Situationally-Aware Alerts

An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 15/641,192, filed Jul. 3, 2017, and entitled “Situationally-Aware Alerts,” which is a continuation of U.S. patent application Ser. No. 15/251,459, filed Aug. 30, 2016, and entitled “Situationally-Aware Alerts,” which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/303,964, filed on Mar. 4, 2016, and entitled “Situationally-Aware Alerts,” the contents of which are incorporated by reference as if fully disclosed herein.

FIELD

The described embodiments relate generally to alerts. More particularly, the present embodiments relate to adjusting alerts based on a user's situation.

BACKGROUND

Many electronic devices provide various notifications, alerts, or other output to users. Such notifications may be visual, audio, haptic, and so on. For example, a smart phone that receives a communication such as a call or text or email message may indicate such on a screen, play a tone or other audio, and/or vibrate.

In general, notifications may be configured to be salient, or noticeable, to a user without being overly disturbing to others. For example, a smart phone may present a visual indicator on a display screen as well as playing a tone for an incoming call. The tone may assist the user in noticing the incoming call if the user is not currently looking at the display, but may be disturbing to others if the user is in the context of a meeting or other scenario where audio is overly noticeable.

SUMMARY

The present disclosure relates to electronic devices that provide situationally-aware alerts. An electronic device determines to provide alert output (such as a vibration or other haptic output, audio output, visual output, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may prioritize incoming communications by adjusting the alert output differently based on an associated priority.

In various embodiments, an electronic device that provides situationally-aware alerts includes a haptic output device, a sensor operable to produce a signal indicating information relating to movement of the electronic device, and a processing unit connected to the sensor and the haptic output device. The processing unit is configured to determine to provide a haptic output via the haptic output device, determine a movement pattern based on the signal, and adjust the haptic output to account for the movement pattern by delaying the haptic output.

In some examples, the movement pattern indicates changes in elevation and the processing unit delays the haptic output until changes in elevation cease. In various implementations of such examples, the sensor includes a pressure sensor, the processing unit is configured to determine that the movement pattern indicates the changes in elevation based on the pressure sensor, and the processing unit is configured to delay the haptic output until the processing unit determines based on the pressure sensor that the changes in elevation have ceased.

In various examples, the processing unit is configured to determine a first period based on the movement pattern where the electronic device will be less proximate to a user (such as where the user is running and the electronic device is in the user's pocket and moves in the pocket further from the user and closer to the user in the pocket at different portions of the user's stride), determine a second period based on the movement pattern where the electronic device will be more proximate to the user, and delay the haptic output from the first period to the second period. In other examples, the processing unit delays the haptic output for a first period when the movement pattern indicates a first type of movement and delays the haptic output for a second period when the movement pattern indicates a second type of movement.

In numerous examples, the signal includes information indicating a heart rate of a user is elevated and the processing unit delays the haptic output until the heart rate of the user reduces. In various examples, the processing unit estimates a time when the haptic output will be salient despite the movement and delays the haptic output until the time.

In some embodiments, an electronic device that provides situationally-aware alerts includes a haptic output device, a sensor operable to produce a signal indicating information relating to movement of the electronic device, and a processing unit connected to the sensor and the haptic output device. The processing unit is configured to determine to provide a haptic output via the haptic output device, determine a movement pattern based on the signal, and adjust the haptic output to account for the movement pattern by altering the haptic output to be discernible despite the movement pattern based on a cadence of the movement pattern.

In various examples, the processing unit is configured to adjust a pattern of the haptic output to be mismatched with the cadence. In numerous examples, the processing unit is configured to alter the haptic output by time shifting the haptic output to a pause in the cadence.

In some examples, the processing unit is configured to determine to provide the haptic output in response to receiving an incoming communication, adjust the haptic output in a first manner when the incoming communication is associated with a first priority, and adjust the haptic output in a second manner when the incoming communication is associated with a second priority. In various examples, the processing unit is configured to alter the haptic output in a first manner when the movement pattern indicates a first type of movement and in a second manner when the movement pattern indicates a second type of movement. In numerous examples, the processing unit is configured to prompt for an acknowledgement of the adjusted haptic output, determine the acknowledgement has not been received, and provide additional haptic output until the acknowledgement is received.

In numerous embodiments, an electronic device that provides situationally-aware alerts includes a non-transitory storage medium storing instructions; a haptic output device; a sensor operable to produce a signal indicating information about a situation of a user of the electronic device; a communication component operable to receive an incoming communication associated with a priority; and a processing unit connected to the sensor, the communication component, the haptic output device, and the non-transitory storage medium. The processing unit is configured to execute the instructions to determine to provide a haptic output via the haptic output device in response to receiving the incoming communication; determine a movement pattern based on the signal; and adjust the haptic output to account for the movement pattern by delaying the haptic output when the incoming communication is associated with a first priority and by altering the haptic output to be discernible despite the movement pattern based on a cadence of the movement pattern when the incoming communication is associated with a second priority.

In various examples, the electronic device that provides situationally-aware alerts further includes an output device other than the haptic output device wherein the processing unit is configured to provide an output via the output device in addition to the haptic output. In some implementations of such examples, the output is at least one of visual output or audio output.

In numerous examples, the processing unit is configured to communicate with an additional electronic device and the processing unit signals the additional electronic device to produce output in addition to the haptic output. In various examples, the processing unit is configured to communicate with an additional electronic device and the processing unit evaluates the situation of the user by receiving data indicating a status of the additional electronic device that affects the situation of the user.

In some examples, the first and second priorities are based on at least one of a source of the incoming communication, a priority indicator included in the incoming communication, or a type of the incoming communication. In various examples, the first and second priorities are user assigned.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements.

