HYBRIDIZATION PROBES AND METHODS

The present invention relates to compositions and methods for detection, analysis, and treatment of nucleic acids. In particular, the present invention relates to compositions and methods for generating and using hybridization probes.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application is a continuation application of and claims priority to U.S. patent application Ser. No. 14/938,240, filed Nov. 11, 2015, and claims priority to U.S. provisional patent application Ser. No. 62/078,252, filed Nov. 11, 2014, each of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to compositions and methods for detection, analysis, and treatment of nucleic acids. In particular, the present invention relates to compositions and methods for generating and using hybridization probes.

BACKGROUND

FISH (fluorescence in situ hybridization) is a cytogenetic technique that is used to detect and localize the presence or absence of specific DNA sequences on chromosomes. FISH uses fluorescent probes that bind to only those parts of the chromosome with which they show a high degree of sequence complementarity. Fluorescence microscopy can be used to find out where the fluorescent probe is bound to the chromosomes. FISH is often used for finding specific features in DNA for use in genetic counseling, medicine, and species identification. FISH can also be used to detect and localize specific RNA targets (mRNA, lncRNA and miRNA) in cells, circulating tumor cells, and tissue samples. In this context, it can help define the spatial-temporal patterns of gene expression within cells and tissues.

Human genomic DNA is a mixture of unique sequences and repetitive sequences that are present in multiple copies throughout the genome. In some applications, it is desirable to generate hybridization probes that anneal only to unique sequences of interest on a chromosome. Preparation of unique sequence probes is confounded by the presence of numerous classes of repetitive sequences throughout the genome of the organism (Hood et al., Molecular Biology of Eucaryotic Cells (Benjamin/Cummings Publishing Company, Menlo Park, Calif. 1975). The presence of repetitive sequences in hybridization probes reduces the specificity of the probes because portions of the probe bind to other repetitive sequences found outside the sequence of interest. Thus, to ensure binding of hybridization probes to a specific sequence of interest, probes lacking repetitive sequences are needed.

Recent contributions have addressed this question by inhibiting hybridization of the repetitive sequences with the use of unlabeled blocking nucleic acids (U.S. Pat. No. 5,447,841 and U.S. Pat. No. 6,596,479). Use of blocking nucleic acids in hybridizations is expensive, does not completely prevent hybridization of the repetitive sequences, and can distort genomic hybridization patterns (Newkirk et al., “Distortion of quantitative genomic and expression hybridization by Cot-1 DNA: mitigation of this effect,” Nucleic Acids Res. vol 33 (22):el91 (2005)). Thus, methods that prevent hybridization of repeat sequences without the use of blocking DNA are desirable for optimal hybridization.

One means to achieve this is to remove unwanted repeat segments from the hybridization probes prior to hybridization. Techniques involving the removal of highly repetitive sequences have been previously described. Absorbents, like hydroxyapatite, provide a means to remove highly repetitive sequences from extracted DNA. Hyroxyapatite chromatography fractionates DNA on the basis of duplex re-association conditions, such as temperature, salt concentration, or other stringencies. This procedure is cumbersome and varies with different sequences. Repeat DNA can also be removed by hybridization to immobilized DNA (Brison et al., “General Methods for Cloning Amplified DNA by Differential Screening with Genomic Probes,” Molecular and Cellular Biology, Vol. 2, pp. 578-587 (1982)). In all of these procedures, the physical removal of the repetitive sequences will depend upon the strict optimization of conditions with inherent variations based upon the base composition of the DNA sequence.

Several other methods to remove repetitive sequences from hybridization probes have been described. One method involves using a cross-linking agent to cross-link repetitive sequences either to directly prevent hybridization of repetitive sequences or to prevent amplification of repeat sequences in a PCR reaction. (U.S. Pat. No. 6,406,850). Another method uses PCR assisted affinity chromatography to remove repeats from hybridization probes (U.S. Pat. No. 6,569,621). Both of these methods rely on the use of labeled DNA to remove repeat sequences which makes these processes complex and difficult to reproduce. Further, both methods are time consuming, requiring multiple rounds of repeat removal to produce functional probes suitable for use in fluorescent in situ hybridization (FISH) or other hybridization reactions requiring high target specificity.

Thus, methods for removing repetitive sequences from probes are desired.

SUMMARY OF THE INVENTION

The present invention relates to compositions and methods for detection, analysis, and treatment of nucleic acids. In particular, the present invention relates to compositions and methods for generating and using hybridization probes.

Embodiments of the present technology provide compositions, kits, and systems for generating and using probes selectively generated or synthesized to exclude sequences of disinterest and/or include sequences of interest (e.g., substantially repeat-free nucleic acid probes). For example, in some embodiments, the present invention provides a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences (e.g., free of repeats, non-conserved sequences, conserved sequences, GC rich sequences, AT rich sequences, secondary structure, or coding sequences) of the nucleic acid of interest that are at least 100 bp in length (e.g., at least 100, 200, at least 300, or at least 400) and optionally no more than 20% different in length from each other (e.g., 20% or less, 10% or less, 5% or less, 4% or less, 3% or less, 3% or less, 1% or less, or identical lengths); and b) generating (e.g., via amplification, cloning, synthesis, or a combination thereof) a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence. In some embodiments, the method further comprises one or more of the steps of c) fragmenting the probe-containing nucleic acids to generate probes; and d) further amplifying a subset of the probes to generate probes substantially free of undesired sequences (e.g., ISH probes lacking, for example, undesired repeat sequences). In some embodiments, the method further comprises the step of d) separating probes based on size. In some embodiments, the separating is conducted using chromatography or electrophoresis. In some embodiments, the method further comprises the step of isolating a subset of the probes. In some embodiments, the subset is based on size of the separated nucleic acid. In some embodiments, the probes are attached to nucleic acid adaptors. In some embodiments, the adaptors are amplification primers. In some embodiments, the amplification primers are functionalized for downstream applications (e.g., by the addition of labels, binding sites, or restriction sites). In some embodiments, the probes are separated and a subset of the probes ais isolated. In some embodiments, the amplification is PCR. In some embodiments, regions substantially free of undesired sequence are identified using computer software and a computer processor. In some embodiments, the of probe-containing nucleic acids are fragmented by sonication (although any of a variety of other chemical, physical, or other approaches may be used). In some embodiments, the separating is by electrophoresis or chromatography. In some embodiments, the fragments are from about 100 to 500 bp in length, although other lengths may be used. In some embodiments, the probes are labeled (e.g., with a fluorescent label). In some embodiments, probes are 85% , 90% , 91% , 92% , 93% , 94% , 95% , 96% , 97% , 99% , or 100% free of undesired nucleic acid sequences.

In some embodiments, the present invention provides a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; c) fragmenting the probe-containing nucleic acids to generate probes; d) attaching adaptors to the probes; and optionally e) further amplifying a subset of the probes.

Further embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; c) fragmenting the probe-containing nucleic acids to generate probes;; and optionally d) further amplifying a subset of the probes.

Additional embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences, wherein the undesired region is, for example, repeat sequence, non-conserved sequences, conserved sequences, GC rich sequences, AT rich sequences, secondary structure, or coding sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; and c) fragmenting the probe-containing nucleic acids to generate probes; and optionally d) further amplifying a subset of the probes.

Yet other embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; c) fragmenting the probe-containing nucleic acids to generate probes; d) separating the probes by size; e) isolating a subset of the probes; and optionally f) further amplifying a subset of the probes.

Still other embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; c) fragmenting the probe-containing nucleic acids to generate probes; d) separating the probes by size; e) isolating a subset of the probes, wherein the subset comprises nucleic acids of 80 to 300 bp in length (e.g., approximately 150 bp in length); and optionally f) further amplifying a subset of the probes.

Additional embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; and c) fragmenting the probe-containing nucleic acids to generate probes; optionally d) further amplifying a subset of the probes generate a probe set; and e) performing a hybridization assay (e.g., ISH assay) with the probe set.

Further provided herein are a set of nucleic acid probes (e.g., hybridization probes (e.g., in situ hybridization (ISH) probes)) free of undesired sequences generated by the aforementioned methods and kits and systems comprising the probes. The present disclosure is not limited to a particular assay or target. In some embodiments, probes detect expression of an oncogene or chromosomal aneuploidy.

Additionally provided herein are methods of performing a hybridization assay, comprising contacting a target nucleic acid with a probe (e.g., an ISH probe) generated by the aforementioned method.

Also provided herein is the use of any a probe (e.g., a ISH probe) generated by the aforementioned method in a hybridization (e.g., ISH) assay.

Additional embodiments are described herein.

DESCRIPTION OF THE FIGURES

FIG. 1 shows a schematic of exemplary labeled probes of embodiments of the present invention.

FIG. 2 shows a map of the HER2 locus.

FIG. 3 shows amplification of repeat-free probes from the HER locus.

FIG. 4 shows fragmented probes from the HER2 locus.

FIG. 5 shows amplification of adapted HER2 probes.

FIG. 6 shows HER2 repeat-free probes.

FIG. 7 shows FISH hybridization of the HER2 locus using probes of embodiments of the present disclosure.

FIGS. 8A-8G show 80 bp portions of the HER-2 gene selected for use in designing HER-2 probes.

FIG. 9 shows a map of an exemplary repeat-free p16 probe.

DEFINITIONS

As used herein, the term “substantially free of undesired nucleic acids” refers to a nucleic acid that is substantially free (e.g., 85% , 90% , 91% , 92% , 93% , 94% , 95% , 96% , 97% , 99% , or 100% free) of undesired nucleic acids. Undesired nucleic acids include, but are not limited to, repeated nucleic acids, non-conserved sequences, conserved sequences, GC rich sequences, AT rich sequences, secondary structure, or coding sequences

As used, the terms “substantially repeat free nucleic acid sequence” or “nucleic acids free of repeats” refer to a region of nucleic acid that is substantially free (e.g., 85% , 90% , 91% , 92% , 93% , 94% , 95% , 96% , 97% , 99% , or 100% free) of repeated nucleic acid sequence.

