METHOD OF AND SYSTEM FOR HAULING A MARINE EQUIPMENT UNIT, A MARINE EQUIPMENT UNIT AND A CARRIER
The present document describes a method of hauling an equipment unit from the water onto a carrier. The carrier comprises a hauling ramp, which is arranged for being extended from a loading area into the water. The carrier further includes a first winch, and a suspension structure arranged for being extended outside the carrier over the water and over the hauling ramp. The suspension structure comprises a second winch. The method comprising the steps of: releasing, by the equipment unit, a hauling buoy. The hauling buoy is connected to a tow line extending from the equipment unit, and to a lift line extending from a lifting point on the unit. The method comprises a further step of recovering the hauling buoy from the water, connecting the tow line to the first winch and connecting the lift line to the second winch. Then, the equipment unit is hauled by towing it onto the hauling ramp using the first winch, while simultaneously guiding the equipment unit using the second winch. The method is in particular useful for hauling of an autonomous underwater vehicle (AUV) during bad weather conditions at sea. The document also describes the equipment unit and a system for hauling that can be installed on a carrier, as well as a carrier comprising such a system.
Latest Fugro N.V. Patents:
The present invention is directed at a method of hauling an equipment unit from the water onto a carrier. The invention is further directed at a marine equipment unit, at a marine equipment hauling system for use onboard a carrier and at a carrier comprising such a system.
BACKGROUNDThe present invention is in particular directed at the hauling of marine equipment onboard a vessel or other water based carrier under rough marine conditions, such as high seas and strong winds. A large variety of underwater sensor and survey systems is nowadays used for performing many different tasks. One class of equipment is for example formed by autonomous underwater vehicles (AUV's) that are used for survey of the sea bed, e.g. to search for mining locations, wrecks, or other features, or to map the bottom surface structures or subsurface structures and elements. Such AUV's are often equipped with sensitive and costly sensor equipment, such as interferometric sonar, multibeam echo systems, underwater camera's, analysis systems and data communication systems for communicating with a surveyor vessel from where the AUV is operated. Other AUV's, e.g. for defense systems, may be equipped with different equipment.
Although the AUV's themselves may be operated well even under harsh conditions at sea, a drawback and limiting factor is formed by their method of deployment and recovery. In particular the recovery of an AUV in combination with the sensitivity of the costly onboard equipment forms a drawback, because the AUV may easily get damaged due to uncontrolled movement as a result of rough conditions at sea. Therefore, the deployment and recovery of AUV's is often limited to mild conditions at sea, e.g. at wind force up to 5 Beaufort. This means that under worse conditions, e.g. wind forces of 5 Beaufort and up, survey teams have to wait for weather conditions to improve, or where possible apply different survey techniques that are not always available. As will be understood, there are many area's where the weather conditions are more commonly to be classified as rough than mild. A good example is the southern ocean, e.g. greater than 40 degrees south of the Earth's equatorial plane. This area consists almost entirely of oceans, and waves can travel very long stretches eastward, without encountering any land. Hence, the seas are known to be high in this region. Other examples are the Bering sea, known for its bad and unpredictable weather conditions.
SUMMARY OF THE INVENTIONIn view of the above, it is an object of the present invention to provide a recovery method for hauling marine equipment back onboard a carrier, that can be performed independent of the weather conditions, e.g. even at rough weather and sea conditions or at wind forces above 5 Beaufort.
To this end, there is provided herewith a method of hauling an equipment unit from the water onto a carrier, the carrier including a first winch arranged for towing the equipment unit towards the carrier, wherein the carrier further comprises a suspension structure extending, or arranged extending outside the carrier, the suspension structure comprising a second winch, the method comprising the steps of: releasing, by the equipment unit, a hauling buoy, wherein the hauling buoy is connected to a tow line extending from the equipment unit, and wherein the hauling buoy is further connected to a lift line extending from a lifting point on the equipment unit; recovering the hauling buoy from the water; connecting the tow line to the first winch and connecting the lift line to the second winch different from the first winch; and hauling the equipment unit by towing the equipment unit towards the carrier using the first winch, and by guiding the equipment unit using the second winch.
