Structure and Method for FinFET Device with Asymmetric Contact
The present disclosure provides one embodiment of a semiconductor structure. The semiconductor structure includes a fin-type active region extruded from a semiconductor substrate; a gate stack disposed on the fin-type active region; a source/drain feature formed in the fin-type active region and disposed on a side of the gate stack; an elongated contact feature landing on the source/drain feature; and a dielectric material layer disposed on sidewalls of the elongated contact feature and free from ends of the elongated contact feature.
This application claims the benefit of U.S. Provisional Application 62/491,400 entitled “STRUCTURE AND METHOD FOR FINFET DEVICE WITH ASYMMETRIC CONTACT,” filed Apr. 28, 2017, herein incorporated by reference in its entirety.
BACKGROUNDIntegrated circuits have progressed to advanced technologies with smaller feature sizes, such as 32 nm, 28 nm and 20 nm. In these advanced technologies, the gate pitch (spacing) continuously shrinks and therefore induces contact to gate bridge concern. Furthermore, three dimensional transistors with fin-type active regions are often desired for enhanced device performance. Those three dimensional field effect transistors (FETs) formed on fin-type active regions are also referred to as FinFETs. FinFETs are required narrow fin width for short channel control, which leads to smaller top S/D regions than those of planar FETs. This will further degrade the contact to S/D landing margin.
Along with the scaling down of the device sizes, such as in deep micro technology, the contact size was continuously shrunk for high-density gate pitch requirement. To shrink the contact size without impacting contact resistance, the long contact shape was proposed for 32 nm and beyond technologies. Long contact shape allows tight width dimension on the gate pitch direction but increased length on the gate routing direction to extend both contact area for source/drain and exposure area in the lithography patterning process. Long contact shape can achieve both high gate density and lower contact resistance. However, there are concerns due to the space limitation of line-end side. In line end, the concerns include line-end shortening and line-end to line-end bridging, leading to either contact-to-fin active connection opening (shortening) or contact-to-contact leakage (bridging). To reduce the line end shortening improve, it requires a wider space rule or more aggressive reshaping by optical proximity correction (OPC) on the line end, which will impact the cell size or cause bridging in a given cell pitch. This is getting even worse on future fin-type transistors because fin-type active regions are very narrow.
Therefore, there is a need for a structure and method for fin-type transistors and contact structure to address these concerns for enhanced circuit performance and reliability.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
Referring to
The semiconductor substrate 202 also includes various doped regions such as n-well and p-wells. In one embodiment, the semiconductor substrate 202 includes an epitaxy (or epi) semiconductor layer. In another embodiment, the semiconductor substrate 202 includes a buried dielectric material layer for isolation formed by a proper technology, such as a technology referred to as separation by implanted oxygen (SIMOX). In some embodiments, the substrate 202 may be a semiconductor on insulator, such as silicon on insulator (SOI).
Still referring to
In the present example, a hard mask is deposited on the substrate 202 and is patterned by lithography process. The hard mask layers include a dielectric such as semiconductor oxide, semiconductor nitride, semiconductor oxynitride, and/or semiconductor carbide, and in an exemplary embodiment, the hard mask layer include a silicon oxide film and a silicon nitride film. The hard mask layer may be formed by thermal growth, atomic layer deposition (ALD), chemical vapor deposition (CVD), high density plasma CVD (HDP-CVD), other suitable deposition processes.
A photoresist layer (or resist) used to define the fin structure may be formed on the hard mask layer. An exemplary resist layer includes a photosensitive material that causes the layer to undergo a property change when exposed to light, such as ultraviolet (UV) light, deep UV (DUV) light or extreme UV (EUV) light. This property change can be used to selectively remove exposed or unexposed portions of the resist layer by a developing process referred. This procedure to form a patterned resist layer is also referred to as lithographic patterning.