As used herein, the term “sample” is used in its broadest sense. In one sense, it is meant to include cells (e.g., human, bacterial, yeast, and fungi), an organism, a specimen or culture obtained from any source, as well as biological samples. Biological samples may be obtained from animals (including humans) and refers to a biological material or compositions found therein, including, but not limited to, bone marrow, blood, serum, platelet, plasma, interstitial fluid, urine, cerebrospinal fluid, nucleic acid, DNA, tissue, and purified or filtered forms thereof. Such examples are not however to be construed as limiting the sample types applicable to the present invention.

The term “label” as used herein refers to any atom or molecule that can be used to provide a detectable (preferably quantifiable) effect, and that can be attached to a nucleic acid or protein. Labels include but are not limited to dyes; radiolabels such as 32P; binding moieties such as biotin; haptens such as digoxgenin; luminogenic, phosphorescent or fluorogenic moieties; and fluorescent dyes alone or in combination with moieties that can suppress or shift emission spectra by fluorescence resonance energy transfer (FRET). Labels may provide signals detectable by fluorescence, radioactivity, colorimetry, gravimetry, X-ray diffraction or absorption, magnetism, enzymatic activity, and the like. A label may be a charged moiety (positive or negative charge) or alternatively, may be charge neutral. Labels can include or consist of nucleic acid or protein sequence, so long as the sequence comprising the label is detectable. In some embodiments, nucleic acids are detected directly without a label (e.g., directly reading a sequence).

As used herein, the term “nucleic acid molecule” refers to any nucleic acid containing molecule, including but not limited to, DNA or RNA. The term encompasses sequences that include any of the known base analogs of DNA and RNA including, but not limited to, 4-acetylcytosine, 8-hydroxy-N6-methyladenosine, aziridinylcytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl)uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethylaminomethyluracil, dihydrouracil, inosine, N6-isopentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methyl cytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methyl aminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarbonylmethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2,6-diaminopurine.

As used herein, the term “hybridization” is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the Tm of the formed hybrid, and the G:C ratio within the nucleic acids. A single molecule that contains pairing of complementary nucleic acids within its structure is to be “self-hybridized.”

The term “primer” refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product which is complementary to a nucleic acid strand is induced, (e.g., in the presence of nucleotides and an inducing agent such as DNA polymerase and at a suitable temperature and pH). The primer is preferably single stranded for maximum efficiency in amplification, but may alternatively be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. Preferably, the primer is an oligodeoxyribonucleotide. The primer should be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent. The exact lengths of the primers will depend on many factors, including temperature, source of primer and the use of the method. For example, in some embodiments, primers range from 10 to 100 or more nucleotides (e.g., 10-300, 15-250, 15-200, 15-150, 15-100, 15-90, 20-80, 20-70, 20-60, 20-50 nucleotides, etc.).

In some embodiments, primers comprise additional sequences that do not hybridize to the nucleic acid of interest. The term “primer” includes chemically modified primers, fluorescence-modified primers, functional primers (fusion primers), sequence specific primers, random primers, primers that have both specific and random sequences, and DNA and RNA primers

The term “amplifying” or “amplification” in the context of nucleic acids refers to the production of multiple copies of a polynucleotide, or a portion of the polynucleotide, typically starting from a small amount of the polynucleotide (e.g., as few as a single polynucleotide molecule), where the amplification products or amplicons are generally detectable. Amplification of polynucleotides encompasses a variety of chemical and enzymatic processes. The generation of multiple DNA copies from one or a few copies of a target or template DNA molecule during a polymerase chain reaction (PCR), rolling circle amplification (RCA), or a ligase chain reaction (LCR) are forms of amplification. Amplification is not limited to the strict duplication of the starting molecule. For example, the generation of multiple cDNA molecules from a limited amount of RNA in a sample using reverse transcription (RT)-PCR is a form of amplification. Furthermore, the generation of multiple RNA molecules from a single DNA molecule during the process of transcription is also a form of amplification.

As used herein, the term “solid support” is used in reference to any solid or stationary material to which reagents such as antibodies, antigens, and other test components are attached. Examples of solid supports include microscope slides, wells of microtiter plates, coverslips, beads, particles, cell culture flasks, as well as many other suitable items.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The present invention relates to compositions and methods for detection, analysis, and treatment of nucleic acids. In particular, the present invention relates to compositions and methods for generating and using hybridization probes.

Embodiments of the present technology provide compositions and methods for generating probes substantially free of undesired sequences (e.g., FISH probes lacking undesired sequences, such as repeat sequences) that solve the limitations of existing methods of removing undesired sequences from probes by providing multistep or otherwise burdensome methods.

Embodiments of the present invention are illustrated for use in generating repeat free ISH probes. One of skill in art understands that the disclosed methods can also be applied to other undesired sequences and other probe applications.

The presence of repeat sequence in FISH probes leads to background signals in other loci containing similar repeats. Additionally it increases the bulk of the FISH probe unnecessarily, leading to wasted material. Finally, regardless of the repeat sequence, FISH probes are typically prepared from DNA generated directly from BAC sequences over 100 kb in length. The methods provided herein allow selection of non-repeat sequence, specific to the genomic region of interest, circumventing potential issues with availability of BACs covering the genomic region of interest and overcomes disadvantages of existing methods of generating repeat-free probes (See e.g., Rogan et al., Genome Research 11:1086-1094, 2001; Commercially available probes from Kreatech, Durham, N.C.; Sealey et al. Nuc. Acid. Res. Volume 13 Number 6 1985; Dorman et al., Nucleic Acids Research, 2013, Vol. 41, No. 7; Boyle et al., Chromosome Res. 2011 October; 19(7):901-9; and Craig et al., Hum Genet (1997) 100 : 472-476).

The probes described herein provide the following advantages over existing probes: decrease in interference from repeat sequence; eliminates the need for human DNA blocker; faster hybridization times; higher hybridization temperature (e.g., easier probe removal and more uniform hybridization temperatures), resulting in faster hybridization times; preparation via amplification (e.g., PCR) gives faster, less expensive, more reliable manufacture; and, once made, the template finds use in scale up and manufacturing applications.

I. Generation of Probes

Exemplary methods of generating probes substantially free of undesired sequences are described below. Embodiments of the present invention are illustrated for use in generating ISH (e.g., FISH) probes. One of skill in art understands that the disclosed methods can also be applied to other undesired sequences and other probe applications.

Embodiments of the present technology provide compositions, kits, and systems for generating and using probes selectively generated or synthesized to exclude sequences of disinterest and/or include sequences of interest (e.g., substantially repeat-free nucleic acid probes). For example, in some embodiments, the present invention provides a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences (e.g., free of repeats, non-conserved sequences, conserved sequences, GC rich sequences, AT rich sequences, secondary structure, or coding sequences) of the nucleic acid of interest that are at least 100 bp in length (e.g., at least 100, 200, at least 300, or at least 400) and optionally no more than 20% different in length from each other (e.g., 20% or less, 10% or less, 5% or less, 4% or less, 3% or less, 3% or less, 1% or less, or identical lengths); and b) generating (e.g., via amplification, cloning, synthesis, or a combination thereof) a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence. In some embodiments, the method further comprises one or more of the steps of c) fragmenting the probe-containing nucleic acids to generate probes; and d) further amplifying a subset of the probes to generate probes substantially free of undesired sequences (e.g., ISH probes lacking, for example, undesired repeat sequences). In some embodiments, the method further comprises the step of d) separating probes based on size. In some embodiments, the separating is conducted using chromatography or electrophoresis. In some embodiments, the method further comprises the step of isolating a subset of the probes. In some embodiments, the subset is based on size of the separated nucleic acid. In some embodiments, the probes are attached to nucleic acid adaptors. In some embodiments, the adaptors are amplification primers. In some embodiments, the amplification primers are functionalized for downstream applications (e.g., by the addition of labels, binding sites, or restriction sites). In some embodiments, the probes are separated and a subset of the probes ais isolated. In some embodiments, the amplification is PCR. In some embodiments, regions substantially free of undesired sequence are identified using computer software and a computer processor. In some embodiments, the probe-containing nucleic acids are fragmented by sonication (although any of a variety of other chemical, physical, or other approaches may be used). In some embodiments, the separating is by electrophoresis or chromatography. In some embodiments, the fragments are from about 100 to 500 bp in length, although other lengths may be used. In some embodiments, the probes are labeled (e.g., with a fluorescent label). In some embodiments, probes are 85% , 90% , 91% , 92% , 93% , 94% , 95% , 96% , 97% , 99% , or 100% free of undesired nucleic acid sequences.

In some embodiments, the probes are approximately 50 to 1000 bp in length. For example, in some embodiments, probes are 50 to 900 bp, 50 to 800 bp, 50 to 700 bp, 50 to 600 bp, 50 to 500 bp, 50 to 450 bp, 50 to 400 bp, 50 to 350 bp, 50 to 300 bp, 50 to 250 bp, 50 to 200 bp, 50 to 150 bp, 50 to 100 bp, 80 to900 bp, 80 to 800 bp, 80 to 700 bp, 80 to 600 bp, 80 to 500 bp, 80 to 450 bp, 80 to 400 bp, 80 to 350 bp, 80 to 300 bp, 80 to 250 bp, 80 to 200 bp, 80 to 150 bp, 80 to 100 bp, 100 to 900 bp, 100 to 800 bp, 100 to 700 bp, 100 to 600 bp, 100 to 500 bp, 100 to 450 bp, 100 to 400 bp, 100 to 350 bp, 100 to 300 bp, 100 to 250 bp, 100 to 200 bp, 100 to 150 bp, 150 to 900 bp, 150 to 800 bp, 150 to 700 bp, 150 to 600 bp, 150 to 500 bp, 150 to 450 bp, 150 to 400 bp, 150 to 350 bp, 150 to 300 bp, 150 to 250 bp, 150 to 200 bp, 150 to 150 bp, or 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141 ,142, 143, 144, 145, 146, 147, 148, 149, or 150 bp. In some embodiments, probes are 85% , 90% , 91% , 92% , 93% , 94% , 95% , 96% , 97% , 99% , or 100% free of undesired nucleic acid sequences.