The method of the invention uses marine equipment that releases or launches a hauling buoy connected to two lines: a tow line and a lift line. The tow line is then used for towing the marine equipment unit towards the carrier, while the lifting line is connected to an additional winch (i.e. the second winch) that is used for providing an additional force on the lifting point of the equipment unit to enable guiding thereof during hauling onboard. The hauling may be performed with help of a hauling ramp installed on the carrier, or the equipment unit may be hauled directly on board the carrier. The carrier may be a vessel, e.g. a survey ship, or any other water based carrier, such as an offshore platform or structure. The equipment unit, e.g. an AUV, may now more easily be prevented from crashing onto the carrier or, in case a hauling ramp is used, accidentally end up underneath the hauling ramp. Close to the carrier, under influence of high or violent waves, the AUV may easily crash into the hull of the carrier. Additional guidance provided by means of the second winch, or even a controlled operation of the first and second winch, enables to prevent undesired contact between the equipment and any part of the carrier. Thereby, the method of recovering the equipment unit of the present invention can be performed under rough conditions at sea.
In accordance with some embodiments, the guiding of the equipment unit during the hauling step is performed by operating the second winch such as to maintain tension in the lift line exerted onto said lift point. Even without actually lifting the marine equipment unit out of the water, enough tension can be applied via the second winch to better control the movement of the unit in the water. For example, the nose of an AUV can be lifted upward to prevent it from ending up underneath the ramp. As another example, pulling the lifting point of the AUV will aid in maintaining it balanced and aligning the AUV in front of the ramp. This thereby allows to safely haul the marine equipment unit onto the hauling ramp.
In some embodiments, the suspension structure further comprises a guiding structure suspending from the suspension structure, wherein the guiding of the equipment unit comprises receiving, by the guiding structure, the equipment unit for aligning the equipment unit in a preferred alignment direction using the guiding structure. The guiding structure may for example comprise or be formed by a saddle cradle comprising one or two alignment beams. An equipment unit, e.g. an AUV, can be pulled by means of the second winch against the saddle cradle such that it is kept aligned with the one or more alignment beams. The equipment unit may thereby be brought in a preferred alignment direction to allow safe hauling thereof onto the hauling ramp. In some of these embodiments, the guiding structure suspends from the suspension structure by means of an extendable and retractable telescopic arm, the guiding structure being fixed to an end of the telescopic arm. The telescopic arm is a rigid structure suspending from the suspension structure. As result of the rigidity, once the marine equipment unit is being held by the guiding structure, its lateral position with respect to the hauling ramp and the ship is fixed. The height can be varied by means of the telescopic arm. As mentioned, in accordance with some embodiments of the present invention, the guiding of the equipment unit during the hauling step is performed by operating the second winch such as to lift at least a part of the equipment unit to a level above a loading plane of the hauling ramp during said hauling step.
The suspension structure may for example be an A-frame, launch boom or even an onboard crane. In this respect, it is noted that an A-frame or launch boom including a telescopic arm negates the height disadvantages of such structures as compared to cranes, while providing simplicity, stability and strength. Moreover, A-frames are more commonly available on existing vessels than cranes.
The hauling method may be applied for enabling recovery of all kinds of marine equipment. However, the method is in particular suitable for hauling sensitive equipment. Therefore, in accordance with some embodiments, the equipment unit is at least one element of a group comprising: an autonomous underwater vehicle, a para vane or water kite, or an air gun array. These units have also in common that their shape is cylindrical or bullet shaped, having a front or nose section and enabling alignment with a saddle cradle as described above. The vulnerability of such equipment calls for a more controlled hauling method as described herewith in connection with the present invention.
In accordance with a second aspect of the invention, there is provided—for use in a hauling method in accordance with the first aspect—a marine equipment unit comprising a front part and a housing, the equipment unit comprising hauling buoy, a tow line and a lift line, wherein the hauling buoy is launchable for releasing thereof by the equipment unit, the marine equipment unit further comprising a control unit for operating said launching of the hauling buoy, and wherein one end of the tow line and one end of the lift line is connected to the hauling buoy for being releasable with the hauling buoy, and wherein the tow line is further connected to the front part of the equipment unit, and the lift line is further connected to a lifting point on the housing of the equipment unit.