In one embodiment, the resist layer is patterned to leave the portions of the photoresist material disposed over the semiconductor structure 200 by the lithography process. After patterning the resist, an etching process is performed on the semiconductor structure 200 to open the hard mask layer, thereby transferring the pattern from the resist layer to the hard mask layer. The remaining resist layer may be removed after the patterning the hard mask layer. An exemplary lithography process includes spin-on coating a resist layer, soft baking of the resist layer, mask aligning, exposing, post-exposure baking, developing the resist layer, rinsing, and drying (e.g., hard baking). Alternatively, a lithographic process may be implemented, supplemented, or replaced by other methods such as maskless photolithography, electron-beam writing, and ion-beam writing. The etching process to pattern the hard mask layer may include wet etching, dry etching or a combination thereof. The etching process may include multiple etching steps. For example, the silicon oxide film in the hard mask layer may be etched by a diluted hydrofluorine solution and the silicon nitride film in the hard mask layer may be etched by a phosphoric acid solution.
Then etching process may be followed to etch the portions of the substrate 102 not covered by the patterned hard mask layer. The patterned hard mask layer is used as an etch mask during the etching processes to pattern the substrate 202. The etching processes may include any suitable etching technique such as dry etching, wet etching, and/or other etching methods (e.g., reactive ion etching (RIE)). In some embodiments, the etching process includes multiple etching steps with different etching chemistries, designed to etching the substrate to form the trenches with particular trench profile for improved device performance and pattern density. In some examples, the semiconductor material of the substrate may be etched by a dry etching process using a fluorine-based etchant. Particularly, the etching process applied to the substrate is controlled such that the substrate 202 is partially etched. This may be achieved by controlling etching time or by controlling other etching parameter(s). After the etching processes, the fin structure 206 with fin active regions is defined on and extended from the substrate 102.
One or more dielectric material is filled in the trenches to form the STI feature 204. Suitable fill dielectric materials include semiconductor oxides, semiconductor nitrides, semiconductor oxynitrides, fluorinated silica glass (FSG), low-K dielectric materials, and/or combinations thereof. In various exemplary embodiments, the dielectric material is deposited using a HDP-CVD process, a sub-atmospheric CVD (SACVD) process, a high-aspect ratio process (HARP), a flowable CVD (FCVD), and/or a spin-on process.
The deposition of the dielectric material may be followed by a chemical mechanical polishing/planarization (CMP) process to remove the excessive dielectric material and planarize the top surface of the semiconductor structure. The CMP process may use the hard mask layers as a polishing stop layer to prevent polishing the semiconductor layer 202. In this case, the CMP process completely removes the hard mask. The hard mask may be removed alternatively by an etching process. Although in further embodiments, some portion of the hard mask layers remain after the CMP process.
Referring to
Various doping processes may be applied to the semiconductor regions to form various doped wells, such as n-wells and p-wells at the present stage or before the operation 106. Various doped wells may be formed in the semiconductor substrate by respective ion implantations.
Referring to
The gate stacks 208 each include a gate dielectric layer and a gate electrode. The gate dielectric layer includes a dielectric material, such as silicon oxide and the gate electrode includes a conductive material, such as polysilicon. The formation of the gate stacks 208 includes depositing the gate materials (including polysilicon in the present example); and patterning the gate materials by a lithographic process and etching. A gate hard mask layer may be formed on the gate material layer and is used as an etch mask during the formation of the gate stacks. The gate hard mask layer may include any suitable material, such as a silicon oxide, a silicon nitride, a silicon carbide, a silicon oxynitride, other suitable materials, and/or combinations thereof. In one embodiment, the gate hard mask includes multiple films, such as silicon oxide and silicon nitride. In some embodiments, the patterning process to form the gate stacks includes forming a patterned resist layer by lithography process; etching the hard mask layer using the patterned resist layer as an etch mask; and etching the gate materials to form the gate stacks 208 using the patterned hard mask layer as an etch mask.
One or more gate sidewall features (or gate spacers) 210 are formed on the sidewalls of the gate stacks 208. The gate spacers 210 may be used to offset the subsequently formed source/drain features and may be used for designing or modifying the source/drain structure profile. The gate spacers 210 may include any suitable dielectric material, such as a semiconductor oxide, a semiconductor nitride, a semiconductor carbide, a semiconductor oxynitride, other suitable dielectric materials, and/or combinations thereof. The gate spacers 210 may have multiple films, such as two films (a silicon oxide film and a silicon nitride film) or three films ((a silicon oxide film; a silicon nitride film; and a silicon oxide film). The formation of the gate spacers 210 includes deposition and anisotropic etching, such as dry etching.