In some embodiments, the present invention provides a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; c) fragmenting the probe-containing nucleic acids to generate probes; d) attaching adaptors to the probes; and optionally e) further amplifying a subset of the probes.

Further embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; c) fragmenting the probe-containing nucleic acids to generate probes;; and optionally d) further amplifying a subset of the probes.

Additional embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences, wherein the undesired region is, for example, repeat sequence, non-conserved sequences, conserved sequences, GC rich sequences, AT rich sequences, secondary structure, or coding sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; and c) fragmenting the probe-containing nucleic acids to generate probes; and optionally d) further amplifying a subset of the probes.

Yet other embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; c) fragmenting the probe-containing nucleic acids to generate probes; d) separating the probes by size; e) isolating a subset of the probes; and optionally f) further amplifying a subset of the probes.

Still other embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; c) fragmenting the probe-containing nucleic acids to generate probes; d) separating the probes by size; e) isolating a subset of the probes, wherein the subset comprises nucleic acids of 80 to 300 bp in length (e.g., approximately 150 bp in length); and optionally f) further amplifying a subset of the probes.

Additional embodiments provide a method of generating a probe to a nucleic acid of interest, comprising: a) identifying regions of the nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length; b) generating a plurality of probe-containing nucleic acids corresponding to the regions substantially free of undesired sequence; and c) fragmenting the probe-containing nucleic acids to generate probes; optionally d) further amplifying a subset of the probes generate a probe set; and e) performing a hybridization assay (e.g., ISH assay such as FISH) with the probe set.

Further provided herein are a set of nucleic acid probes (e.g., ISH probes) free of undesired sequences generated by the aforementioned methods and kits and systems comprising the probes.

Additionally provided herein are methods of performing a hybridization assay, comprising contacting a target nucleic acid with a probe (e.g., a ISH probe) generated by the aforementioned method.

Also provided herein is the use of any a probe (e.g., a ISH probe) generated by the aforementioned method in a hybridization (e.g., ISH) assay.

Exemplary methods of generating probes are described in detail below.

A. Probes

The present invention provides, in some embodiments, methods of generating probe libraries. In some embodiments, probes are between approximately 100 and 400 bp in length (e.g., between 100 and 300 bp in length).

In some embodiments, libraries of probes are generated that are complementary to different regions of a target sequence. In some embodiments, all of the probes in a library are of similar length (e.g., within 1% , 2% , 3% , 4% , or 5% , 10% , 20% or identical in length).

Probes can comprise any number of modified bases, modified backbones, inclusion of minor groove binders, and labels (e.g., as described in more detail below). Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2′-O-methyl ribonucleotides, and peptide-nucleic acids (PNAs).

B. Identification of Undesired Sequences

The present invention is not limited to a particular type of undesired sequences. In some embodiments, undesired sequences are, for example, repeat sequence, non-conserved sequences, conserved sequences, GC rich sequences, AT rich sequences, secondary structure, and coding sequences. In some preferred embodiments, repeat-free sequences are removed in order to optimize probe binding.

In some embodiments, substantially repeat-free or other undesired segments of genomic DNA in a region of interest are first identified. In some embodiments, contiguous repeat-free segments of genomic DNA in a region of interest are identified by bioinformatics methods. The present invention is not limited to a particular bioinformatics method. In some embodiments, commercial software packages such as, for example the RepeatMasker function of UCSC Genome Browser (available from The National Cancer Institute's Center for Biomedical Informatics and Information Technology) are utilized, although other commercial or non-commercial software packages are specifically contemplated.

In some embodiments, the Repeat-Masker function of Genome Browser is used to distinguish repeat from nonrepeat portions by presenting repeat sequence in lower case and nonrepeat in upper case, and the sequence downloaded. External software programs or manual examination of sequence information are used to remove the repeat portion of the sequence and to present the stretches of contiguous nonrepeat sequence in order of their length. The shorter stretches (usually less than 300 bp) are discarded, and a number of the longer stretches are identified such that their combined sequence length is sufficient to prepare a probe with acceptable labeling intensity for the intended use.

C. Generation of Probes

Following identification of undesired sequences, probes are designed that are substantially free of undesired sequences. Probes may be generated using any suitable method. In some embodiments, probes are amplified using the method described below.

In some embodiments, libraries of probes are synthesized. In some embodiments, synthetic probes comprise a region of complementarity to the target sequence and a label region that is not-complementary to the target sequence (See e.g., FIG. 1). In some embodiments, the labeled regions are identical across the probe library. In some embodiments, probes are generated with a labeled region that is branched or another non-linear configuration.

In some embodiments, oligonucleotides for use in amplification methods or probe generation are synthesized. Exemplary methods for oligonucleotide synthesis are described herein. To obtain the desired oligonucleotide, the building blocks are sequentially coupled to the growing oligonucleotide chain in the order required by the sequence of the product. The process has been fully automated since the late 1970s. Upon the completion of the chain assembly, the product is released from the solid phase to solution, deprotected, and collected. Products are often isolated by high-performance liquid chromatography (HPLC) to obtain the desired oligonucleotides in high purity. Typically, synthetic oligonucleotides are single-stranded DNA or RNA molecules around 15-25 bases in length.

In some embodiments, the selectivity and the rate of the formation of internucleosidic linkages is improved by using 3′-O-(N,N-diisopropyl phosphoramidite) derivatives of nucleosides (nucleoside phosphoramidites) that serve as building blocks in phosphite triester methodology. To prevent undesired side reactions, all other functional groups present in nucleosides are rendered unreactive (protected) by attaching protecting groups. Upon the completion of the oligonucleotide chain assembly, all the protecting groups are removed to yield the desired oligonucleotides.

Exemplary protecting groups and nucleoside phosphoramidite building blocks include, but are not limited to, acid-labile DMT (4,4′-dimethoxytrityl) protecting groups. Thymine and uracil, nucleic bases of thymidine and uridine, respectively, do not have exocyclic amino groups and hence do not require any protection.

Although the nucleic base of guanosine and 2′-deoxyguanosine does have an exocyclic amino group, its basicity is low to an extent that it does not react with phosphoramidites under the conditions of the coupling reaction. However, a phosphoramidite derived from the N2-unprotected 5′-O-DMT-2′-deoxyguanosine is poorly soluble in acetonitrile, the solvent commonly used in oligonucleotide synthesis. In contrast, the N2-protected versions of the same compound dissolve in acetonitrile well and hence are widely used. Nucleic bases adenine and cytosine bear the exocyclic amino groups reactive with the activated phosphoramidites under the conditions of the coupling reaction. By the use of additional steps in the synthetic cycle or alternative coupling agents and solvent systems, the oligonucleotide chain assembly are carried out using dA and dC phosphoramidites with unprotected amino groups. In some embodiments, exocyclic amino groups in nucleosides are kept permanently protected over the entire length of the oligonucleotide chain assembly.

The protection of the exocyclic amino groups is generally orthogonal to that of the 5′-hydroxy group because the latter is removed at the end of each synthetic cycle. The simplest to implement and hence the most widely accepted is the strategy where the exocyclic amino groups bear a base-labile protection. Most often, two protection schemes are used.

In some embodiments, Bz (benzoyl) protection is used for A, dA, C, and dC, while G and dG are protected with isobutyryl group. More recently, Ac (acetyl) group is often used to protect C and dC.

In the second, mild protection scheme, A and dA are protected with isobutyryl or phenoxyacetyl groups (PAC). C and dC bear acetyl protection, and G and dG are protected with 4-isopropylphenoxyacetyl (iPr-PAC) or dimethylformamidino (dmf) groups. Mild protecting groups are removed more readily than the standard protecting groups. However, the phosphoramidites bearing these groups are less stable when stored in solution.

In some embodiments, the phosphite group is protected by a base-labile 2-cyanoethyl group. Once a phosphoramidite has been coupled to the solid support-bound oligonucleotide and the phosphite moieties have been converted to the P(V) species, the presence of the phosphate protection is not mandatory for the successful conducting of further coupling reactions.

Non-nucleoside phosphoramidites are the phosphoramidite reagents designed to introduce various functionalities at the termini of synthetic oligonucleotides or between nucleotide residues in the middle of the sequence. In order to be introduced inside the sequence, a non-nucleosidic modifier has to possess at least two hydroxy groups, one of which is often protected with the DMT group while the other bears the reactive phosphoramidite moiety.

Non-nucleosidic phosphoramidites are used to introduce desired groups that are not available in natural nucleosides or that can be introduced more readily using simpler chemical designs.

Oligonucleotide synthesis is carried out by a stepwise addition of nucleotide residues to the 5′-terminus of the growing chain until the desired sequence is assembled. Each addition is referred to as a synthetic cycle and consists of four chemical reactions:

Step 1: De-blocking (detritylation)

The DMT group is removed with a solution of an acid, such as 2% trichloroacetic acid (TCA) or 3% dichloroacetic acid (DCA), in an inert solvent (dichloromethane or toluene). The orange-colored DMT cation formed is washed out; the step results in the solid support-bound oligonucleotide precursor bearing a free 5′-terminal hydroxyl group. Conducting detritylation for an extended time or with stronger than recommended solutions of acids leads to depurination of solid support-bound oligonucleotide and thus reduces the yield of the desired full-length product.

A solution of nucleoside phosphoramidite (or a mixture of several phosphoramidites) in acetonitrile is next activated by an acidic azole catalyst, 1H-tetrazole, 2-ethylthiotetrazole, 2-benzylthiotetrazole, 4,5-dicyanoimidazole, or a number of similar compounds. The mixing is usually very brief and occurs in fluid lines of oligonucleotide synthesizers while the components are being delivered to the reactors containing solid support. The activated phosphoramidite in 1.5-20-fold excess over the support-bound material is then brought in contact with the starting solid support (first coupling) or a support-bound oligonucleotide precursor (following couplings) whose 5′-hydroxy group reacts with the activated phosphoramidite moiety of the incoming nucleoside phosphoramidite to form a phosphite triester linkage. The coupling of 2′-deoxynucleoside phosphoramidites is very rapid and requires, on small scale, about 20 s for its completion. In contrast, sterically hindered 2′-O-protected ribonucleoside phosphoramidites utilize longer times to be coupled in high yields. The reaction is also highly sensitive to the presence of water, particularly when dilute solutions of phosphoramidites are used, and is commonly carried out in anhydrous acetonitrile. Generally, the larger the scale of the synthesis, the lower the excess and the higher the concentration of the phosphoramidites is used. In contrast, the concentration of the activator is primarily determined by its solubility in acetonitrile and is irrespective of the scale of the synthesis. Upon the completion of the coupling, any unbound reagents and by-products are removed by washing.