The marine equipment unit of the invention launches the tow line and the lift line by launching of the hauling buoy. By recovering the buoy from the carrier, the tow line can be connected to the first winch of the ship, and the lift line can be connected to the second winch. The tow line is connected to the front part of the equipment unit, e.g. the nose of a cylindrical or bullet shaped equipment unit, such as to enable easy towing thereof. As a result of the streamlined shape of the cylindrical or bullet shaped unit, the towing aligns the equipment unit behind the ship inline with the hauling ramp. The second winch connects to the lift line. The lift line may be connected to an upper part of the AUV, e.g. to a connection eye, for example above the center of gravity of the unit. The AUV may even have two lifting points, and the lifting line may split to connect to both lifting points. The lifting point or points may be displaceable to the back or front of the AUV to allow setting a slight unbalance that may cause the AUV to slant back slightly such as to bring the nose in an upward position. The hauling buoy may, prior to launching, be arranged on any suitable part of the housing of the equipment unit. In some embodiments, the hauling buoy is located at the front part, but in other embodiments the hauling buoy may located on the side or even towards the back of the equipment unit. For example, the hauling buoy may also be located at the location where the lift line connects to the AUV, e.g. near (above) the center of gravity.
In accordance with some embodiments, the hauling buoy is formed such as to close an opening in the housing, said opening providing access to a line storage cabinet inside the equipment unit wherein the tow line and the lift line are stored prior to release of the hauling buoy. In these embodiments, the tow line and lift line are safely stored inside the housing in the line storage cabinet, while the marine equipment unit is operated during normal operation in use. When the marine equipment unit is to be recovered, a command is issued to the marine equipment unit that triggers its control unit to deploy or launch its hauling buoy. This will deploy the tow line and the lift line that are connected to the hauling buoy. The lift line, when connected on the marine equipment unit on the housing, may during storage and before launch of the hauling buoy, be lead via the access opening of the line storage cabinet via the exterior of the marine equipment unit to the lifting point. This does not hinder normal operation of e.g. an AUV.
In accordance with some embodiments, the hauling buoy at least partly defines an outer shape of the front part of the marine equipment unit for complementing a shape defined by the housing. In particular, the shape of the marine equipment unit may be cylindrical or bullet shaped, the hauling buoy thereby preserving the streamlined shape. The marine equipment unit according to this aspect of the invention may for example be at least one element of a group comprising: an autonomous underwater vehicle, a para vane or water kite, or an air gun array unit.
In accordance with a third aspect of the invention, there is provided a marine equipment hauling system for use on a carrier and arranged for hauling of a marine equipment unit onboard the carrier, the system comprising a hauling ramp, wherein the hauling ramp extends or is arranged for being extended into the water, the system further including a first winch arranged for being connected to a tow line of the marine equipment unit for towing of the equipment unit towards the hauling ramp, a suspension structure extending or arranged for being extended over the water and over the hauling ramp, and a second winch located on the suspension structure and arranged for connecting thereof to a lift line of the marine equipment unit, wherein the system comprises a control unit for controlling operation of the first winch and the second winch in a cooperative manner such as to haul the equipment unit by towing the equipment unit onto the hauling ramp using the first winch, while simultaneously guiding the equipment unit using the second winch. The marine equipment hauling system in accordance with this aspect can be used for performing a recovery method as described above, in accordance with the first aspect.
In accordance with embodiments thereof, the suspension structure comprises an extendable and retractable telescopic arm suspending from an in use upper part of the suspension structure, wherein a guiding structure is connected to an end of the telescopic arm, wherein the guiding structure is arranged for receiving the marine equipment unit for aligning thereof in a preferred alignment direction during hauling. The advantages of these embodiments have been described above. Alternatively, in accordance with some embodiments, the suspension structure comprises a slidable beam, wherein the second winch is installed on the slidable beam. By providing a slidable beam that extends at a sufficient height (e.g. 2 or more meters above the deck to allow passing underneath) parallel to the deck of the ship, the second winch can be used for example to lift the nose of an AUV such as to haul it onto the hauling ramp without crashing of the nose into the ramp.
In accordance with a further aspect, there is provided a carrier, such as a vessel or other structure, comprising a marine equipment hauling system in accordance with the second aspect, which is installed onboard of the carrier for enabling hauling of a marine equipment unit from the water.