FIG. 1 is depicts an example system for providing situationally-aware alert output.

FIG. 2 depicts a block diagram illustrating sample components of the system of FIG. 1 and sample functional relationships among those components.

FIG. 3 is a flow chart illustrating a first example method for providing situationally-aware alert output. This first example method may be performed by the example system of FIGS. 1-2.

FIG. 4 is a flow chart illustrating a second example method for providing situationally-aware alert output. This second example method may be performed by the example system of FIGS. 1-2.

FIG. 5 is a flow chart illustrating a third example method for providing situationally-aware alert output. This third example method may be performed by the example system of FIGS. 1-2.

FIG. 6 is a flow chart illustrating a fourth example method for providing situationally-aware alert output. This fourth example method may be performed by the example system of FIGS. 1-2.

FIG. 7 is a flow chart illustrating a fifth example method for providing situationally-aware alert output. This fifth example method may be performed by the example system of FIGS. 1-2.

DETAILED DESCRIPTION

Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.

The description that follows includes sample systems, apparatuses, methods, and computer program products that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.

Notifications and other output provided by an electronic device may be thwarted if they are not salient to a user. The situation in which a user is in (e.g., activities the user is performing, activities going on around the user, a location where the user is, and so on) may affect the salience of a notification. For example, movement of a user may decrease the salience of a vibration or other notification related output. By way of another example, a user may be located in a highly distracting environment (high noise level and so on) and/or engaged in other activities that decreases the salience of such a vibration. In yet another example, a user's cognitive state may affect perceived salience. When the user is engaged in a highly demanding cognitive task, when the user's attention is focused away from the electronic device, and so on, the user's absorbed cognitive state may reduce perceived salience of a vibration or other notification related output.

Larger actuators or other output components may be used, and/or larger amounts of power may be provided to actuators or other output components, in order to increase the salience of vibrations despite a user's situation. However, these sorts of solutions may still not ensure that a user notices a notification or other output and may not be feasible given space, power, and/or other electronic device constraints.

Further, the situation in which a user is in may make the salience of a vibration or other notification related output too noticeable. Sound related to a vibration provided by an electronic device may be salient to people other than the user in a meeting or other situation where sound is particularly noticeable. This may be exacerbated if the electronic device is on a surface such as a table that may amplify the vibration. In such a situation, it may be desirable to decrease the salience of the vibration such that it is still noticeable by the user but not others, or to prevent the notification from being annoyingly strong to the user. Efforts such as larger actuators or other output components and/or larger amounts of power discussed above to ensure salience in situations that decrease salience may further exacerbate these issues if increased salience is not necessary.

The following disclosure relates to an electronic device that adjusts alert output based on a user's situation in order to increase salience of the alert output when the user's situation merits increased salience. The alert output may be vibrations or other haptic output, visual output, audio output, and so on. Adjusting the alert output may include delaying the alert output, altering one or more parameters of the alert output (such as amplitude of a vibration, frequency of a vibration, and so on), and so on. The electronic device may determine to provide an alert output, evaluate the user's situation based on information from one or more sensors, and increase salience by adjusting the alert output based on the user's situation.

In some embodiments, the alert output may be haptic output and increasing salience may include providing output via an output device other than and/or in addition to the haptic output. For example, the electronic device may provide an audio or visual output instead of and/or in addition to the haptic output if the electronic device evaluates the user's situation to affect salience of the haptic output too adversely.

In various embodiments, increasing salience may include signaling another electronic device to provide the alert output and/or other output rather than and/or in addition to the electronic device. Similarly, the sensor data the electronic device uses to evaluate the user's situation may be received by the electronic device from other electronic devices with which the electronic device communicates.

In a particular embodiment, the electronic device may evaluate data from one or more sensors to determine that the user is moving. The electronic device may evaluate the data to determine a movement pattern and adjust the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output based on the movement pattern, such as delaying until the user is no longer moving or the user's activity level declines, delaying to when the electronic device will be more proximate to the user than another time, delaying different time periods based on different types of movement, delaying until a time the electronic device estimates the alert output will be salient despite the movement, and so on. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern, such as by mismatching the alert output with a cadence of the movement pattern, altering the alert output in different manners based on different types of movement, and so on.

In still other implementations, the electronic device may adjust the alert output to account for the movement pattern by delaying the alert output in some situations and altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern in other situations. For example, the electronic device may utilize priorities to prioritize some alerts over others. An alert output may be associated with a priority such as an urgency priority. The electronic device may delay the alert output if the priority is a first priority and may alter the alert output if the priority is a second priority.

By way of example, the alert output may be provided in response to receiving an incoming communication. In such an example, the electronic device may include a list of contacts organized into different priorities such as very important (VIP) contacts and non-VIP contacts. The electronic device may adjust the alert output in a first way if the source of the incoming communication is a VIP contact and in a second way if the source of the incoming communication is a non-VIP contact. In other implementations of such an example, the priority may be otherwise be associated with a source of the communication, a priority indicator included in the incoming communication, a type of the incoming notification, and so on.

In various embodiments, the electronic device may increase salience of the alert output by prompting for an acknowledgement of the alert output. If the acknowledgement is not received, such as after a period of time after providing a prompt, the alert output may be provided again. In some implementations, the alert output may be provided repeatedly until acknowledged.

These and other embodiments are discussed below with reference to FIGS. 1-7. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these Figures is for explanatory purposes only and should not be construed as limiting.

FIG. 1 is depicts an example system 100 for providing situationally-aware alert output. The system 100 includes an electronic device 101 that provides situationally-aware alerts. The electronic device 101 may determine (such as in response to receiving one or more incoming communications) to provide alert output (such as vibrations or other haptic output, visual output, audio output, and so on), evaluate a user's 104 situation based on information from one or more sensors, and increase salience by adjusting the alert output based on the user's 104 situation.