The capping step is performed by treating the solid support-bound material with a mixture of acetic anhydride and 1-methylimidazole or, less often, DMAP as catalysts and, in the phosphoramidite method, serves two purposes.

After the completion of the coupling reaction, a small percentage of the solid support-bound 5′-OH groups (0.1 to 1% ) remains unreacted and needs to be permanently blocked from further chain elongation to prevent the formation of oligonucleotides with an internal base deletion commonly referred to as (n-1) shortmers. The unreacted 5′-hydroxy groups are, to a large extent, acetylated by the capping mixture.

It has also been reported that phosphoramidites activated with 1H-tetrazole react, to a small extent, with the O6 position of guanosine. Upon oxidation with I2/water, this side product, possibly via O6-N7 migration, undergoes depurination. The apurinic sites thus formed are readily cleaved in the course of the final deprotection of the oligonucleotide under the basic conditions (see below) to give two shorter oligonucleotides thus reducing the yield of the full-length product. The O6 modifications are rapidly removed by treatment with the capping reagent as long as the capping step is performed prior to oxidation with I2/water.

The synthesis of oligonucleotide phosphorothioates (OPS) does not involve the oxidation with I2/water, and, respectively, does not suffer from the side reaction described above. On the other hand, if the capping step is performed prior to sulfurization, the solid support may contain the residual acetic anhydride and N-methylimidazole left after the capping step. The capping mixture interferes with the sulfur transfer reaction, which results in the extensive formation of the phosphate triester internucleosidic linkages in place of the desired PS triesters. Therefore, for the synthesis of OPS, it is advisable to conduct the sulfurization step prior to the capping step.

The newly formed tricoordinated phosphite triester linkage is not natural and is of limited stability under the conditions of oligonucleotide synthesis. The treatment of the support-bound material with iodine and water in the presence of a weak base (pyridine, lutidine, or collidine) oxidizes the phosphite triester into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleosidic linkage. Oxidation may be carried out under anhydrous conditions using tert-Butyl hydroperoxide or, more efficiently, (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). The step of oxidation is substituted with a sulfurization step to obtain oligonucleotide phosphorothioates. In the latter case, the sulfurization step is best carried out prior to capping. In solid-phase synthesis, an oligonucleotide being assembled is covalently bound, via its 3′-terminal hydroxy group, to a solid support material and remains attached to it over the entire course of the chain assembly. The solid support is contained in columns whose dimensions depend on the scale of synthesis and may vary between 0.05 mL and several liters. The overwhelming majority of oligonucleotides are synthesized on small scale ranging from 40 nmol to 1 μmol. More recently, high-throughput oligonucleotide synthesis where the solid support is contained in the wells of multi-well plates (most often, 96 or 384 wells per plate) became a method of choice for parallel synthesis of oligonucleotides on small scale. At the end of the chain assembly, the oligonucleotide is released from the solid support and is eluted from the column or the well.

In contrast to organic solid-phase synthesis and peptide synthesis, the synthesis of oligonucleotides proceeds best on non-swellable or low-swellable solid supports. The two most often used solid-phase materials are controlled pore glass (CPG) and macroporous polystyrene (MPPS).

CPG is commonly defined by its pore size. In oligonucleotide chemistry, pore sizes of 500, 1000, 1500, 2000, and 3000 Å are used to allow the preparation of about 50, 80, 100, 150, and 200-mer oligonucleotides, respectively. To make native CPG suitable for further processing, the surface of the material is treated with (3-aminopropyl)triethoxysilane to give aminopropyl CPG. The aminopropyl arm may be further extended to result in long chain aminoalkyl (LCAA) CPG. The amino group is then used as an anchoring point for linkers suitable for oligonucleotide synthesis (see below).

MPPS suitable for oligonucleotide synthesis is a low-swellable, highly cross-linked polystyrene obtained by polymerization of divinylbenzene (min 60% ), styrene, and 4-chloromethylstyrene in the presence of a porogeneous agent. The macroporous chloromethyl MPPS obtained is converted to aminomethyl MPPS.

To make the solid support material suitable for oligonucleotide synthesis, non-nucleosidic linkers or nucleoside succinates are covalently attached to the reactive amino groups in aminopropyl CPG, LCAA CPG, or aminomethyl MPPS. The remaining unreacted amino groups are capped with acetic anhydride. Typically, three conceptually different groups of solid supports are used.

In a more recent, more convenient, and more widely used method, the synthesis starts with the universal support where a non-nucleosidic linker is attached to the solid support material. A phosphoramidite respective to the 3′-terminal nucleoside residue is coupled to the universal solid support in the first synthetic cycle of oligonucleotide chain assembly using the standard protocols. The chain assembly is then continued until the completion, after which the solid support-bound oligonucleotide is deprotected. The characteristic feature of the universal solid supports is that the release of the oligonucleotides occurs by the hydrolytic cleavage of a P—O bond that attaches the 3′-O of the 3′-terminal nucleotide residue to the universal linker as shown in Scheme 6. The critical advantage of this approach is that the same solid support is used irrespectively of the sequence of the oligonucleotide to be synthesized. For the complete removal of the linker and the 3′-terminal phosphate from the assembled oligonucleotide, the solid support 1 and several similar solid supports require gaseous ammonia, aqueous ammonium hydroxide, aqueous methylamine, or their mixture and are commercially available. The solid support utilizes a solution of ammonia in anhydrous methanol and is also commercially available.

In general, the 3′-hydroxy group of the 3′-terminal nucleoside residue is attached to the solid support via, most often, 3′-O-succinyl arm as in compound 3. The oligonucleotide chain assembly starts with the coupling of a phosphoramidite building block respective to the nucleotide residue second from the 3′-terminus. The 3′-terminal hydroxy group in oligonucleotides synthesized on nucleosidic solid supports is deprotected under the conditions somewhat milder than those applicable for universal solid supports. However, the fact that a nucleosidic solid support has to be selected in a sequence-specific manner reduces the throughput of the entire synthetic process and increases the likelihood of human error.

Oligonucleotide phosphorothioates (OPS) are modified oligonucleotides where one of the oxygen atoms in the phosphate moiety is replaced by sulfur. Only the phosphorothioates having sulfur at a non-bridging position are widely used and are available commercially. The replacement of the non-bridging oxygen with sulfur creates a new center of chirality at phosphorus. In a simple case of a dinucleotide, this results in the formation of a diastereomeric pair of Sp- and Rp-dinucleoside monophosphorothioates. In a n-mer oligonucleotide where all (n−1) internucleosidic linkages are phosphorothioate linkages, the number of diastereomers m is calculated as m=2(n−1). Being non-natural analogs of nucleic acids, OPS are substantially more stable towards hydrolysis by nucleases, the class of enzymes that destroy nucleic acids by breaking the bridging P—O bond of the phosphodiester moiety. This property determines the use of OPS as antisense oligonucleotides in in vitro and in vivo applications where the extensive exposure to nucleases is inevitable. Similarly, to improve the stability of siRNA, at least one phosphorothioate linkage is often introduced at the 3′-terminus of both sense and antisense strands. In chirally pure OPS, all-Sp diastereomers are more stable to enzymatic degradation than their all-Rp analogs. However, the preparation of chirally pure OPS remains a synthetic challenge. In laboratory practice, mixtures of diastereomers of OPS are commonly used.

Synthesis of OPS is very similar to that of natural oligonucleotides. The difference is that the oxidation step is replaced by sulfur transfer reaction (sulfurization) and that the capping step is performed after the sulfurization. Of many reported reagents capable of the efficient sulfur transfer, only three are commercially available:

3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT (3) provides rapid kinetics of sulfurization and high stability in solution. 3H-1,2-benzodithiol-3-one 1,1-dioxide (4) also known as Beaucage reagent displays a better solubility in acetonitrile and short reaction times. However, the reagent is of limited stability in solution and is less efficient in sulfurizing RNA linkages.

N,N,N′N′-Tetraethylthiuram disulfide (TETD) is soluble in acetonitrile and is commercially available. However, the sulfurization reaction of an internucleosidic DNA linkage with TETD requires 15 min.

In the past, oligonucleotide synthesis was carried out manually in solution or on solid phase. The solid phase synthesis was implemented using, as containers for the solid phase, miniature glass columns similar in their shape to low-pressure chromatography columns or syringes equipped with porous filters. Currently, solid-phase oligonucleotide synthesis is carried out automatically using computer-controlled instruments (oligonucleotide synthesizers) and is technically implemented in column, multi-well plate, and array formats. The column format is best suited for research and large scale applications where a high-throughput is not required. Multi-well plate format is designed specifically for high-throughput synthesis on small scale to satisfy the growing demand of industry and academia for synthetic oligonucleotides. A number of oligonucleotide synthesizers for small scale synthesis and medium to large scale synthesis are available commercially.

Amplification methods are described below, although other methods may be used. Next, amplification (e.g., PCR) primers are designed to amplify stretches of sequence from the longest of the repeat-free segments identified using bioinformatics methods. In some embodiments, such segments are amplified using genomic or genome derived BAC DNA as an amplification template. In some embodiments, (e.g., in the case of longer stretches) multiple overlapping primer sets are used.

Illustrative non-limiting examples of nucleic acid amplification techniques include, but are not limited to, polymerase chain reaction (PCR), reverse transcription polymerase chain reaction (RT-PCR), transcription-mediated amplification (TMA), ligase chain reaction (LCR), strand displacement amplification (SDA), and nucleic acid sequence based amplification (NASBA).