The invention will further be elucidated by description of some specific embodiments thereof, making reference to the attached drawings. The detailed description provides examples of possible implementations of the invention, but is not to be regarded as describing the only embodiments falling under the scope. The scope of the invention is defined in the claims, and the description is to be regarded as illustrative without being restrictive on the invention. In the drawings:
To perform these tasks, the AUV 2 comprises a variety of sensor units, communication units, processing means and other sensitive equipment, which may easily be damaged or offset by undesired shocking or bumping of the AUV 2. During mild weather conditions, the AUV can be recovered without much risk of getting damaged. However, when the weather conditions or conditions at sea become more rough (strong winds, high or unpredictable waves, or other complicating factors) the recovery of the AUV may easily result in damaging thereof, e.g. by uncontrolled crashing into the vessel during hauling. For this reason, use of an AUV is usually limited to those moments on which the conditions at sea are favorable. The disadvantage of this is that, especially in areas where rough conditions are common, the available time for performing a survey is limited or the total time for finalizing the survey may be considerable.
The recovery method, the recovery system, the equipment unit, and the assembly of the equipment unit and the system of the present invention, overcome this drawback by enabling recovery during more severe conditions at sea.
In the situation of
Next, in
In
In
In
The AUV 2 is illustrated at the moment of recovering of the AUV 2 on the hauling ramp 9; the hauling buoy 15 (not visible in
Also visible in
In addition to the above, the equipment unit 2 comprises a launching unit 42 for launching the hauling buoy 15 upon receipt of a launching command from the ship 1. For example, the launching unit 42 may be spring-loaded to enable the launching. By launching the hauling buoy 15 into the water, tow line 18 and lift line 19 will be released as well. When the hauling buoy 15 is not launched, and the AUV is operated during normal operation under water, the tow line 18 is stored e.g. on a reel 38 in the line storage cabinet 37. The lift line 19 is also stored in the line storage cabinet 37, e.g. bundled in a clew 39 for storage. In the embodiment of
At the choice of the skilled person, the tow line 19 may be connected to the AUV at another suitable position, rather than to the front part or above the center of gravity. Also, the hauling buoy may be located at any suitable position on the AUV. For example, if the design of the AUV required sensors or other equipment to be located in the nose, the hauling buoy may be positioned behind the front part or near the point where the lift line connects to the AUV.
The present invention has been described in terms of some specific embodiments thereof. It will be appreciated that the embodiments shown in the drawings and described herein are intended for illustrated purposes only and are not by any manner or means intended to be restrictive on the invention. It is believed that the operation and construction of the present invention will be apparent from the foregoing description and drawings appended thereto. It will be clear to the skilled person that the invention is not limited to any embodiment herein described and that modifications are possible which should be considered within the scope of the appended claims. Also kinematic inversions are considered inherently disclosed and to be within the scope of the invention. In the claims, any reference signs shall not be construed as limiting the claim. The term ‘comprising’ and ‘including’ when used in this description or the appended claims should not be construed in an exclusive or exhaustive sense but rather in an inclusive sense. Thus the expression ‘comprising’ as used herein does not exclude the presence of other elements or steps in addition to those listed in any claim. Furthermore, the words ‘a’ and ‘an’ shall not be construed as limited to ‘only one’, but instead are used to mean ‘at least one’, and do not exclude a plurality. Features that are not specifically or explicitly described or claimed may be additionally included in the structure of the invention within its scope. Expressions such as: “means for . . .” should be read as: “component configured for . . .” or “member constructed to . . .” and should be construed to include equivalents for the structures disclosed. The use of expressions like: “critical”, “preferred”, “especially preferred” etc. is not intended to limit the invention. Additions, deletions, and modifications within the purview of the skilled person may generally be made without departing from the spirit and scope of the invention, as is determined by the claims. The invention may be practiced otherwise then as specifically described herein, and is only limited by the appended claims.
Claims
1. A method of hauling an equipment unit from water onto a carrier, the carrier including a first winch configured to tow the equipment unit towards the carrier, and a suspension structure including a second winch and configured to extend outside the carrier,
- releasing, a hauling buoy from the equipment unit, wherein the hauling buoy is connected to a tow line extending from the equipment unit and connected to a lift line extending from a lifting point on the equipment unit;
- connecting the tow line to the first winch and connecting the lift line to the second winch; and
- hauling the equipment unit by towing the equipment unit towards the carrier using the first winch, and by guiding the equipment unit using the second winch.
