are placed between and inside apertures of adjacent logs to thereby construct the desired lightweight self-supporting structure.
According to some embodiments, the toy building set where the connector is removably attached to at least two adjacent logs through the apertures of the logs. Also, wherein the connectors comprise a central planar disk having two opposite ends from central planar disk and opposite ends further comprise distal planar disks. The distal planar disks pass through the apertures and into the hollow area of the logs to form an interference fit in the apertures with the central disk remaining outside of the apertures of the logs. Thus, the connector remains removably attached to the logs until desired removal.
It is also an objective of the disclosed technology to provide a connector where the two opposite ends from a central planar disk comprises a shaft shaped as a straight line S. Also, wherein the distal planer disks have an oval shape and the plurality of apertures in the log are circle shapes and passing of the distal planer disk through an aperture requires pressure and angling the distal planar disk through the aperture such that the connector overlaps a portion of the distal planar disk with a portion of the hollow inside of the log and thus secured until desired removal.
The distal planer disks of the connector have an oval shape and the plurality of apertures in the log have a matching oval shape; and wherein passing of the distal planer disk through an aperture requires positioning the distal planar disk shape to match the aperture shape. After the planar disk is through said aperture the connector is turned ninety degrees around an axis perpendicular to the distal planar disk such that the connector overlaps a portion of the distal planar disk with a portion of the hollow inside of the log and thus secured until desired removal. The connector is made with injection molded plastic.
Pluralities of apertures of a log are at fixed measurable intervals to each other, and the interval apertures determine a length by counting the apertures. A log is sawed into a plurality of smaller logs when a cutting edge provides tension onto a log such that bubbles of the plastic extrusion burst as the cutting edge go through the log.
Another objective is to have a saw comprising support for a dull cutting edge for cutting a log, and the dull cutting edge provides tension such that when the cutting edge is passed through the log, bubbles of the plastic extrusion burst as the saw passes through the plastic extrusion. The cutting edge of the saw comprises one of the following: plastic, metal, string; or wire.
In another objective there is a miter having vertical miter protrusions for placement of the log and a perpendicular slot in the vertical miter protrusions for placement of the cutting edge of the saw. When the cutting edge and the log are very stable for cutting the log.
In a further objective, a log front side and back side are both curved or the front side and back side are substantially flat planer surfaces having a plurality of apertures extending from the outer surface of the log to the inner hollow surface of the log. The plurality of apertures extends the length of the backside and the front side of the log.
In yet another objective, two adjacent logs are removably attached by a U connector and a log is stackable with an adjacent log and a U connector is placed on a portion of at least one end of a log and an adjacent log. The U connector uses spring tension on the two adjacent logs and remains removably attached to the logs until desired removal. Alternatively, the U connector has two ends and the two ends of the U connector further comprise protrusion that face each other such that the two ends are placed in the hollow of two adjacent logs and the two protrusions are placed in the apertures of the two adjacent logs. The U connector utilizes spring tension on the two adjacent logs and remains removably attached to the logs until desired removal.
Advantageously, the log apertures are shaped as one of the following: circle; two slits forming a plus sign; center circle superimposed on two slits; an oval; or an ellipse.
In another objective, the toy building set further comprises a spike having a first end with a flat head and a second end with a bulbous detail. The bulbous detail of a spike passing through a log aperture or a plurality of log apertures to the hollow area of a log such that the bulbous detail of the spike forms an interference fit in the aperture of a log and said spike flat head is sized to remain outside of a log.
It is also an objective to have a toy building set also comprising a flat plate fastener having an elongated oval planar shape with a first end having a portal there through and a second end having a portal there through.
A spike is passed through a portal of the flat plate fastener and a log apertures to the hollow area of a log such that the bulbous detail of the spike forms an interference fit in the aperture of the log and the spike flat head is sized to remain outside of the portal of the flat plate connector and of the log. Two adjacent logs are thus connected with apertures not facing each other.
In yet another objective, a toy building set having a hollow plastic extrusion log and the hollow plastic extrusion log comprising; a front side and a back side; a first end and a second end; a top side and a bottom side; each top and bottom side having a plurality of apertures in the extending from an outer surface of the log to an inner hollow surface of the log. The log is stackable by aligning the bottom side of said log with adjacent topside of a log to thereby construct the desired lightweight self-supporting structure.