In general, amplification methods utilize a DNA polymerase, a primer, and dNTPs. Exemplary DNA polymerases include, but are not limited to, phi29 DNA Polymerase, Taq DNA polymerase, DNA polymerase I, T7 DNA Polymerase, T7 DNA Polymerase, T4 DNA Polymerase, Pfu DNA Polymerase, and Bsm DNA Polymerase.

The polymerase chain reaction (U.S. Pat. Nos. 4,683,195, 4,683,202, 4,800,159 and U.S. Pat. No. 4,965,188, each of which is herein incorporated by reference in its entirety), commonly referred to as PCR, uses multiple cycles of denaturation, annealing of primer pairs to opposite strands, and primer extension to exponentially increase copy numbers of a target nucleic acid sequence. In a variation called RT-PCR, reverse transcriptase (RT) is used to make a complementary DNA (cDNA) from mRNA, and the cDNA is then amplified by PCR to produce multiple copies of DNA. For other various permutations of PCR see, e.g., U.S. Pat. Nos. 4,683,195, 4,683,202 and U.S. Pat. No. 4,800,159; Mullis et al., Meth. Enzymol. 155: 335 (1987); and, Murakawa et al., DNA 7: 287 (1988), each of which is herein incorporated by reference in its entirety.

Transcription mediated amplification (U.S. Pat. No. 5,480,784 and U.S. Pat. No. 5,399,491, each of which is herein incorporated by reference in its entirety), commonly referred to as TMA, synthesizes multiple copies of a target nucleic acid sequence autocatalytically under conditions of substantially constant temperature, ionic strength, and pH in which multiple RNA copies of the target sequence autocatalytically generate additional copies. See, e.g., U.S. Pat. No. 5,399,491 and U.S. Pat. No. 5,824,518, each of which is herein incorporated by reference in its entirety. In a variation described in U.S. Publ. No. 20060046265 (herein incorporated by reference in its entirety), TMA optionally incorporates the use of blocking moieties, terminating moieties, and other modifying moieties to improve TMA process sensitivity and accuracy.

The ligase chain reaction (Weiss, R., Science 254: 1292 (1991), herein incorporated by reference in its entirety), commonly referred to as LCR, uses two sets of complementary DNA oligonucleotides that hybridize to adjacent regions of the target nucleic acid. The DNA oligonucleotides are covalently linked by a DNA ligase in repeated cycles of thermal denaturation, hybridization and ligation to produce a detectable double-stranded ligated oligonucleotide product.

Strand displacement amplification (Walker, G. et al., Proc. Natl. Acad. Sci. USA 89: 392-396 (1992); U.S. Pat. No. 5,270,184 and U.S. Pat. No. 5,455,166, each of which is herein incorporated by reference in its entirety), commonly referred to as SDA, uses cycles of annealing pairs of primer sequences to opposite strands of a target sequence, primer extension in the presence of a dNTPs to produce a duplex hemiphosphorothioated primer extension product, endonuclease-mediated nicking of a hemimodified restriction endonuclease recognition site, and polymerase-mediated primer extension from the 3′ end of the nick to displace an existing strand and produce a strand for the next round of primer annealing, nicking and strand displacement, resulting in geometric amplification of product. Thermophilic SDA (tSDA) uses thermophilic endonucleases and polymerases at higher temperatures in essentially the same method (EP Pat. No. 0 684 315).

Other amplification methods include, for example: nucleic acid sequence based amplification (U.S. Pat. No. 5,130,238, herein incorporated by reference in its entirety), commonly referred to as NASBA; one that uses an RNA replicase to amplify the probe molecule itself (Lizardi et al., BioTechnol. 6: 1197 (1988), herein incorporated by reference in its entirety), commonly referred to as Qβ replicase; a transcription based amplification method (Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173 (1989)); and, self-sustained sequence replication (Guatelli et al., Proc. Natl. Acad. Sci. USA 87: 1874 (1990), each of which is herein incorporated by reference in its entirety). For further discussion of known amplification methods see Persing, David H., “In Vitro Nucleic Acid Amplification Techniques” in Diagnostic Medical Microbiology: Principles and Applications (Persing et al., Eds.), pp. 51-87 (American Society for Microbiology, Washington, DC (1993)).

In some embodiments, amplification is isothermal amplification. In some embodiments, amplification methods are solid-phase amplification, polony amplification, colony amplification, emulsion PCR, bead RCA, surface RCA, surface SDA, etc., as will be recognized by one of skill in the art. In some embodiments, amplification methods that results in amplification of free DNA molecules in solution or tethered to a suitable matrix by only one end of the DNA molecule are used. In some embodiments, methods that rely on bridge PCR, where both PCR primers are attached to a surface (see, e.g., WO 2000/018957, U.S. Pat. Nos. 7,972,820; 7,790,418 and Adessi et al., Nucleic Acids Research (2000): 28(20): E87; each of which are herein incorporated by reference) are used. In some cases the methods of the invention can create a “polymerase colony technology”, or “polony”, referring to a multiplex amplification that maintains spatial clustering of identical amplicons (see Harvard Molecular Technology Group and Lipper Center for Computational Genetics website). These include, for example, in situ polonies (Mitra and Church, Nucleic Acid Research 27, e34, Dec. 15, 1999), in situ rolling circle amplification (RCA) (Lizardi et al., Nature Genetics 19, 225, July 1998), bridge PCR (U.S. Pat. No. 5,641,658), picotiter PCR (Leamon et al., Electrophoresis 24, 3769, November 2003), and emulsion PCR (Dressman et al., PNAS 100, 8817, Jul. 22, 2003).

Examples of nucleic acid polymerases suitable for use in embodiments of the present invention include, but are not limited to, DNA polymerase (Klenow fragment, T4 DNA polymerase), thermostable DNA polymerases (Perler F. B. et al., Adv. Protein Chem. 1996, 48:377-435) identified and cloned in a variety of thermostable bacteria (such as Taq, VENT, Pfu, Tfl DNA polymerases) as well as their genetically modified derivatives (TaqGold, VENTexo, Pfu exo). Preferably the nucleic acid polymerase used for colony primer extension is stable under temperature at which the primer and template hybridization results enough specific to avoid incomplete or spurious amplifications of the template.

The amplification solution contains preferably, deoxyribonucleoside triphosphates, for example dATP, dTTP, dCTP, dGTP, naturally or non-naturally occurring, for example modified with a fluorescent or radioactive group. A large variety of synthetically modified nucleic acids have been developed for chemical and biological methods in order to increase the detectability and/or the functional diversity of nucleic acids. These functionalized/modified molecules (e.g., nucleotide analogs) can be fully compatible with natural polymerizing enzymes, maintaining the base pairing and replication properties of the natural counterparts, as recently reviewed (Thum O et al., Angew. Chem. Int. Ed. 2001, 40 (21): 3990-3993).

Other components of the amplification solution are added consequently to the choice of the nucleic acid polymerase, and they are essentially corresponding to compounds known in the art as being effective to support the activity of each polymerase. The concentration of compounds like dimethyl sulfoxide (DMSO), Bovine Serum Albumin (BSA), poly-ethylene glycol (PEG), Betaine, Triton X-100, or MgCl2 is well known in the prior art as being important to have an optimal amplification, and therefore the operator can easily adjust such concentrations for the methods of the present invention on the basis of the examples presented hereafter.

D. Fragmentation

In some embodiments, before or after amplification, the DNA is then fragmented (e.g., by sonication or other suitable method such as DNAse I) to lengths ranging from approximately 50 to 5000 bp (e.g., 50 to 4000, 50 to 3000, 50 to 2500, 50 to 2000, 50 to 1500, 50 to 1000, 100 to 5000, 100 to 4000, 1000 to 3000, 100 to 2500, 100 to 2000, 100 to 1500, 100 to 1000, or 100-500 bp), and the resultant repeat-free DNA library attached (e.g., via ligation, chemical, extension reaction, etc.) to adapters. In some preferred embodiments, probes are approximately 150 bp (e.g., 50 to 900 bp, 50 to 800 bp, 50 to 700 bp, 50 to 600 bp, 50 to 500 bp, 50 to 450 bp, 50 to 400 bp, 50 to 350 bp, 50 to 300 bp, 50 to 250 bp, 50 to 200 bp, 50 to 150 bp, 50 to 100 bp, 80 to900 bp, 80 to 800 bp, 80 to 700 bp, 80 to 600 bp, 80 to 500 bp, 80 to 450 bp, 80 to 400 bp, 80 to 350 bp, 80 to 300 bp, 80 to 250 bp, 80 to 200 bp, 80 to 150 bp, 80 to 100 bp, 100 to 900 bp, 100 to 800 bp, 100 to 700 bp, 100 to 600 bp, 100 to 500 bp, 100 to 450 bp, 100 to 400 bp, 100 to 350 bp, 100 to 300 bp, 100 to 250 bp, 100 to 200 bp, 100 to 150 bp, 150 to 900 bp, 150 to 800 bp, 150 to 700 bp, 150 to 600 bp, 150 to 500 bp, 150 to 450 bp, 150 to 400 bp, 150 to 350 bp, 150 to 300 bp, 150 to 250 bp, 150 to 200 bp, 150 to 150 bp, or 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141 ,142, 143, 144, 145, 146, 147, 148, 149, or 150 bp, etc.). In some embodiments, the adapted library is then fractionated (e.g., by electrophoresis, chromatography, or other separation method) to give a pool containing all the selected sequence at a variety of fragment sizes. Fractions (e.g., gel slices) corresponding to the desired fragment sizes are isolated.

E. Amplification

In some embodiments, fractions of the desired size are used as templates with amplification (e.g., PCR or another method described herein) primers corresponding to the adapters under preparatory amplification conditions.

All the chosen repeat-free sequence are represented in the amplified library. The probes (e.g., isolated after fragmentation or optional further amplification) are then labeled (e.g., with a fluorescent label, biotin, quantum dot label, or labels for colorimetric or silver stain detection) for use (e.g., as a FISH reagent).