Many different aspects of the user's 104 situation may affect salience of the alert output. As such, the electronic device 101 may analyze a variety of different data in evaluating a variety of different aspects of the user's 104 situation. Such aspects may involve ambient noise levels, ambient light levels, the cognitive state of the user 104, motion of the user 104, health data of the user 104, whether or not the user 104 is climbing stairs, whether or not the user 104 is driving, and so on. Such aspects may also involve activities the user is performing on other electronic devices with which the electronic device 101 may communicate, such as a first other electronic device 103 and a second other electronic device 102 (such as typing on a keyboard 105 of the first other electronic device 103, playing music on the second other electronic device 102, and so on). The electronic device 101 may receive signals from one or more different sensors indicating data the electronic device 101 may use in evaluating the user's 104 situation.

In various implementations, such sensors may be components of the electronic device 101. However, such sensors may also be components of one or more other electronic devices with which the electronic device 101 may communicate such as the first other electronic device 103 and the second other electronic device 102.

The electronic device 101 may evaluate data from one or more sensors to determine that the user is moving. The electronic device 101 may evaluate the data to determine a movement pattern and adjust the alert output (such as by delaying the alert output, altering one or more parameters of the alert output, and so on) to account for the movement pattern. In some implementations, the electronic device 101 may delay the alert output based on the movement pattern. In other implementations, the electronic device may alter the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device 101 may adjust the alert output to account for the movement pattern by delaying the alert output in some situations and altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern in other situations.

For example, incoming communications received by the electronic device 101 may be prioritized with respect to other incoming communications. In various situations, incoming communications from some senders may be prioritized over other incoming communications from other senders, incoming communications associated with some applications may be prioritized over incoming communications associated with other applications, incoming communications having certain content may be prioritized over incoming communications having other content, and so on.

By way of example, the electronic device 101 may determine to provide an alert output in response to receiving an incoming communication that is associated with a priority according to a source of the incoming communication. The electronic device 101 may delay the alert output if the priority is a first priority and may alter the alert output and/or provide the alert output if the priority is a second priority. Although this example is described using first and second priorities, it is understood that this is an illustration. In various examples, priority may vary continuously and handling of corresponding alerts may also vary continuously.

In various implementations, the electronic device 101 may include different profiles for providing situationally-aware alert output in different situations. For example, the electronic device 101 may be configured for the user 104 to increase salience differently when the user 104 is working, at home during waking hours, at home during sleeping hours, driving, and so on. For each situation, the different profiles may specify how salience of alert outputs is to be determined, when to increase salience, how to increase salience, and so on. Such profiles may be specified by the user 104, configured by default for the user 104, and so on.

Although the electronic device 101 is described above as providing the alert output, it is understood that this is an example. In some implementations, the electronic device 101 may signal one or more of the first other electronic device 103 and the second other electronic device 102 based on evaluation of the user's 104 situation to provide alert output and/or other output (such as visual output, audio output, and so on) instead of and/or addition to the electronic device 101 providing the alert output.

Further, although the electronic device 101 is illustrated as a smart phone, the first other electronic device 103 is illustrated as a laptop computing device, and the second other electronic device 102 is illustrated as a wearable device, it is understood that these are examples. In various implementations, the electronic device 101, the first other electronic device 103, and the second other electronic device 102 may be a variety of different electronic and/or other devices without departing from the scope of the present disclosure.

FIG. 2 depicts a block diagram illustrating sample components of the system 100 of FIG. 1 and sample functional relationships among those components. The electronic device 101 may include one or more processing units 210, one or more sensors 211, one or more haptic output devices 212, one or more non-transitory storage media 213, one or more communication components 214, and so on.

The processing unit 210 may execute instructions stored in the non-transitory storage media 213 to perform a variety of different functions. For example, the processing unit 210 may execute such instructions to receive one or more signals from the one or more sensors 211, communicate with the first other electronic device 103 and/or the second other electronic device 102 via the communication component 214, provide haptic output via the haptic output device 212, and so on. The processing unit 210 may also execute the instructions to perform various methods of providing situationally aware haptic output. Such methods may involve determining to provide a haptic output, evaluate a user's situation based on information from the one or more sensors 211, and increasing salience by adjusting the haptic output based on the user's situation.

The haptic output devices 212 may be one or more actuators or other vibration producing components. The non-transitory storage media 213 may take the form of, but is not limited to, a magnetic storage medium; optical storage medium; magneto-optical storage medium; read only memory; random access memory; erasable programmable memory; flash memory; and so on. The communication components 214 may be one or more cellular antennas, WiFi antennas, Bluetooth antennas, and so on.

The one or more sensors 211 may be one or more of a variety of different sensors. Such sensors may include, but are not limited to, one or more accelerometers, gyroscopes, global positioning system (GPS) or other navigation system components, communication components (such as by tracking WiFi network handoffs, cellular handoffs, and/or other events of various communication networks with or without other associated information such as GPS data associated with network components), compasses, magnetometers, hall effect sensors, barometric or other pressure sensors, cameras, microphones, image sensors, inertial sensors, barometers, health sensors (such as photoplethysmogram sensors that may be used to determine a heart rate of the user and/or other information regarding the body of the user), touch pressure sensors, sensors that monitor a user's cognitive state (such as one or more heart rate sensors, eye movement sensors, galvanic skin response sensors, sensors that monitor use and activity on one or more other devices, and so on), combinations thereof, and so on. The communication components may be used to obtain sensor data by utilizing data from the communication components to track WiFi network handoffs, cellular handoffs, and/or other events of various communication networks with or without other associated information such as GPS data associated with network components.