The gate stacks 208 are configured in the fin active regions for various field effect transistors (FETs), therefore also referred to as FinFETs. In some examples, the field effect transistors include n-type transistors and p-type transistors. In other examples, those field effect transistors are configured to form one or more static random access memory (SRAM) cells. Each SRAM cell includes two cross-coupled inverters configured for data storage. Furthermore, the gate stacks are configured to increase the pattern density uniformity and enhance the fabrication quality. For example, as noted above, the gate stacks 208 includes edge gate stacks 208a and 208b each being extended from the fin active region 206 to the STI feature 204 along the Y direction and lands on both the STI feature and the fin active region.
Referring to
The raised source/drain features may be formed by selective epitaxy growth for strain effect with enhanced carrier mobility and device performance. The gate stacks 208 and gate spacer 210 constrain the source/drain features 212 to the source/drain regions. In some embodiments, the source/drain features 212 are formed by one or more epitaxy or epitaxial (epi) processes, whereby Si features, SiGe features, SiC features, and/or other suitable features are grown in a crystalline state on the fin active regions 206. Alternatively, an etching process is applied to recess the source/drain regions before the epitaxy growth. Suitable epitaxy processes include CVD deposition techniques (e.g., vapor-phase epitaxy (VPE) and/or ultra-high vacuum CVD (UHV-CVD), molecular beam epitaxy, and/or other suitable processes. The epitaxy process may use gaseous and/or liquid precursors, which interact with the composition of the fin structure 206.
The source/drain features 212 may be in-situ doped during the epitaxy process by introducing doping species including: p-type dopants, such as boron or BF2; n-type dopants, such as phosphorus or arsenic; and/or other suitable dopants including combinations thereof. If the source/drain features 212 are not in-situ doped, an implantation process (i.e., a junction implant process) is performed to introduce the corresponding dopant into the source/drain features 212. In an exemplary embodiment, the source/drain features 212 in an nFET include SiC or Si doped with phosphorous, while those in a pFET include Ge or SiGe doped with boron. In some other embodiments, the raised source/drain features 212 include more than one semiconductor material layers. For example, a silicon germanium layer is epitatially grown on the substrate within the source/drain regions and a silicon layer is epitaxially grown on the silicon germanium layer. One or more annealing processes may be performed thereafter to activate the source/drain features 110. Suitable annealing processes include rapid thermal annealing (RTA), laser annealing processes, other suitable annealing technique or a combination thereof.
Referring to
Referring to
The gate stack 230 (such as 230b) is formed on the substrate 202 overlying the channel region of the fin active region 206. The gate stack 230 includes a gate dielectric feature 232 and a gate electrode 234 disposed on the gate dielectric feature 232. In the present embodiment, the gate dielectric feature 232 includes high-k dielectric material and the gate electrode 234 includes metal or metal alloy. In some examples, the gate dielectric layer and the gate electrode each may include a number of sub-layers. The high-k dielectric material may include metal oxide, metal nitride, such as LaO, AlO, ZrO, TiO, Ta2O5, Y2O3, SrTiO3 (STO), BaTiO3 (BTO), BaZrO, HfZrO, HfLaO, HfSiO, LaSiO, AlSiO, HfTaO, HfTiO, (Ba,Sr)TiO3 (BST), Al2O3, Si3N4, oxynitrides (SiON), or other suitable dielectric materials. The gate electrode may include Ti, Ag, Al, TiAlN, TaC, TaCN, TaSiN, Mn, Zr, TiN, TaN, Ru, Mo, Al, WN, Cu, W, or any suitable materials. In some embodiments, different metal materials are used for nFET and pFET devices with respective work functions. The gate stack 230 is formed in the gate trench by a proper procedure, such as a procedure that includes deposition and CMP. Although it is understood that the gate stack 230 may be any suitable gate structure.