In some embodiments, libraries of probes are cloned into expression vectors (e.g., one or more probes per vector). In some embodiments, such expression vectors find use in the future generation of libraries (e.g., via amplification or expression).

II. Uses of Probes

The probes described herein find use in a variety of diagnostic, research, clinical, and screening applications. The described nucleic acid hybridization probes have broad utility for use in all forms of nucleic acid detection that is achieved by use of nucleic acid hybridization probes. The nucleic acid hybridization probes find use in detecting nucleic acid sequence targets in solution or bound to immobilized supports. Examples of applications where the composition and methods can be used to detect nucleic acid sequence targets in solution include PCR, real-time PCR, quantitative PCR, PNA clamp-mediated PCR and digital PCR. Examples of applications where the compositions and methods can be used to detect nucleic acid sequence targets immobilized to solid supports include northern blots, southern blots, dot blots, slot blots, microarrays, particle-based assays, In situ hybridization assays (ISH) such as, for example, chromagen in situ hybridization (CISH), RNA in situ hybridization (RISH), rapid FISH, Silver In Situ Hybridization (SISH), and FISH assays. Such applications are amenable to numerous fields, including medical diagnostics, molecular medicine, forensic science, specimen and organism cataloging, and microbial pathogen epidemiology.

The present invention is not limited to a particular target. The compositions and methods described herein find use in the detection of a variety of target nucleic acids (e.g., human or mammalian genomic nucleic acids), bacterial, viral, etc.

Probes may also be employed as isolated nucleic acids immobilized on a solid surface (e.g., nitrocellulose), as in aCGH. In some embodiments, the probes may be members of an array of nucleic acids as described, for instance, in WO 96/17958, which is hereby incorporated by reference it its entirety and specifically for its description of array CGH. Techniques capable of producing high density arrays are well-known (see, e.g., Fodor et al. Science 767-773 (1991) and U.S. Pat. No. 5,143,854), both of which are hereby incorporated by reference for this description.

A detailed description of the utility of the nucleic acid hybridization probes is presented below for FISH applications, although the probes find use in other applications.

FISH and other in situ hybridization methods may be performed on a variety of sample types. Example, include, but are not limited to formalin-fixed paraffin embedded (FFPE) tissue), fresh tissue, frozen tissue, cells (e.g., eukaryotic or prokaryotic cells); prepared using any suitable fixative. In some embodiments, touch prep or brushing (See e.g., Smoczynski et al., Gastrointest Endosc. 2012 January; 75(1):65-73) is utilized.

Touch prep specimens are generated by smearing or pressing onto a slide, applying pressure to the tissue, and fixing in ethanol under cool temperatures. In a specific embodiment the tissue is extracted surgically and smeared onto a glass slide by applying relatively weak pressure to tumor tissue and relatively strong pressure to normal tissue, followed by fixing in about 100% ethanol for approximately 10 minutes at about 4° C. In another specific embodiment, the samples to be analyzed by methods of the present invention are originally frozen in liquid nitrogen and stored at about −80° C.

For a typical ISH application, the following represents a typical procedure. Cells of a specimen are harvested, washed and pelleted. The cells of the pellet are usually washed in phosphate-buffered saline (PBS). The cells are suspended in PBS and re-collected by centrifugation. The cells can be fixed, for example, in acid alcohol solutions, acid acetone solutions, or aldehydes such as formaldehyde, paraformaldehyde, and glutaraldehyde. For example, a fixative containing methanol and glacial acetic acid in a 3:1 ratio, respectively, can be used as a fixative. A neutral buffered formalin solution also can be used, and includes approximately 1% to 10% of 37-40% formaldehyde in an aqueous solution of sodium phosphate. Slides containing the cells can be prepared by removing a majority of the fixative, leaving the concentrated cells suspended in only a portion of the solution.

The cell suspension is applied to slides such that the cells do not overlap on the slide. Cell density can be measured by a light or phase contrast microscope. The density of cells in these wells is then assessed with a phase contrast microscope. If the well containing the greatest volume of cell suspension does not have enough cells, the cell suspension is concentrated and placed in another well.

Prior to in situ hybridization, chromosomal probes and chromosomal DNA contained within the cell each are denatured. Denaturation process is performed in several ways. For example, denaturation can be effected with buffered solutions having elevated pH, with elevated temperatures (for example, temperatures from about 70° C. to about 95° C.), or with organic solvents such as formamide, ethylene carbonate, and tetraalkylammonium halides, or combinations thereof. For example, chromosomal DNA can be denatured by a combination of temperatures above 70° C. (for example, about 73° C.) and a denaturation buffer containing 70% formamide and 2×SSC (0.3M sodium chloride and 0.03 M sodium citrate). Denaturation conditions typically are established such that cell morphology is preserved. Chromosomal probes can be denatured by heat. For example, probes can be heated to about 73° C. for about five minutes.

After removal of denaturing chemicals or conditions, probes are annealed to the chromosomal DNA under hybridizing conditions. “Hybridizing conditions” are conditions that facilitate annealing between a probe and nucleic acid sequence target. Hybridization conditions vary, depending on the concentrations, base compositions, complexities, and lengths of the probes, as well as salt concentrations, temperatures, and length of incubation. The greater the concentration of probe, the greater the probability of forming a hybrid. For example, in situ hybridizations are typically performed in hybridization buffer containing 1-2×SSC, 50% formamide and blocking DNA to suppress non-specific hybridization. In general, hybridization conditions, as described above, include temperatures of about 25° C. to about 55° C., and incubation lengths of about 0.5 hours to about 96 hours. More particularly, hybridization can be performed at about 37° C. to about 40° C. for about 2 to about 16 hours.

Non-specific binding of chromosomal probes to DNA outside of the target region can be removed by a series of washes. Temperature and concentration of salt in each wash depend on the desired stringency. For example, for high stringency conditions, washes can be carried out at about 65° C. to about 80° C., using 0.2×SSC to about 2×SSC, and about 0.1% to about 1% of a non-ionic detergent such as Nonidet P-40 (NP40) or other suitable surfactant. Stringency can be lowered by decreasing the temperature of the washes or by increasing the concentration of salt in the washes.

Slides containing the samples are typically incubated in 2×SSC at 37° C. for 10-30 min. The slides are then incubated in 0.2 mg/ml pepsin at 37° C. for 20 min. Slides are subsequently washed twice in PBS at room temperature for 2 min. Cells are fixed in 2.5% Neutral Buffered Formalin at room temperature for 5 min. Slides are subsequently washed twice in PBS at room temperature for 2 min. The slides are subjected to dehydration by successive contact in solutions of 70% , 85% , and 100% ethanol at room temperature for 1 min. The slides are used immediately thereafter or stored at room temperature in the dark.

Hybridization can be performed with the HYBrite method or a conventional method. In the HYBrite method, a HYBrite™ system from Abbott Molecular (Downers Grove, Ill.) is used.

Conditions for specifically hybridizing the probes to their nucleic acid targets generally include the combinations of conditions that are employable in a given hybridization procedure to produce specific hybrids, the conditions of which may easily be determined by one of skill in the art. Such conditions typically involve controlled temperature, liquid phase, and contact between a chromosomal probe and a target. Hybridization conditions vary depending upon many factors including probe concentration, target length, target and probe G-C content, solvent composition, temperature, and duration of incubation. At least one denaturation step may precede contact of the probes with the targets. Alternatively, both the probe and nucleic acid target may be subjected to denaturing conditions together while in contact with one another, or with subsequent contact of the probe with the biological sample. Hybridization may be achieved with subsequent incubation of the probe/sample in, for example, a liquid phase of about a 50:50 volume ratio mixture of 2-4×SSC and formamide, at a temperature in the range of about 25 to about 55° C. for a time that is illustratively in the range of about 0.5 to about 96 hours, or more preferably at a temperature of about 32 to about 40° C. for a time in the range of about 2 to about 16 hours. In order to increase specificity, use of a blocking agent such as unlabeled blocking nucleic acid as described in U.S. Pat. No. 5,756,696 (the contents of which are herein incorporated by reference in their entirety, and specifically for the description of the use of blocking nucleic acid), may be used in conjunction with the methods of the present invention. Other conditions may be readily employed for specifically hybridizing the probes to their nucleic acid targets present in the sample, as would be readily apparent to one of skill in the art.

Upon completion of a suitable incubation period, non-specific binding of chromosomal probes to sample DNA may be removed by a series of washes. Temperature and salt concentrations are suitably chosen for a desired stringency. The level of stringency required depends on the complexity of a specific probe sequence in relation to the genomic sequence, and may be determined by systematically hybridizing probes to samples of known genetic composition. In general, high stringency washes may be carried out at a temperature in the range of about 65 to about 80° C. with about 0.2× to about 2×SSC and about 0.1% to about 1% of a non-ionic detergent such as Nonidet P-40 (NP40). If lower stringency washes are required, the washes may be carried out at a lower temperature with an increased concentration of salt.

Chromosomal probes can be directly labeled with a detectable label. Examples of detectable labels include fluorophores, e.g., organic molecules that fluoresce after absorbing light, and radioactive isotopes, e.g., 32P, and 3H. Fluorophores can be directly labeled following covalent attachment to a nucleotide by incorporating the labeled nucleotide into the probe with standard techniques such as nick translation, random priming, and PCR labeling. Alternatively, deoxycytidine nucleotides within the probe can be transaminated with a linker. The fluoropore can then be covalently attached to the transaminated deoxycytidine nucleotides. See, e.g., U.S. Pat. No. 5,491,224 to Bittner, et al., which is incorporated herein by reference. Useful probe labeling techniques are described in Molecular Cytogenetics: Protocols and Applications, Y. -S. Fan, Ed., Chap. 2, “Labeling Fluorescence In Situ Hybridization Probes for Genomic Targets”, L. Morrison et. al., p. 21-40, Humana Press, © 2002 (hereafter cited as “Morrison-2002”), incorporated herein by reference.