Similarly, the first other electronic device 103 may include one or more processing units 220, one or more sensors 221, one or more haptic output devices 222, one or more non-transitory storage media 223, one or more communication components 224, and so on. Likewise, the second other electronic device 102 may include one or more processing units 215, one or more sensors 216, one or more haptic output devices 217, one or more non-transitory storage media 218, and one or more communication components 219.

Although FIG. 2 is illustrated and described above as including a haptic output device 212 and providing situationally aware haptic output, it is understood that this is an example. In various implementations, other kinds of situationally aware alert output may be provided. Such alert output may include audio output, video output, and so on.

FIG. 3 is a flow chart illustrating a first example method 300 for providing situationally-aware alert output. This first example method 300 may be performed by the example system 100 of FIGS. 1-2.

The flow begins at block 310 where an electronic device operates. The flow then proceeds to block 320 where the electronic device determines whether or not to provide an alert output (such as a vibration or other haptic output, audio output, visual output, and so on). The electronic device may determine to provide an alert output in response to receiving an incoming communication (such as an email, a text message, a social media communication, a telephone call, and so on), in response to triggering of a reminder such as a calendar or other schedule reminder, based on the status of a resource such as a battery power level falling below a threshold level or a change in a connection to a communication network, based on a status change of an executing application such as the completion of a download, and/or any other event for which the electronic device determines to provide a notification or other output to a user. If so, the flow proceeds to block 330. Otherwise, the flow returns to block 310 where the electronic device continues to operate.

At block 330, the electronic device evaluates the user's situation before proceeding to block 340. The electronic device may evaluate data regarding a variety of different aspects of the user's situation from a variety of different sensors included the electronic device and/or other electronic devices with which the electronic device communicates.

For example, the electronic device may determine an ambient noise level of the user's situation using one or more microphones. By way of another example, the electronic device may determine an illumination level of the user's situation using one or more ambient light sensors or other light detectors.

By way of still another example, the electronic device may analyze data to determine a movement pattern of the user or other movement information using data from one or more accelerometers, gyroscopes, GPS or other navigation system components, communication components (such as by tracking WiFi network handoffs, cellular handoffs, and/or other events of various communication networks with or without other associated information such as GPS data associated with network components), compasses, magnetometers, hall effect sensors, barometric or other pressure sensors, cameras, microphones, image sensors, inertial sensors, barometers, health sensors (such as photoplethysmogram sensors that may be used to determine a heart rate of the user and/or other information regarding the body of the user), touch pressure sensors, combinations thereof, and so on. The electronic device may determine a variety of information about the user's movement as part of determining the movement pattern such as a movement speed, a movement cadence, whether the use is changing elevation, an exertion level of the user, a type of the movement (e.g., jogging, running, walking, climbing stairs, bicycling, driving, riding in a car, and so on), and/or a variety of other different information regarding the pattern of the user's movement.

By way of still another example, the electronic device may receive a communication from an associated device indicating that a user of the electronic device is involved in a distracting activity using the other electronic device that may impact salience of the alert output. For example, the other electronic device may be playing audio or video, the user may be typing on a keyboard and/or otherwise entering input on an input device of the other electronic device, and so on. The electronic device may determine a distraction level of the user's situation based on one or more communications from the other electronic device regarding such distracting activities that may impact salience of the alert output.

At block 340, the electronic device determines whether or not to increase salience of the alert output based on the user's situation (such as by adjusting the alert output, which may include delaying the alert output, altering one or more parameters of the alert output, and so on). The electronic device may determine by evaluating the user's situation that the alert output will be salient as is and the salience of the alert output should not be increased. Alternatively, the electronic device determines by evaluating the user's situation that the alert output may not be salient as is (such as where the user's situation is too loud, too distracting, and so on) and the salience of the alert output should be increased. If so, the flow proceeds to block 360. Otherwise, the flow proceeds to block 350.

At block 350, after the electronic device determines not to increase the salience of the alert output, the electronic device provides the alert output. The flow then returns to block 310 where the electronic device continues to operate.

At block 360, after the electronic device determines to increase the salience of the alert output, the electronic device adjusts the alert output based on the user situation by delaying or altering the alert output. Such adjustment may include altering the time at which the alert output is provided (such as by delaying a period of time), altering one or more parameters of the alert output (such as providing a different waveform to an actuator, altering an amplitude of a waveform provided to an actuator, altering a phase of a waveform provided to an actuator, increasing power provided to an actuator, and so on), providing other output (such as visual, audio, and so on) instead of and/or in addition to the alert output, providing other alert output (which may have similar or different output characteristics than the alert output) via an electronic device with which the electronic device communicates instead or and/or in addition to alert output the electronic device may provide, and so on.

The flow then proceeds to block 370 where the electronic device provides the adjusted alert output based on the user's situation. The flow then returns to block 310 where the electronic device continues to operate.

For example, the alert output may be a haptic output. The electronic device may analyze data from one or more microphones to determine that the user is in a high noise environment. Such a high noise environment may reduce the possibility that the user will notice the haptic output. In response, the electronic device may increase a vibration amplitude included in the haptic output to increase the salience of the haptic output in the high noise environment. Additionally or alternatively, the electronic device may provide a different type of alert output such as a visual alert (e.g., flash a light emitting diode and so on).