The gate dielectric feature 232 may further includes an interfacial layer sandwiched between the high-k dielectric material layer and the fin active region. The interfacial layer may include silicon oxide, silicon nitride, silicon oxynitride, and/or other suitable material. The interfacial layer is deposited by a suitable method, such as ALD, CVD, ozone oxidation, etc. The high-k dielectric layer is deposited on the interfacial layer (if the interfacial layer presents) by a suitable technique, such as ALD, CVD, metal-organic CVD (MOCVD), PVD, thermal oxidation, combinations thereof, and/or other suitable techniques. In some embodiments, the gate dielectric feature 232 is formed on the fin active region 206 at the operation 108 that forms the gate stack 208. In this case, the gate dielectric feature 232 is shaped as illustrated in
The gate electrode 234 may include multiple conductive materials. In some embodiments, the gate electrode 234 includes a capping layer 234-1, a blocking layer 234-2, a work function metal layer 234-3, another blocking layer 234-4 and a filling metal layer 234-5. In furtherance of the embodiments, the capping layer 234-1 includes titanium nitride, tantalum nitride, or other suitable material, formed by a proper deposition technique such as ALD. The blocking layer 234-2 includes titanium nitride, tantalum nitride, or other suitable material, formed by a proper deposition technique such as ALD. In some examples, the block layers may not present or only one of them presents in the gate electrode.
The work functional metal layer 234-3 includes a conductive layer of metal or metal alloy with proper work function such that the corresponding FET is enhanced for its device performance. The work function (WF) metal layer 1606 is different for a pFET and a nFET, respectively referred to as an n-type WF metal and a p-type WF metal. The choice of the WF metal depends on the FET to be formed on the active region. For example, the semiconductor structure 200 includes a first active region for an nFET and another active region for a pFET, and accordingly, the n-type WF metal and the p-type WF metal are respectively formed in the corresponding gate stacks. Particularly, an n-type WF metal is a metal having a first work function such that the threshold voltage of the associated nFET is reduced. The n-type WF metal is close to the silicon conduction band energy (Ec) or lower work function, presenting easier electron escape. For example, the n-type WF metal has a work function of about 4.2 eV or less. A p-type WF metal is a metal having a second work function such that the threshold voltage of the associated pFET is reduced. The p-type WF metal is close to the silicon valence band energy (Ev) or higher work function, presenting strong electron bonding energy to the nuclei. For example, the p-type work function metal has a WF of about 5.2 eV or higher. In some embodiments, the n-type WF metal includes tantalum (Ta). In other embodiments, the n-type WF metal includes titanium aluminum (TiAl), titanium aluminum nitride (TiAlN), or combinations thereof. In other embodiments, the n-metal include Ta, TiAl, TiAlN, tungsten nitride (WN), or combinations thereof. The n-type WF metal may include various metal-based films as a stack for optimized device performance and processing compatibility. In some embodiments, the p-type WF metal includes titanium nitride (TiN) or tantalum nitride (TaN). In other embodiments, the p-metal include TiN, TaN, tungsten nitride (WN), titanium aluminum (TiAl), or combinations thereof. The p-type WF metal may include various metal-based films as a stack for optimized device performance and processing compatibility. The work function metal is deposited by a suitable technique, such as PVD.
The blocking layer 234-4 includes titanium nitride, tantalum nitride, or other suitable material, formed by a proper deposition technique such as ALD. In various embodiments, the filling metal layer 234-5 includes aluminum, tungsten or other suitable metal. The filling metal layer 234-5 is deposited by a suitable technique, such as PVD or plating.
Referring back to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In some embodiments, prior to the filling in the conductive material in the openings 250, silicide may be formed on the source/drain features 212 to further reduce the contact resistance. The silicide includes silicon and metal, such as titanium silicide, tantalum silicide, nickel silicide or cobalt silicide. The silicide may be formed by a process referred to as self-aligned silicide (or salicide). The process includes metal deposition, annealing to react the metal with silicon, and etching to remove unreacted metal.
Other fabrication steps may be implemented before, during and after the operations of the method. For example, various metal lines and vias in the interconnect structure are further formed on the semiconductor structure to electrically connect various FinFETs and other devices into a functional circuit by proper technique, such as dual damascene process. In various patterning processes above in the method 100, each patterning procedure may be implemented through double patterning or multiple patterning.