In another advantage, the toy building set further comprising a fabric having apertures to accept and attach the fabric to a log or plurality of logs.
Also advantageous is a method of using a toy building set to build play sets comprising the following steps. First, selecting a plurality of logs, each log comprising; a front side and a back side; a first end and a second end; a top side and a bottom side; each top and bottom side having a substantially flat planar surface and a plurality of apertures in the substantially flat planar surface. The apertures extend from an outer surface of the log to an inner hollow surface of the log and extending the length of the top and bottom sides' substantially flat planar surface.
Second, determining the length of the logs needed for building a toy structure and determining what logs need to be cut. Third, counting the number of apertures on the logs needing to be cut to determine where to cut the logs and sawing the logs to appropriate sizes. Then placing one of the pluralities of logs on the ground or on a support horizontally with on of the substantially flat planar surfaces facing the ground or support.
Placing a connector or plurality of connectors into the apertures of the log placed on the ground or support and determining which of the plurality of logs is a second log to be placed on top of the log already placed. Then placing the second log, wherein the second log is stackable on the log already place and connectors are between and inside apertures of adjacent apertures of the logs.
Another method continues with a plurality of adjacent logs and connectors are placed between and inside apertures of adjacent logs to thereby construct the desired lightweight self-supporting structure.
In a final objective, a method of using a toy building further comprising the following steps of selecting a log and determining the length of the log needed. Then placing a miter on a flat surface and counting the apertures of the log. Placing the log in the miter the correct distance from the end to cut the log and then placing a saw in a slot of the miter to accept the saw. Finally sawing the log.
SUMMARY OF THE DISCLOSED TECHNOLOGYAspects of the disclosed technology, according to some embodiments thereof, addresses an unfulfilled need in the prior art by providing a construction toy with hollow extrusions of expanded plastic foam with a profile to improve stack ability. The hollow extrusion further being easily cut with a toy saw so that the user can construct playsets and structures of their own design. The toy is not only easy to use but educational. Children can plan and build structures in three dimensions that visualize their own design. The hollow extrusions provide a lightweight; soft, structural material that allows for safely built play structures that reach over a child's head without concern for injury.
Certain embodiments of the present invention may include some, all, or none of the above advantages. Further advantages may be readily apparent to those skilled in the art from the figures, descriptions, and claims included herein. Aspects and embodiments of the invention are further described in the specification herein below and in the appended claims.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. In case of conflict, the patent specification, including definitions, governs. As used herein, the indefinite articles “a” and “an” mean “at least one” or “one or more” unless the context clearly dictates otherwise.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, but not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other advantages or improvements.
Some embodiments of the invention are described herein with reference to the accompanying figures. The description, together with the figures, make apparent to a person having ordinary skill in the art how some embodiments may be practiced. The figures are for the purpose of illustrative description and no attempt is made to show structural details of an embodiment in more detail than is necessary for a fundamental understanding of the invention. For the sake of clarity, some objects depicted in the figures are not to scale.
A better understanding of the disclosed technology will be obtained from the following detailed description of the preferred embodiments, taken in conjunction with the drawings and the attached claims.
DETAILED DESCRIPTION OF SOME EMBODIMENTSThe ensuing detailed description provides explanation of various aspects of the disclosed technology. The purpose of this explanation is to provide a thorough understanding of the different aspects of the disclosed technology. This description is not intended to limit the scope, applicability, or configuration of the disclosed technology. It will also be apparent to one skilled in the art that the disclosure may be practiced without specific details being presented herein. Various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the disclosed technology as set forth in the appended claims. Furthermore, well-known features may be omitted or simplified for clarity.
To aid in describing the describing the disclosed technology, directional terms may be used in the specification and claims to describe portion of the present technology (e.g upper, lower, left, right, etc.) These directional definitions are merely intended to assist in describing and claiming the disclosed technology and are not intended to limit the disclosed technology in any way. In addition, reference numerals that are introduced in the specification in association with a drawing figure may be repeated in one or more subsequent figure without additional description in the specification, in order to provide context for the other features.