By way of another example, the electronic device may analyze data from accelerometers, motion sensors, communication components, and/or other sensors and determine that the user is driving. The user may not notice haptic output while driving. However, the user's vehicle may be communicably connected to the electronic device and may be capable of providing vibrations or other haptic output via the steering wheel or other portion of the user's vehicle that the user touches while driving. As such, the electronic device may signal the user's vehicle to provide haptic output via the steering wheel or other portion instead of and/or in addition to the electronic device providing the haptic output. Additionally or alternatively, the electronic device may provide and/or signal the user's vehicle to provide another type of alert, such as audio through one or more speakers, visual indications through a display, and so on.

Although the example method 300 is illustrated and described as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.

For example, the example method 300 is illustrated and described as determining whether or not to increase salience of the haptic output based on the user's situation. However, in some implementations, the electronic device may determine whether or not to decrease salience of the alert output based on the user's situation.

By way of example, the alert output may be a haptic output and the electronic device may analyze data from GPS or other navigation sensors and/or other sensors and so on to determine that the user is in a quiet environment such as a meeting or a movie theater. Such a quiet environment may allow the user to notice the haptic output, but may cause the haptic output to be undesirably noticeable to others. In response, the electronic device may decrease a vibration amplitude included in the haptic output to decrease the salience of the haptic output in the quiet environment so that the adjusted haptic output will still be noticeable to the user but will not be undesirably noticeable to others or noticeable to others at all.

Alternatively, rather than altering the haptic output, the electronic device may delay the haptic output. For example, in situations where the electronic device determines that the user is in a movie theater, the electronic device may delay the haptic output until an ambient light sensor detects increased light. This may correspond to a movie being finished, the user leaving the movie theater, and/or other situations where the haptic output may no longer be undesirably noticeable to others.

By way of another example, the electronic device may analyze data from motion sensors and/or other sensors and determine that the electronic device is on a surface that amplifies haptic output such as a hard surface table top (such by analyzing that the electronic device is subject to very little motion, among other conditions). Amplification of the haptic output may not make the haptic output less salient to the user, but may make the haptic output unpleasant or undesirably noticeable to others. As such, the electronic device may modify vibration included in the haptic output to modify how the haptic output will be amplified so that the adjusted haptic output will still be noticeable to the user but will not be unpleasant and/or undesirably noticeable to others.

In various examples, the electronic device may increase and/or decrease salience of an output based on how the user's cognitive state affects the user's situation. For example, the electronic device may determine the user is engaged in a highly demanding cognitive task, that the user's attention is focused away from the electronic device, and so on. Based on that determination, the electronic device may determine to increase salience (e.g., escalate) of the output. Alternatively or additionally, based on the determination, the electronic device may determine to decrease salience (e.g., de-escalate) or delay the output to avoid distracting the user when the user is involved in a demanding task or has his attention elsewhere.

FIG. 4 is a flow chart illustrating a second example method 400 for providing situationally-aware alert output. This second example method 400 may be performed by the example system 100 of FIGS. 1-2.

The flow begins at block 410 where an electronic device operates. The flow then proceeds to block 420 where the electronic device determines whether or not to provide an alert output (such as a vibration or other haptic output, audio output, visual output, and so on). If so, the flow proceeds to block 430. Otherwise, the flow returns to block 410 where the electronic device continues to operate.

At block 430, the electronic device evaluates ambient noise in the user's situation using data from one or more microphones and/or other sensors. The flow then proceeds to block 440.

At block 440, the electronic device determines whether or not to alter the alert output because of the ambient noise in the user's situation (though in various implementations the electronic device may delay the alert output, such as until the ambient noise changes, rather than alter the alert output). The electronic device may determine to alter the alert output if the ambient noise in the user's situation exceeds a first threshold. If not, the flow proceeds to block 450 where the electronic device provides the alert output before the flow returns to block 410 and the electronic device continues to operate. Otherwise, the flow proceeds to block 460.

At block 460, after the electronic device determines to alter the alert output because of the ambient noise in the user's situation, the electronic device increases the alert output. The flow then proceeds to block 470 where the electronic device provides the increased alert output.

The flow then proceeds to block 480 where the electronic device determines whether or not to provide other output. Such other output may be haptic output, visual output provided via a visual output device, audio output provided via an audio output device, output provided by another electronic device with which the electronic device communicates, and/or any other output. The electronic device may determine to provide the other output if the ambient noise in the user's environment exceeds both the first and a second threshold. If not, the flow returns to block 410 and the electronic device continues to operate. Otherwise, the flow proceeds to block 490.

At block 490, after the electronic device determines to provide other output, the electronic device provides the other output. The flow then returns to block 410 and the electronic device continues to operate. Additionally and/or alternatively, the other output may be adjusted based on the user's situation in addition to and/or instead of adjusting the alert output.

Although the example method 400 is illustrated and described as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.

For example, the example method 400 is illustrated and described as determining whether or not to increase the alert output based on ambient noise the user's situation. However, in some implementations, the electronic device may determine whether or not to decrease the alert output based on ambient noise the user's situation.

By way of example, the electronic device may analyze ambient noise in the user's situation and determine that the alert output may be too noticeable based on the user's situation having below a threshold amount of ambient noise. In response, the electronic device may decrease the alert output to make the alert output more suited for the user's situation while still allowing the alert output to remain salient.

Further, the example method 400 is illustrated and described as determining to alter the alert output and/or provide other output based on comparison of ambient noise to first and second thresholds. However, it is understood that this is an illustration. In various examples, provided alerts may be varied continuously in response to a continuous scale of ambient noise.

FIG. 5 is a flow chart illustrating a third example method 500 for providing situationally-aware alert output. This third example method 500 may be performed by the example system 100 of FIGS. 1-2.

The flow begins at block 510 where an electronic device operates. The flow then proceeds to block 520 where the electronic device determines whether or not to provide an alert output (such as a vibration or other haptic output, audio output, visual output, and so on). If so, the flow proceeds to block 530. Otherwise, the flow returns to block 510 where the electronic device continues to operate.