The present disclosure provides a contact structure and a method making the same in accordance with various embodiments. Thus formed contact features have elongated shape and asymmetric structure along its length direction and width direction. The high-k dielectric material layer is disposed on length sidewalls of the contact features but absent from two ends. The elongated contact features will have more contact areas for reduced contact resistance and enlarged margin for improved process windows. Therefore, it enlarges the landing margin between slot contacts to FinFET source/drain regions. This allows the designer to push the line-end space rule and therefore increases the line end landing areas of contacts to fin active regions. The disclosed structure can be used in various applications where FinFETs are incorporated for enhanced performance. For example, the FinFETs with multi-fin devices can be used to form static random access memory (SRAM) cells. In other examples, the disclosed structure can be incorporated in various integrated circuits, such as logic circuit, dynamic random access memory (DRAM), flash memory, or imaging sensor.
Thus, the present disclosure provides a semiconductor structure in accordance with some embodiments. The semiconductor structure includes a fin-type active region extruded from a semiconductor substrate; a gate stack disposed on the fin-type active region; a source/drain feature formed in the fin-type active region and disposed on a side of the gate stack; an elongated contact feature landing on the source/drain feature; and a dielectric material layer disposed on sidewalls of the elongated contact feature and free from ends of the elongated contact feature. The sidewalls of the elongated contact feature are parallel with the gate stack
The present disclosure provides a semiconductor structure in accordance with some other embodiments. The semiconductor structure includes a first fin-type active region extruded from a semiconductor substrate and spanning from a first end to a second end along a first direction; a second fin-type active region extruded from the semiconductor substrate and spanning from a third end to a fourth end along the first direction; a first gate stack and a second gate stack each disposed on the first and second fin-type active regions, wherein the first and second gate stacks space away in the first direction and extend along a second direction that is orthogonal to the first direction; a first source/drain feature formed in the first fin-type active region and interposed between the first and second gate stacks; a second source/drain feature formed in the second fin-type active region and interposed between the first and second gate stacks; an elongated contact feature extending along the second direction and landing on the first and second source/drain features; and a dielectric material layer disposed on sidewalls of the elongated contact feature and is free from two ends of the elongated contact feature. The sidewalls of the elongated contact feature extend along the second direction.
The present disclosure provides a method forming an integrated circuit structure in accordance with some embodiments. The method includes forming a shallow trench isolation (STI) structure in a semiconductor substrate of a first semiconductor material, thereby defining a plurality of fin-type active regions separated from each other by the STI structure; forming gate stacks on the fin-type active regions; forming an inter-layer dielectric (ILD) layer filling in gaps between the gate stacks; patterning the ILD layer to form a trench between adjacent two of the gate stacks; depositing a first dielectric material layer that is conformal in the trench; filling the trench with a second dielectric material layer; patterning the second dielectric material layer to form a contact opening; and filling a conductive material in the contact opening to form a contact feature.
The foregoing has outlined features of several embodiments. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
Claims
1. A semiconductor structure, comprising:
- a fin-type active region extruded from a semiconductor substrate;
- a gate stack disposed on the fin-type active region;
- a source/drain feature formed in the fin-type active region and disposed on a side of the gate stack;
- an elongated contact feature landing on the source/drain feature; and
- a dielectric material layer disposed on sidewalls of the elongated contact feature and free from ends of the elongated contact feature, wherein the sidewalls of the elongated contact feature are parallel with the gate stack.
2. The semiconductor structure of claim 1, wherein
- the gate stack includes a gate dielectric feature, a gate electrode on the gate dielectric feature, and a spacer on sidewalls of the gate electrode; and
- the dielectric material layer is interposed between the gate stack and the elongated contact feature and directly contacts the spacer and the elongated contact feature.
3. The semiconductor structure of claim 2, wherein the gate dielectric feature includes a first high k dielectric material and the dielectric material layer includes a second high k dielectric material different from the first high k dielectric material in composition.
4. The semiconductor structure of claim 3, wherein the dielectric material layer is recessed from the elongated contact feature such that a top surface of the dielectric material layer is below a top surface of the elongated contact feature.
5. The semiconductor structure of claim 1, further comprising a shallow trench isolation (STI) feature formed on the semiconductor substrate and surrounding the fin-type active region.
6. The semiconductor structure of claim 5, further comprising a second gate stack disposed partially on an end of the fin-type active region and partially on the STI feature.