The term “plurality” as used herein, means more than one.
The terms “noodle”, “log” and “block” as used herein are interchangeable.
The term “substantially flat planar surface” as used herein is defined as a flat section along the length of the side of a log and from 25 percent to 100 percent of the width of a side of the log.
The term “Fixed” connection as used herein is defined as one which is expected to or does cause damage to one of the parts described when removed.
The term “Removable” as used herein is defined as able to connect and disconnect repeatedly (>6 times) without causing damage to a connector piece or parts being connected.
The term “Pivoted” as used herein is defined as a linkage that allows at least one degree of freedom of movement similar to a hinge between connected logs or parts.
Expanded polyethylene extrusions provide a lightweight, soft, structural material that can allow children to safely build play structures of their own imaginations that reach over their heads without concern of injury. The blown polyethylene hollow extrusions interlock with simple connector designs that allow a child to assemble log cabins, forts, castles, boats and other imaginative structures quickly and easily with no tools other than a saw, if desired.
According to an aspect of some embodiments, there is provided a log 100. Log 100 of
In some embodiments logs 100 are made of polyethylene foam. Some embodiments of log 100 have apertures 130. In some embodiments, apertures 130 pass through from the exterior of log 100 to an interior hollow 140 of log 100, located on the substantially flat planar surface 110. Flat planar surface 110 in some embodiments comprises one or more of the four sides of log 100 and flat section 110 is 25 percent to 100 percent of the widths of the side of log 100.
Although apertures 130 need not be at regular intervals, placement of apertures 130 at regular intervals facilitates measurement without the use of a measuring tool. The ability to measure without a measuring tool is convenient when a certain size of log 100 is required for a play set. The regular intervals of apertures 130 provide a consistently measured length obviating the need for a measuring tool.
In some embodiments, apertures 130 of log 100 extend the full length of log 100. In some embodiments, the apertures 130 of log 100 do not extend the full length of log 100, and a portion of flat planar surface 110 at the end of log 100 does not have apertures 130. Logs 100, in some embodiments, have no flat surface; however, do have apertures 130 at regular intervals (not shown).
The apertures 130 allow fixed, pivoted, and/or removable connections between two logs 100. The logs 100 are malleable such that they can be bent from a straight shape to an acute angle shape and held there by connection with other logs, connectors or fasteners.
The log's 100 planar sections 110 enable stacking of logs 100 such that logs 100 sit in a stable manner, one on top of the other, even without the aid of further connectors. One of many building options is to configure logs 100 in the same stacking configuration as one would associate with crisscrossed logs seen in log cabin construction.
Tied string or adhesive tape is also an option for connecting a plurality of logs 100. Connectors 200, (See
Log 100g of
Now onto
The term “oval” as used in relation to the connectors means a shape with two radiuses with parallel sides. Also the term “ellipse”, as used herein, means a shape with a major and minor diameter and no radius.
One option to connect adjacent logs 100 with connectors 200 is illustrated in
Now onto
A saw 400 and miter 450 as seen in
Right angle fastener 500 is illustrated in
In some embodiments, spike connector 600 (as seen in
A base 700 for use when logs 100 are supported on end by hollow 140 instead of a flat planar surface is illustrated by
Panel 800 and corner panel connectors 850, as seen in
Fabric or material elements (see
Using the devices of the disclosed technology, one can build a log cabin (
In particular, in the sailing ship of
In some alternative embodiments, any other shape made from expanded plastic is used as the building blocks or logs 100. Furthermore, these building blocks or logs 100 can interlock directly without the use of connectors, in a range of ways. These ways include, but are not limited to; tongue and groove type interlocks.
In short, one can use the tools and embodiments described to connect logs 100 in multiple ways. The logs 100 have flat planar surfaces 110 with apertures 130 and hollow inner areas 140. The apertures 130 and inner areas 140 can be used to connect various straight, right-angled, and other connectors 200 while the log extrusions 100 themselves can be cut to any desired size. As such, one can create a next to limitless amount of varied creations.