At block 530, the electronic device determines whether or not the user is moving. The electronic device may utilize signals from one or more accelerometers, gyroscopes, inertial sensors, communication components, barometric or other pressure sensors, altimeters, magnetometers, and/or other sensors to determine whether or not the user is moving. If not, the flow proceeds to block 540 where the electronic device provides the alert output before the flow returns to block 510 and the electronic device continues to operate. Otherwise, the flow proceeds to block 550.

At block 550, the electronic device determines a movement pattern of the user using the signals from the one or more sensors. The electronic device may determine a variety of different data about the user's movement pattern. The movement pattern may include a cadence of the user's movement pattern, a heart rate or other health data of the user related to the movement pattern, whether or not the user is changing elevation (such as ascending and/or descending, the rate of change, and so on), a speed of the user's movement pattern, and/or any other such information about the pattern of the user's movement.

The flow then proceeds to block 560 where the electronic device adjusts the alert output (such as by adjusting the alert output, which may include delaying the alert output, altering one or more parameters of the alert output, and so on) based on the user's movement pattern by delaying or altering the alter output. In some implementations, adjusting the alert output may include delaying the alert output. The alert output may be delayed until the movement stops or the electronic device estimates the movement will stop, until a user who has been determined (such as using a pressure sensor) to be changing elevation (such as walking up stairs or a ramp, riding an escalator or an elevator, and so on) ceases changing elevation or the electronic device estimates the user will stop changing elevation, until the electronic device estimates the alert output will be salient despite the movement, until a user's heart rate or other health data of the user related to the movement reduces or otherwise changes, a specific time interval (such as thirty seconds), and so on.

In implementations where adjusting the alert output includes delaying the alert output by a period of time, the electronic device may delay for different periods of time based on a variety of factors. For example, the electronic device may determine based on the movement pattern that the electronic device will be less proximate to a user after a first period of time (such as five seconds) and more proximate to the user after a second period of time (such as ten seconds), such as where the electronic device is located in the user's pocket and thusly moving within the pocket closer to and further from the user as part of the movement pattern. In such an example, the electronic device may delay the alert output by the second period of time.

By way of a second example, the electronic device may determine a type of motion based on the movement pattern, such as running motion, walking motion, stair climbing motion, dancing motion, driving motion, and so on. The processing unit may delay the alert output different periods based on the type of motion. In some examples, the processing unit may delay the alert output by a first period (such as twenty seconds) when the movement pattern indicates a first type of motion (such as walking motion) and by a second period (such as forty seconds) when the movement pattern indicates a second type of motion (such as running motion).

In various implementations, the electronic device may estimate a time when the alert output will be salient despite the movement, such as where the movement pattern indicates the movement will pause. In such an implementation, the electronic device may delay until that time.

In other implementations, adjusting the alert output may include altering the alert output to be discernible despite the movement pattern based on a cadence of the user and alter the alert output based thereupon. In such implementations, the electronic device may determine a cadence of the movement pattern. A cadence of a movement pattern may involve the rhythm of body parts such as legs involved in the motion, the rate at which they move, and so on.

For example, the electronic device may alter a pattern of the alert output (such as the waveform of haptic output) to be mismatched with the cadence. As the altered alert output is mismatched to the cadence of the movement pattern, the altered alert output may be more salient despite the movement.

By way of another example, the cadence of the movement pattern may involve pauses in motion. The electronic device may alter the alert output by time shifting the alert output to such a pause in the cadence.

In numerous examples, the processing unit may alter the alert output in different manners based on the type of motion. In some examples, the processing unit may alter the alert output in a first manner when the movement pattern indicates a first type of motion (such as driving motion) and in a second manner when the movement pattern indicates a second type of motion (such as flying motion). Although these examples are described as altering alert output in a first manner for a first type of motion and in a second manner for a second type of motion, it is understood that this is an illustration. In various examples, alert output may be continuously varied based on a continuous scale of motion.

In various examples, the alert output may be provided in response to an incoming communication such as an email, text message, phone call, and so on. The incoming communication may have an associated priority. Such a priority may be based on a source of the incoming communication (such as a first priority for communications from very important person or VIP contacts compared to a second priority for other contacts), a priority in indicator included in the incoming communication (such as an urgent priority flag indicating a first priority included in the communication or normal priority flag indicating a second priority included in the communication) or a type of the communication (such as a first priority for email communications and a second priority for text message communications). The priority may be user assigned. The electronic device may adjust the alert output differently based on the associated priority.

For example, the electronic device may delay the alert output if the associated priority is a first priority and alter the alert output based on a cadence of the movement if the associated priority is a second priority. By way of another example, the electronic device may delay the alert output a first period if the associated priority is a first priority and delay the alert output a second period if the associated priority is a second priority. By way of still another example, the electronic device may alter the alert output based on a cadence of the movement in a first manner if the associated priority is a first priority and alter the alert output based on a cadence of the movement in a second manner if the associated priority is a second priority. Although this example is described as delaying a first period for a first priority and a second period for a second priority, it is understood that this is an illustration. In various examples, alert output may be delayed on a continuous scale for a continuous priority scale.

After the electronic device adjusts the alert output based on the user's movement pattern, the flow proceeds to block 570 where the electronic device provides the adjusted alert output. The flow then proceeds to block 580.

At block 580, the electronic device determines whether or not the adjusted alert output has been acknowledged. The electronic device may prompt for acknowledgement when the adjusted alert output is provided so that the electronic device can ensure that the provided output was salient to the user. If so, the flow may return to 510 where the electronic device continues to operate.