Attachment of fluorophores to nucleic acid probes is well known in the art and may be accomplished by any available means. Fluorophores can be covalently attached to a particular nucleotide, for example, and the labeled nucleotide incorporated into the probe using standard techniques such as nick translation, random priming, PCR labeling, and the like. Alternatively, the fluorophore can be covalently attached via a linker to the deoxycytidine nucleotides of the probe that have been transaminated. Methods for labeling probes are described in U.S. Pat. No. 5,491,224 and Molecular Cytogenetics: Protocols and Applications (2002), Y. -S. Fan, Ed., Chapter 2, “Labeling Fluorescence In Situ Hybridization Probes for Genomic Targets,” L. Morrison et al., p. 21-40, Humana Press, both of which are herein incorporated by reference for their descriptions of labeling probes.

Exemplary fluorophores that can be used for labeling probes include TEXAS RED (Molecular Probes, Inc., Eugene, Oreg.), CASCADE blue aectylazide (Molecular Probes, Inc., Eugene, Oreg.), SPECTRUMORANGE™ (Abbott Molecular, Des Plaines, Ill.) and SPECTRUMGOLD™ (Abbott Molecular).

Additional examples of fluorophores that can be used in the methods described herein are: 7-amino-4-methylcoumarin-3-acetic acid (AMCA); 5-(and -6)-carboxy-X-rhodamine, lissamine rhodamine B, 5-(and -6)-carboxyfluorescein; fluorescein-5-isothiocyanate (FITC); 7-diethylaminocoumarin-3-carboxylic acid, tetramethyl-rhodamine-5-(and -6)-isothiocyanate; 5-(and -6)-carboxytetramethylrhodamine; 7-hydroxy-coumarin-3-carboxylic acid; 6-[fluorescein 5-(and -6)-carboxamido]hexanoic acid; N-(4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a diaza-3-indacenepropionic acid; eosin-5-isothiocyanate; erythrosine-5-isothiocyanate; 5-(and -6)-carboxyrhodamine 6G; and Cascades blue aectylazide (Molecular Probes, Inc., Eugene, Oreg.).

Probes can be viewed with a fluorescence microscope and an appropriate filter for each fluorophore, or by using dual or triple band-pass filter sets to observe multiple fluorophores. See, e.g., U.S. Pat. No. 5,776,688 to Bittner, et al., which is incorporated herein by reference. Any suitable microscopic imaging method can be used to visualize the hybridized probes, including automated digital imaging systems, such as those available from MetaSystems or Applied Imaging. Alternatively, techniques such as flow cytometry can be used to examine the hybridization pattern of the chromosomal probes.

Probes can also be labeled indirectly, e.g., with biotin or digoxygenin by means well known in the art. However, secondary detection molecules or further processing are then used to visualize the labeled probes. For example, a probe labeled with biotin can be detected by avidin conjugated to a detectable marker, e.g., a fluorophore. Additionally, avidin can be conjugated to an enzymatic marker such as alkaline phosphatase or horseradish peroxidase. Such enzymatic markers can be detected in standard colorimetric reactions using a substrate for the enzyme. Substrates for alkaline phosphatase include 5-bromo-4-chloro-3-indolylphosphate and nitro blue tetrazolium. Diaminobenzoate can be used as a substrate for horseradish peroxidase. Fluorescence detection of a hybridized biotin or other indirect labeled probe can be achieved by use of the commercially available tyramide amplification system.

One of skill in the art will recognize that other agents or dyes can be used in lieu of fluorophores as label-containing moieties. Suitable labels that can be attached to probes include, but are not limited to, radioisotopes, fluorophores, chromophores, mass labels, electron dense particles, magnetic particles, spin labels, molecules that emit luminescence, electrochemically active molecules, enzymes, cofactors, and enzyme substrates. Luminescent agents include, for example, radioluminescent, chemiluminescent, bioluminescent, and phosphorescent label containing moieties. Alternatively, detection moieties that are visualized by indirect means can be used. For example, probes can be labeled with biotin or digoxygenin using routine methods known in the art, and then further processed for detection. Visualization of a biotin-containing probe can be achieved via subsequent binding of avidin conjugated to a detectable marker. The detectable marker may be a fluorophore, in which case visualization and discrimination of probes may be achieved as described above for ISH.

In some embodiments, probes are designed to have labels placed at a common interval throughout the nucleic acid (e.g., one label group every 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12).

In some embodiments, a probe library comprises probes with different detectable labels (e.g., different colors of fluorescent signal).

Probes hybridized to target regions may alternatively be visualized by enzymatic reactions of label moieties with suitable substrates for the production of insoluble color products. A biotin-containing probe within a set may be detected via subsequent incubation with avidin conjugated to alkaline phosphatase (AP) or horseradish peroxidase (HRP) and a suitable substrate. 5-bromo-4-chloro-3-indolylphosphate and nitro blue tetrazolium (NBT) serve as substrates for alkaline phosphatase, while diaminobenzidine serves as a substrate for HRP.

In embodiments where fluorophore-labeled probes or probe compositions are used, the detection method can involve fluorescence microscopy, flow cytometry, or other means for determining probe hybridization. Any suitable microscopic imaging method may be used in conjunction with the methods of the present invention for observing multiple fluorophores. In the case where fluorescence microscopy is employed, hybridized samples may be viewed under light suitable for excitation of each fluorophore and with the use of an appropriate filter or filters. Automated digital imaging systems such as the MetaSystems, BioView or Applied Imaging systems may alternatively be used.

In array CGH, the probes are not labeled, but rather are immobilized at distinct locations on a substrate, as described in WO 96/17958. In this context, the probes are often referred to as the “target nucleic acids.” The sample nucleic acids are typically labeled to allow detection of hybridization complexes. The sample nucleic acids used in the hybridization may be detectably labeled prior to the hybridization reaction. Alternatively, a detectable label may be selected which binds to the hybridization product. In dual- or mult-color aCGH, the target nucleic acid array is hybridized to two or more collections of differently labeled nucleic acids, either simultaneously or serially. For example, sample nucleic acids and reference nucleic acids are each labeled with a separate and distinguishable label. Differences in intensity of each signal at each target nucleic acid spot can be detected as an indication of a copy number difference. Although any suitable detectable label can be employed for aCGH, fluorescent labels are typically the most convenient.

Exemplary methods of visualizing signals are described in WO 93/18186, which is hereby incorporated by reference for this description. To facilitate the display of results and to improve the sensitivity of detecting small differences in fluorescence intensity, a digital image analysis system can be used. An exemplary system is QUIPS (an acronym for quantitative image processing system), which is an automated image analysis system based on a standard fluorescence microscope equipped with an automated stage, focus control and filterwheel (Ludl Electronic Products, Ltd., Hawthorne, N.Y.). The filterwheel is mounted in the fluorescence excitation path of the microscope for selection of the excitation wavelength. Special filters (Chroma Technology, Brattleboro, Vt.) in the dichroic block allow excitation of the multiple dyes without image registration shift. The microscope has two camera ports, one of which has an intensified CCD camera (Quantex Corp., Sunnyvale, Calif.) for sensitive high-speed video image display which is used for finding interesting areas on a slide as well as for focusing. The other camera port has a cooled CCD camera (model 200 by Photometrics Ltd., Tucson, Ariz.) which is used for the actual image acquisition at high resolution and sensitivity. The cooled CCD camera is interfaced to a SUN 4/330 workstation (SUN Microsystems, Inc., Mountain View, Calif.) through a VME bus. The entire acquisition of multicolor images is controlled using an image processing software package SCIL-Image (Delft Centre for Image Processing, Delft, Netherlands).

In some embodiments, the present disclosure provides kits and systems for the amplification and/or analysis of nucleic acids. In some embodiments, kits include reagents necessary, sufficient or useful for analysis and detection of copy number or gene expression changes (e.g., primers, probes, anchors, solid supports, reagents, controls, instructions, etc.). For example, in some embodiments, kits comprise primers and anchors for amplification and sequencing of regions of interest and control regions. In some embodiments, kits include analysis software (e.g., to analyze sequencing data).

In some embodiments, kits comprise one or more containers that comprise reagents, primers, probes, anchors, solid supports, buffers, and the like. In some embodiments, each component of the kit is packaged in a separate container. In some embodiments, the containers are packed and/or shipped in the same kit or box for use together. In some embodiments, one or more components of the kit are shipped and/or packaged separately.

The assays and kits of the can be adapted or optimized for point of care assay systems, including Abbott's Point of Care (i-STAT™) electrochemical immunoassay system Immunosensors and methods of manufacturing and operating them in single-use test devices are described, for example in U.S. Pat. No. 5,063,081 and published U.S. Patent Application Nos. 20030170881, 20040018577, 20050054078, and 20060160164 (incorporated by reference herein for their teachings regarding same).

In some embodiments, systems include automated sample and reagent handling devices (e.g., robotics).

EXPERIMENTAL Example 1 Generation of Probes

UCSC Genome browser was used to identify sequence in the region of the HER2 locus with coordinates hg18 dna range chr17:35004678-35230380. This sequence was downloaded, coded such that regions identified by RepeatMasker were masked as lower case. The 225703 base sequence was treated with a software program that removed all sequence with more than 3 consecutive lower case letters, returning the stretches of repeat-free sequence along with their positions in the original sequence (FIG. 2).

These sequences ranged in size from very small to 5615 bases. Only the longest fragments are selected for generating sequence library. A minimum length cutoff of1200 bp yielded 35 sequences containing 76904 bp of sequence. PCR amplification of each individual sequence is expected to give variable yields of subdomains of sequence depending on the length of the amplicon, therefore sequences were divided into multiple overlapping subsequence, 1200 bp each. All subfragments were designed to include at least 100 bp overlap with neighboring subfragments to accommodate variations in primer positions. This process generated 95 candidate sequences.

For each sequence a primer pair was designed with the web based program “BatchPrimer3” seeking generic primers to generate amplicons with Min 800, Opt 1200, Max 1200; primer length min22, opt 25, max 30; Tm min 65, opt 70, max 75. Primer sequences were downloaded as an xls file and copied into the spreadsheet for adjusting format to make it suitable for placing the order.

Primers were ordered from IDT as Mixed Forward and Reverse primers 12 nmole each dried in deep-well plate. To each well, 240 uL water (5 Prime 2900132) was added to give 50 uM each. Dilutions were prepared as needed for PCR.