While the disclosed technology has been taught with specific reference to the above embodiments, a person having ordinary skill in the art will recognize that changes can be made in form and detail without departing from the spirit and the scope of the disclosed technology. The described embodiments are to be considered in all respects only as illustrative and not restrictive. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope. Combinations of any of the methods, systems, and devices described herein above are also contemplated and within the scope of the disclosed technology.
variety of configurations and optionally the extrusions are cut safely to a desired size.
Claims
1. A toy building set having a hollow plastic extrusion log and said hollow plastic extrusion log comprising;
- a front side and a back side;
- a first end and a second end;
- a top side and a bottom side;
- each top and bottom side having a substantially flat planar surface;
- a plurality of apertures in the substantially flat planar surface and the apertures extending from an outer surface of the log to an inner hollow surface of the log;
- said plurality of apertures extending the length of the top and bottom sides substantially flat planar surface;
- wherein the log is stackable by aligning the bottom side of said log with an adjacent top side of a log to thereby construct the desired lightweight self-supporting structure.
2. A toy building set having a hollow plastic extrusion log of claim 1, wherein the log front side is curved and the back side is a substantially flat planer surface having a plurality of apertures extending from the outer surface of the log to the inner hollow surface of the log; and
- the plurality of apertures extend the length of the back side of said log.
3. A toy building set of claim 1 wherein at least two adjacent logs are removably attached to a connector; and
- the connector is multidirectional thus enabling the adjacent log to be rotated toward a specific direction and configured to interchangeably attach to each log;
- wherein the log is stackable with adjacent logs and connectors are placed between and inside apertures adjacent logs to thereby construct the desired lightweight self-supporting structure.
4. The toy building set of claim 3 wherein the connector is removably attached to at least two adjacent logs through the apertures of the logs.
5. The toy building set of claim 4, wherein the connector comprises a central planar disk having two opposite ends from central planar disk;
- and opposite ends further comprise distal planar disks;
- wherein the distal planar disks pass through the apertures and into the hollow area of the logs to form an interference fit in the apertures with the central disk remaining outside of the apertures of the logs; thus the connector remains removably attached to the logs until desired removal.
6. The connector of claim 5, wherein the two opposite end from a central planar disk comprises a shaft shaped as a straight line S.
7. The connector of claim 5, wherein the distal planer disks have an oval shape and the plurality of apertures in the log are circle shapes; and wherein passing of the distal planer disk through an aperture requires pressure and angling the distal planar disk through the aperture such that the distal planar disk overlaps a portion of the hollow inside of the log and thus secured until desired removal.
8. The connector of claim 5, wherein the distal planer disks have an oval shape and the plurality of apertures in the log have a matching oval shape; and wherein passing of the distal planer disk through an aperture requires positioning the distal planar disk shape to match the aperture shape; whereby after the planar disk is through said aperture the connector is turned ninety degrees around an axis perpendicular to the distal planar disk such that the connector overlaps a portion of the hollow inside of the log and thus secured until desired removal.
9. The log of claim 1 wherein the plurality of apertures are at fixed measurable intervals to each other, and the interval apertures determine a length by counting the apertures.
10. A log of claim 1, wherein a log is sawed into a plurality of smaller logs when a cutting edge provides tension onto the log such that bubbles of the plastic extrusion burst as the cutting edge goes through the log.
11. A saw having support for a dull cutting edge for cutting a log of claim 1, wherein
- a. the dull cutting edge provides tension such that when the cutting edge is passed through the log, bubbles of the plastic extrusion burst as the saw passes through the plastic extrusion;
- b. wherein the cutting edge comprises one of the following: plastic, metal, string, or wire.
12. The saw of claim 11 further comprising a miter having vertical miter protrusions for placement of the log and a perpendicular slot in the vertical miter protrusions for placement of the dull cutting edge of the saw, such that the cutting edge and the log are very stable for cutting the log.
13. A toy building set having a hollow plastic extrusion log of claim 1, wherein the log front side and back side are both curved.
14. A toy building set having a hollow plastic extrusion log of claim 1, wherein the front side and back side are substantially flat planer surfaces having a plurality of apertures extending from the outer surface of the log to the inner hollow surface of the log;
- wherein the plurality of apertures extend the length of the back side and the front side of the log.