Otherwise, the flow may return to block 570 where the adjusted alert output is again provided. The electronic device may continue providing the adjusted alert output periodically, at intervals, and/or otherwise repeatedly providing the adjusted alert output until the provided output is acknowledged.

Although the example method 500 is illustrated and described as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.

For example, the example method 500 is illustrated and described as the electronic device altering the alert output if the electronic device is moving. However, in some implementations, the electronic device may determine that the electronic device is moving and further determine whether or not the motion will affect salience of the alert output. In such an example, the electronic device may alter the alert output if the motion will affect salience and not alter the alert output if the motion will not affect salience.

By way of another example, the example method 500 is illustrated and described as the electronic device providing the altered alert output if the electronic device is moving. However, in some implementations, the electronic device may determine that another electronic device with which it communicates is not moving or is moving in a way that will not affect salience. In such implementations, the electronic device may adjust the alert output by signaling the other electronic device to provide the alert output. For example, a user's smart phone may be moving significantly while the user is jogging but a user's wearable device may not be and the smart phone may signal the wearable device to provide the alert output.

FIG. 6 is a flow chart illustrating a fourth example method 600 for providing situationally-aware alert output. This fourth example method 600 may be performed by the example system 100 of FIGS. 1-2.

The flow begins at block 610 where an electronic device operates. The flow then proceeds to block 620 where the electronic device determines whether or not an incoming communication is received. If so, the flow proceeds to block 630. Otherwise, the flow returns to block 610 where the electronic device continues to operate.

At block 630, the electronic device determines whether or not the user is moving. If not, the flow proceeds to block 660 where the electronic device provides alert output (such as a vibration or other haptic output, audio output, visual output, and so on) before the flow returns to block 610 and the electronic device continues to operate. Otherwise, the flow proceeds to block 640.

At block 640, the electronic device determines a movement pattern of the user using the signals from the one or more sensors. Next, the flow proceeds to block 650 where the electronic device determines whether the movement pattern is a first type of movement pattern (such as walking) or a second type of movement pattern (such as running).

If the movement pattern is the first type of movement pattern, the flow proceeds to block 670 where the electronic device delays the alert output. The flow then proceeds after the delay to block 660 where the electronic device provides the alert output.

If the movement pattern is the second type of movement pattern, the flow proceeds to block 680 where the electronic device alters the alert output to be discernible despite the movement based on a cadence of the movement pattern. Next, the flow proceeds to block 690 where the electronic device provides the altered alert output. The flow then returns to block 610 where the electronic device continues to operate.

Although the example method 600 is illustrated and described as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.

For example, the example method 600 is illustrated and described as adjusting the alert output to account for the movement pattern in a first way when the movement pattern is a first type of movement and a second way when the movement pattern is a second type of movement. However, it is understood that this is an example. In various implementations, the electronic device may adjust the alert input in a variety of different ways based on a variety of different types of movement and/or based on other factors without departing from the scope of the present disclosure. Alternatively, the alert output may be provided to the user without adjustment.

Further, the example method 600 is illustrated and described as handling the alert output differently based on first or second types of movement patterns. However, it is understood that this is an illustration. In various examples, alert output may be varied continuously in response to a continuous scale of movement patterns.

FIG. 7 is a flow chart illustrating a fifth example method 700 for providing situationally-aware alert output. This fifth example method 700 may be performed by the example system 100 of FIGS. 1-2.

The flow begins at block 710 where an electronic device operates. The flow then proceeds to block 720 where the electronic device determines whether or not an incoming notification or communication is received. If so, the flow proceeds to block 730. Otherwise, the flow returns to block 710 where the electronic device continues to operate.

At block 730, the electronic device determines whether or not the user is moving. If not, the flow proceeds to block 760 where the electronic device provides alert output (such as a vibration or other haptic output, audio output, visual output, and so on) before the flow returns to block 710 and the electronic device continues to operate. Otherwise, the flow proceeds to block 740.

At block 740, the electronic device determines a movement pattern of the user using the signals from the one or more sensors. Next, the flow proceeds to block 750 where the electronic device determines whether the incoming notification or communication is associated with a first priority or a second priority.

If the incoming notification or communication is associated with a first priority, the flow proceeds to block 770 where the electronic device delays the alert output. The flow then proceeds after the delay to block 760 where the electronic device provides the alert output.

If the incoming notification or communication is associated with a second priority, the flow proceeds to block 780 where the electronic device alters the alert output to be discernible despite the movement based on a cadence of the movement pattern. Next, the flow proceeds to block 790 where the electronic device provides the altered alert output. The flow then returns to block 710 where the electronic device continues to operate.

Although the example method 700 is illustrated and described as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.

For example, the example method 700 is illustrated and described as adjusting the alert output in a first way when the associated priority is a first priority and a second way when the associated priority is a second priority. However, it is understood that this is an example. In various implementations, the electronic device may adjust the alert output in a variety of different ways based on a variety of different associated priorities and/or based on other factors without departing from the scope of the present disclosure. By way of illustration, alert output may be continuously adjusted based on an associated continuous priority scale. Alternatively, the alert output may be provided to the user without adjustment.

Although the example methods 300-700 are illustrated and described separately, various operations described in the context of one or more of the example methods 300-700 may be used in one or more of the other example methods 300-700. For example, in some implementations, the example method 700 may include the operation of providing other output described at 490 of the example method 400. By way of another example, in various implementations, the example method 700 may include the operation of determining whether or not alert output was acknowledged described at block 580 of the example method 500.