7. The semiconductor structure of claim 1, wherein the elongate contact feature has an L/W ratio defined as its length over its width, wherein the L/W ratio is greater than 2.
8. A semiconductor structure, comprising:
- a first fin-type active region extruded from a semiconductor substrate and spanning from a first end to a second end along a first direction;
- a second fin-type active region extruded from the semiconductor substrate and spanning from a third end to a fourth end along the first direction;
- a first gate stack and a second gate stack each disposed on the first and second fin-type active regions, wherein the first and second gate stacks space away in the first direction and extend along a second direction that is orthogonal to the first direction;
- a first source/drain feature formed in the first fin-type active region and interposed between the first and second gate stacks;
- a second source/drain feature formed in the second fin-type active region and interposed between the first and second gate stacks;
- an elongated contact feature extending along the second direction and landing on the first and second source/drain features; and
- a dielectric material layer disposed on sidewalls of the elongated contact feature and is free from two ends of the elongated contact feature, the sidewalls of the elongated contact feature extending along the second direction.
9. The semiconductor structure of claim 8, wherein
- the first and second gate stacks each include a gate dielectric feature, a gate electrode on the gate dielectric feature, and a spacer on sidewalls of the gate electrode; and
- the dielectric material layer directly contacts the spacer of the first gate stack and the spacer of the second gate stack.
10. The semiconductor structure of claim 9, wherein the gate dielectric feature includes a first high k dielectric material and the dielectric material layer includes a second high k dielectric material different from the first high k dielectric material in composition.
11. The semiconductor structure of claim 10, wherein
- the second high k dielectric material includes silicon nitride; and
- the first and second source/drain features each include an epitaxially grown semiconductor feature of a semiconductor material different from that of the semiconductor substrate.
12. The semiconductor structure of claim 8, wherein the dielectric material layer is recessed from the elongated contact feature.
13. The semiconductor structure of claim 8, further comprising
- a shallow trench isolation (STI) feature formed on the semiconductor substrate and surrounding the first and second fin-type active regions;
- a third gate stack disposed partially on the first end of the first fin-type active region and the third end of the second fin-type active region and partially on the STI feature; and
- a fourth gate stack disposed partially on the second end of the first fin-type active region and the fourth end of the second fin-type active region and partially on the STI feature.
14. The semiconductor structure of claim 8, wherein the elongated contact feature has an L/W ratio defined as its length over its width, wherein the L/W ratio is greater than 2.
15-20. (canceled)
21. A semiconductor structure, comprising:
- a fin-type active region extruded from a semiconductor substrate;
- a gate stack disposed on the fin-type active region;
- a source/drain feature formed in the fin-type active region and disposed on a side of the gate stack;
- an elongated contact feature contacting on the source/drain feature and having long edges oriented along the gate stack and short edges oriented along the fin-type active region; and
- a dielectric material layer disposed on sidewalls of the long edges of the elongated contact feature and free from sidewalls of the short edges of the elongated contact feature.
22. The semiconductor structure of claim 21, further comprising a gate spacer disposed on sidewalls of the gate stack, wherein the dielectric material layer laterally contacts the spacer of the gate stack.
23. The semiconductor structure of claim 21, wherein
- the gate stack includes a gate dielectric feature, and a gate electrode on the gate dielectric feature;
- the gate dielectric feature includes a first high k dielectric material; and
- the dielectric material layer includes a second high k dielectric material different from the first high k dielectric material in composition.
24. The semiconductor structure of claim 23, wherein the sidewalls of the short edges of the elongated contact feature laterally contacts a dielectric material different from the second high k dielectric material in composition.
25. The semiconductor structure of claim 21, wherein the dielectric material layer is recessed from the elongated contact feature such that a top surface of the dielectric material layer is below a top surface of the elongated contact feature.
26. The semiconductor structure of claim 21, further comprising:
- a shallow trench isolation (STI) feature formed on the semiconductor substrate and surrounding the fin-type active region; and
- a second gate stack disposed partially on an end of the fin-type active region and partially on the STI feature.
Type: Application
Filed: Sep 11, 2017
Publication Date: Nov 1, 2018
Inventor: Jhon Jhy Liaw (Hsinchu County)
Application Number: 15/700,468