15. A toy building set of claim 1 wherein at least two adjacent logs are removably attached by a U connector; wherein a log is stackable with an adjacent log and a U connector is placed on a portion of at least one end of a log and an adjacent log such that the U connector utilizes spring tension on the two adjacent logs and remains removably attached to the logs until desired removal.
16. The toy building set of claim 15, wherein the connector is U shaped and has two ends;
- the two ends of the U connector further comprise protrusion that face each other such that the two ends are placed in the hollow of two adjacent logs and the two protrusions are placed in the apertures of the two adjacent logs;
- whereby the U connector utilizes spring tension on the two adjacent logs and remains removably attached to the logs until desired removal.
17. The log of claim 2 wherein the log is made of expanded polyethylene foam.
18. The connector of claim 5 wherein the connector is made with injection molded plastic
19. The log of claim 2 wherein the log apertures are shaped as one of the following:
- a. circle;
- b. two slits forming a plus sign;
- c. center circle superimposed on two slits;
- d. an oval;
- e. or an ellipse.
20. The toy building set of claim 1 further comprising:
- a. a spike having a first end with a flat head and a second end with a bulbous detail;
- b. the bulbous detail of a spike passing through a log aperture or a plurality of log apertures to the hollow area of a log such that the bulbous detail of the spike forms an interference fit in the aperture of a log and said spike flat head is sized to remain outside of a log.
21. The toy building set of claim 20 further comprising:
- a. flat plate fastener having an elongated oval planar shape with a first end having a portal there through and a second end having a portal there through;
- b. a spike is passed through a portal of the flat plate fastener and a log apertures to the hollow area of a log such that the bulbous detail of the spike forms an interference fit in the aperture of the log and said spike flat head is sized to remain outside of the portal of the flat plate connector and of the log such that two adjacent logs are connected with apertures not facing each other.
22. A toy building set having a hollow plastic extrusion log and said hollow plastic extrusion log comprising;
- a front side and a back side;
- a first end and a second end;
- a top side and a bottom side;
- each top and bottom side having a plurality of apertures in the extending from an outer surface of the log to an inner hollow surface of the log;
- wherein the log is stackable by aligning the bottom side of said log with an adjacent top side of a log to thereby construct the desired lightweight self-supporting structure.
23. A toy building set of claim 3 further comprising a fabric having apertures to accept and attach the fabric to a log or plurality of logs.
24. A method of using a toy building set to build play sets comprising the following steps:
- a. selecting a plurality of logs, each log comprising; a front side and a back side; a first end and a second end; a top side and a bottom side; each top and bottom side having a substantially flat planar surface; a plurality of apertures in the substantially flat planar surface and the apertures extending from an outer surface of the log to an inner hollow surface of the log; said plurality of apertures extending the length of the top and bottom sides substantially flat planar surface;
- b. determining the length of the logs needed for building a toy structure;
- c. determining what logs need to be cut;
- d. counting the number of apertures on the logs needing to be cut to determine where to cut the logs and sawing the logs to appropriate sizes;
- e. placing one of the plurality of logs on the ground or on a support horizontally with on of the substantially flat planar surfaces facing the ground or support;
- f. placing a connector or plurality of connectors into the apertures of the log placed on the ground or support;
- g. determining which of the plurality of logs is a second log to be placed on top of the log already placed;
- h. placing the second log, wherein the second log is stackable on the log already place and connectors are between and inside apertures of adjacent apertures of the logs;
- i. wherein this method continues with a plurality of adjacent logs and connectors are placed between and inside apertures of adjacent logs to thereby construct the desired lightweight self-supporting structure.
25. A method of using a toy building set of claim 24 further comprising the following steps:
- a. selecting a log and determining the length of the log needed;
- b. placing a miter on a flat surface;
- c. counting the apertures of the log;
- d. placing the log in the miter the correct distance from the end to cut the log;
- e. placing a saw in a slot of the miter to accept the saw;
- f. saw the log.
Type: Application
Filed: Apr 12, 2018
Publication Date: Oct 18, 2018
Inventor: Christopher Gerard Gallagher (Lancaster, PA)
Application Number: 15/951,199