2. The method according to claim 1, wherein the guiding of the equipment unit is performed by operating the second winch to maintain tension in the lift line exerted onto the lift point.
3. The method according to claim 1, wherein the guiding of the equipment unit further comprising:
- aligning, by a guiding structure, the equipment unit in a preferred alignment direction, wherein the guiding structure is suspended from the suspension structure.
4. The method according to claim 3, wherein the guiding structure is suspended from the suspension structure by an extendable and retractable arm, the guiding structure being fixed to an end of the extendable and retractable arm.
5. The method according to claim 1, wherein the carrier comprises a hauling ramp extended or configured to be extended from a loading area on the carrier into the water, wherein the guiding of the equipment unit is performed by operating the second winch to lift at least a part of the equipment unit to a level above a loading plane of the hauling ramp.
6. The method according to claim 1, wherein the second winch is operated to lift the equipment unit out of the water during the towing.
7. The method according to claim 1, wherein the equipment unit is at least one element of a group comprising: an autonomous underwater vehicle, a para vane, water kite, an autonomous surface vehicle, a towed vehicle or an air gun array.
8. A marine equipment unit comprising:
- a front part and a housing, the equipment unit comprising hauling buoy, a tow line and a lift line, wherein the hauling buoy is launchable for releasing thereof by the equipment unit, the marine equipment unit further comprising a control unit for operating said launching of the hauling buoy, and wherein one end of the tow line and one end of the lift line is connected to the hauling buoy for being releasable with the hauling buoy, and wherein the tow line is further connected to the front part of the equipment unit, and the lift line is further connected to a lifting point on the equipment unit.
9. The marine equipment unit according to claim 8, wherein the lifting point is located at the front part of the marine equipment unit.
10. The marine equipment unit according to claim 8, wherein the lifting point is located approximately at the mass center of the marine equipment unit.
11. The marine equipment unit according to claim 8, wherein the hauling buoy is formed to close an opening in the housing, the opening providing access to a line storage cabinet inside the marine equipment unit or external tow storage pouch wherein the tow line and the lift line are stored prior to release of the hauling buoy.
12. The marine equipment unit according to claim 11, wherein the hauling buoy at least partly defines an outer shape of the front part of the marine equipment unit for complementing a shape defined by the housing.
13. The marine equipment unit according to claim 8, wherein the marine equipment unit is at least one element of a group comprising: an autonomous underwater vehicle, a para vane, water kite, an autonomous surface vehicle, a towed vehicle or an air gun array unit.
14. A marine equipment hauling system for use on a carrier and configured to haul a marine equipment unit onboard the carrier, the system comprising:
- a first winch connected to a tow line of the marine equipment unit and being configured to tow the marine equipment unit towards a hauling ramp,
- a suspension structure configured to extend over water,
- a second winch located on the suspension structure and connected to a lift line of the marine equipment unit, and
- a control unit configured to operate the first winch and the second winch in a cooperative manner to haul the marine equipment unit by towing the marine equipment unit towards the carrier using the first winch and guiding the marine equipment unit using the second winch.
15. The marine equipment hauling system according to claim 14, wherein the suspension structure comprises an extendable and retractable arm, configured to suspend from an in use upper part of the suspension structure, and a guiding structure connected to an end of the extendable and retractable arm, and configured to receive the marine equipment unit for aligning thereof in a preferred alignment direction during hauling.
16. The marine equipment hauling system according to claim 14, wherein the second winch is installed on a slidable beam or trolley system of the suspension structure.
17. (canceled)
18. The marine equipment hauling system according to claim 15, wherein the extendable and retractable arm comprising at least one of: a telescopic arm, a sliding boom, or a crane arm.
Type: Application
Filed: Nov 16, 2016
Publication Date: Nov 15, 2018
Applicant: Fugro N.V. (Leidschendam)
Inventors: Chad PASTOR (Lafayette, LA), Stephen KINNEAR (Kelty), Carl SONNIER (Lafayette, LA), Alick Neil THAME (Singapore), Marco SCHOLTENS (Voorburg)
Application Number: 15/776,824