Although the above describes adjusting alert output for individual alerts, delaying alert output for individual alerts, and/or otherwise handling alert output for individual alerts, it is understood that these are examples. In various implementations, output for alerts may be batched in various ways. For example, alerts associated with received high-priority communications may be individually output whereas those associated with received low-priority communications may be delayed before a single alert is output corresponding to a group of the low-priority communications. In some implementations of such an example, one or more rules may be applied (such as a user specified rule, a default rule, and so on) specifying how such batching is handled. By way of illustration, a rule may specify that a batch notification is provided no more than once per hour and alerts corresponding to received low-priority communications may be batched according to this rule. This batching may reduce the possibility of over-frequent alerts. Users may learn or train themselves to ignore over frequent alerts. Thus, reducing the number of alerts may increase salience of alerts.

As described above and illustrated in the accompanying figures, the present disclosure relates to an electronic device that provides situationally-aware alerts that adjusts alert output based on a user's situation in order to increase salience of the alert output when the user's situation merits increased salience. The electronic device may determine to provide an alert output, evaluate the user's situation based on information from one or more sensors, and increase salience by adjusting the alert output based on the user's situation.

In the present disclosure, the methods disclosed may be implemented as sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.

The described disclosure may be provided as a computer program product, or software, that may include a non-transitory machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure. A non-transitory machine-readable medium includes any mechanism for storing information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). The non-transitory machine-readable medium may take the form of, but is not limited to, a magnetic storage medium (e.g., floppy diskette, video cassette, and so on); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read only memory (ROM); random access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory; and so on.

The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.

Claims

1. An electronic device that provides situationally-aware alerts, comprising:

a haptic output device;
a communication unit operable to receive incoming communications; and
a processing unit, connected to the communication unit and the haptic output device, that is configured to: determine a priority of an incoming communication; provide a haptic output using the haptic output device in a first manner when the priority is determined to be a first priority; and provide the haptic output using the haptic output device in a second manner when the priority is determined to be a second priority.

2. The electronic device of claim 1, wherein the processing unit determines the priority to be:

the first priority when a source of the incoming communication is a first source; and
the second priority when the source of the incoming communication is a second source.

3. The electronic device of claim 1, wherein the processing unit determines the priority using a priority indicator included in the incoming communication that indicates the first priority or the second priority.

4. The electronic device of claim 1, wherein the processing unit determines the priority to be:

the first priority when the incoming communication is a first type of communication; and
the second priority when the incoming communication is a second type of communication.

5. The electronic device of claim 1, wherein the processing unit determines the priority using an assignment by a user.

6. The electronic device of claim 1, wherein the processing unit determines the priority using an assignment by a sender of the incoming communication.

7. The electronic device of claim 1, wherein the second manner includes delaying the haptic output.

8. An electronic device that provides situationally-aware alerts, comprising:

a haptic output device;
a communication unit operable to receive incoming communications; and
a processing unit, connected to the communication unit and the haptic output device, that is configured to: provide a haptic output via the haptic output device; determine an acknowledgement to the haptic output was not received; and escalate the haptic output by providing an additional haptic output via the haptic output device.

9. The electronic device of claim 8, wherein the processing unit escalates the haptic output:

in a first manner when an incoming communication associated with the haptic output has a first priority; and
in a second manner when the incoming communication has a second priority.

10. The electronic device of claim 9, wherein the first manner is more intense than the second manner.

11. The electronic device of claim 9, wherein the first manner includes increasing an amplitude of a vibration.

12. The electronic device of claim 9, wherein the first manner includes increasing a frequency of a vibration.

13. The electronic device of claim 9, wherein the first manner includes increasing a phase of a waveform provided to the haptic output device.

14. An electronic device that provides situationally-aware alerts, comprising:

a haptic output device;
a sensor operable to produce a signal indicating information relating to movement of the electronic device; and
a processing unit connected to the sensor and the haptic output device that is configured to: determine to provide a haptic output via the haptic output device; determine a movement pattern using the signal; and adjust the haptic output to account for the movement pattern by delaying the haptic output.

15. The electronic device of claim 14, wherein:

the movement pattern indicates changes in elevation; and
the processing unit delays the haptic output until the changes in elevation cease.

16. The electronic device of claim 15, wherein:

the sensor includes a pressure sensor;
the processing unit is configured to determine that the movement pattern indicates the changes in elevation using the pressure sensor; and
the processing unit is configured to delay the haptic output until the processing unit determines, using the pressure sensor, that the changes in elevation have ceased.

17. The electronic device of claim 14, wherein the processing unit is configured to:

determine a first period, using the movement pattern, where the electronic device will be less proximate to a user;
determine a second period, using the movement pattern, where the electronic device will be more proximate to the user; and
delay the haptic output from the first period to the second period.

18. The electronic device of claim 14, wherein the processing unit delays the haptic output:

for a first period when the movement pattern indicates a first type of movement; and
for a second period when the movement pattern indicates a second type of movement.

19. The electronic device of claim 14, wherein:

the signal includes information indicating a heart rate of a user is elevated; and
the processing unit delays the haptic output until the heart rate of the user reduces.

20. The electronic device of claim 14, wherein the processing unit:

estimates a time when the haptic output will be salient despite the movement pattern; and
delays the haptic output until the time.
Patent History
Publication number: 20180302881
Type: Application
Filed: Jun 22, 2018
Publication Date: Oct 18, 2018
Inventors: Thayne M. Miller (San Jose, CA), Hung A. Pham (Oakland, CA), John B. Morrell (Los Gatos, CA), Brian T. Gleeson (Mountain View, CA)
Application Number: 16/015,367
Classifications
International Classification: H04W 68/02 (20060101); H04M 19/04 (20060101); G08B 6/00 (20060101); H04M 1/725 (20060101);