PCR of genomic DNA yielded clean 1200mer product for only about half of the wells, therefore a preparation of BAC DNA containing the desired locus was used to generate a much higher success rate. BAC clones in E. coli covering the locus were obtained from Genome Systems, Inc. St. Louis, cultures grown and DNA isolated by “mini-prep.”

PCR Master Mix: A PCR kit containing Phire Hot Start II DNA Polymerase (Thermo F-122L) was used. It contained 400 uL 5×reaction buffer+40 uL 25 mM dNTP (Roche Diagnostics, Indianapolis, Ind.)+40 uL Phire polymerase+60 uL DMSO+1260 uL water+0.5 ug BAC DNA template.

PCR: To wells of a 96 well plate was added 2 uL each primer pair 5 uM+18 uL Master Mix; capped wells, placed on thermocycler with program 98 deg 30 sec, 30×(98 deg 8 sec, 72 deg 30 sec, 72 deg 2 min), 72 deg 10 min, 4 deg. At completion 5 uL of each reaction was sampled into 20 uL water with trace 6×DNA Loading dye (Thermo R0611), 20 uL was transferred to wells of an eGel 96 agarose gel (Life Technologies), and electrophoresed was 8 min. 94 of 96 wells show clean bands at expected MW (FIG. 3).

Extend PCR to maximize yield. To each well containing the remaining 5 uL from electrophoresis sample, 10 uL of the same 5 uM primers+10 uL water+25 uL DreamTaq Green 2×perMM was added, and the tube was capped and placed on a thermocycler with program 10×(95 deg 30 sec, 55 deg 30 sec, 72 deg 2 min) 72 deg 6 min.

At completion, to each well 6 uL of (30 uL 1M MgCl2+192 uL 25 mM dNTP+378 uL water+100 uL DreamTaq Green 2×perMM) was added and the tube was capped and placed on thermocycler with program 6×(95 deg 30 sec, 55 deg 30 sec, 72 deg 2 min) 72 deg 10 min.

The contents of columns were combined to give 6 amplicon mixtures representing different loci of the genomic range, and the DNA isolated by precipitation with isopropanol and resuspended in water, yielding 100 uL solutions containing 52-75 ug DNA.

Fragmentation by sonication: Approx 180 ug DNA 1200-mers from PCR wells 1-48 and 49-96 were combined in tubes with water to give 400 uL, with sodium acetate at 300 mM. The tubs were placed in beaker of ice water in a sonicator cabinet, sonicated (sonicator Branson 450) output control 3, 30% duty cycle 16 min. The sonication products were precipitated with isopropanol and resuspended in 200 uL 600 mM NaCl in 20 mM Tris pH 8.2. The samples were fractionated by HPLC with MonoQ column (GE Life Sciences), BufferA =20 mM Tris pH 8.2; Buffer B=A+2.0M NaCl, 0.4 mL/min % B=40-50 over 32 min, collecting fractions. DNA elutes in a broad peak centered at about 15 min. Fractions were combined to give 7 pools for each. Electrophoresis on a 3% Agarose gel visualized with Ethidium Bromide shows fractions (labeled H15, H18, H21, H24, H27, H30, H33) ranging from about 80 bp to about 400 bp (FIG. 4).

Amination of fragmented DNA: The pooled fractions were concentrated by isopropanol precipitation, resuspended in 20 uL water and denatured by heating lmin in boiling water. To the 20 uL denatured DNA was added 180 uL of a mixture of 1000 uL water, 600 uL trifluoroacetic acid (Sigma, St Louis MO) 348 uL ethylenediamine and 190 mg sodium metabisulfite, and the mixture incubated 20 min at 65 deg. The mixtures were then desalted by sephadex G25 and the desalted product concentrated by isopropanol precipitation and resuspension in water.

The aminated products were labeled with carboxytetramethylrhodamine using its NHS ester (Life Technologies C1171) by means well known in the art. Labeled product was isolated from residual unbound dye by ultrafiltration using 10kDa filters (Nanosep 10 Omega, Pall Corporation, Ann Arbor, Mich.), followed by filtration through 0.22u filters (Millipore UFC3OGV00, Billerica, Mass.).

Preparation of Probes via Adaptor Mediated PCR

Fragments of the desired size were also modified by ligating adaptors, and using the product as a template for PCR using primers corresponding to the adaptor sequence. This provides an efficient means of producing larger quantities of product of the desired size, as well as providing a means of coupling additional functional groups to the product. The process consists of modifying the fragments to give 5′ phosphorylated, blunted ends, followed by ligating adaptors of the desired sequence. The adaptors can be designed to contain restriction sites such that the dsDNA PCR product can be cleaved with appropriate restriction enzymes either to remove unwanted adaptor sequence or to reveal sticky ends suitable for ligating additional groups.

End repair of the fragments was by using the Thermo Fast DNA End Repair Kit K0771 according to directions, starting with 4 ug each fraction H18, H24, H30. Blunted products were isolated using spin columns (Invitrogen K310001) Treatment of 4 ug sonicated, fractionated DNA yielded approx 3.5 ug blunted product H18b, H24b, H30b, with respective concentrations 74, 66, 70 ng/uL.

An adaptor mix was prepared by combining each oligonucleotide G6a, G6b, Gc6a, Gc6b, BsPD, BsTB, BsPDc, BsTBc with 20 mM Tris pH 8.0 and 250 mM NaCl, the mixture heated lmin in boiling water and cooled to room temperature. T4 DNA Ligase (Invitrogen A13726, a kit containing the ligase at 5Units/uL, and reaction buffer) was used to ligate the adaptors to each blunted DNA fraction: to 10 uL blunted DNA fraction was added 5 uL adaptor mix, 2 uL 10×Ligase buffer, 2 uL 50% PEG4000 and luL, and the mixture left overnight at room temp. Adapted products were isolated using spin columns (Invitrogen K310001) eluting in 50 uL elution buffer, and labeled H18T, H24T, H3OT with respective concentrations 37, 39, 30 ng/uL.

PCR of adapted HER2 fractions was performed at 20 uL scale each using luL of the adapted template H18T, H25T, H30T, and a commercial PCR Master Mix (DreamTaq Green Thermo K1081). Each reaction contained a single primer G6a or

BsPD at 5 or 10 uM. Cycling conditions were 24×(95 deg 30 sec, 52 deg 30 sec, 72 deg 30 sec). Products were denatured by adding luL 1M sodium hydroxide to 4 uL product, and analyzed on 3% Agarose/EtBr gel. For all primers and primer concentrations tested PCR products show bands corresponding to the template sizes (FIG. 5).

Products from the PCR shown in FIG. 5 were used as template for amplification using 10 uM BsPD24 primer; 10 uL of BsPD 10-18, BsPD 10-24 and BsPD 5-30 were added to give 800 uL in final 1×Master Mix. These were split to 8×100 uL portions and amplified with cycling conditions 12×(95 deg 30 sec, 60 deg 30 sec, 72 deg 2 min). An additional volume of 2.1 uL of a mixture of 41.5 uL 25 mM dNTP (Roche Diagnostics, Indianapolis, Ind.) and 13 uL 1.0M magnesium chloride (Sigma, St Louis Mo.) were added to each well and the mixtures subjected to an additional 8×(95 deg 30 sec, 60 deg 30 sec, 72 deg 4 min). The combined products were precipitated with isopropanol, resuspended in 200 uL water each and further precipitated with polyethylene glycol to separate PCR product from primers. Final PCR products were dissolved in 200 uL water, labeled H18B, H24B, H30B, concentrations measured at 1126, 1270, 1357 ng/uL.

Restriction digestion of PCR products to decrease adaptor portion: Restriction enzyme BspDI (New England Biolabs Ipswich MA) was used. To 260 uL water, 40 uL 10×CutSmart buffer BspDI (New England Biolabs Ipswich MA), 100 uL of the above PCR products H18B, H24B, H30B, and 10 uL 10U/uL BspDI was added, and the mixtures were incubated for 16h at 37 deg. Reactions were labeled H18R, H24R, H30R.

After a 16 h incubation, samples of each were taken for electrophoresis, comparing digested with undigested products. To wells of a PCR strip were added 8 uL 2×loading dye (Thermo Fisher Scientific), 0.6 uL (H18B, H24B, H30B), 2.4 uL (H18R, H24R, H3OR)+water to 10 uL; Each mixture was split to 2×5 uL each, to all added 4 uL water. To one of each added luL 1M NaOH and heated 95 deg 30 sec to denature. Five μL was loaded each to well of 3% Agarose/EtBr gel and electrophoresed. In the gel image “−” and “+” correspond to absence and presence of NaOH. All digestions show the smaller size and presence of end fragments expected for successful cleavage by BspDI (doublet probably from annealing fragment with residual primer). Denaturation by NaOH shows further decrease in size for both undigested and digested products. Higher MW smears from extended annealing of fragments are eliminated by denaturation.

The products H18B, H24B, H30B, H18R, H24R, H3OR were precipitated with isopropanol, resuspended in 20 uL water and subjected to amination and labeling with carboxytetramethylrhodamine by the procedure described above.

FISH Hybridization Conditions

The targeting probes were hybridized to human chromosomal DNA in lymphocytes bound to glass microscope slides. In a typical experiment the reagent mixture consists of 74, of LSVWCP hybridization buffer (Abbott Molecular (Des Plaines, Ill.)) and 3 μL water containing 2000 ng sonicated human placental DNA, 500 ng COT-1 DNA (Life Technologies™ (Grand Island, N.Y.)), 50 ng of probe CEP17-SG buffer (Abbott Molecular (Des Plaines, Ill.)) and 100 ng of test probe.

The microscope slide was dehydrated by successive immersion in 70% , 85% and 100% ethanol, then air dried. The test solution (10 μL) was placed on the slide and covered with a 22×22mm slip, causing the solution to spread over the covered area. Rubber cement was applied to seal the edges and the slide placed in an instrument that controls the temperature. The temperature was raised to 70° C. for 5 min. to denature the DNA of both the sample and the reagent, then lowered to 45° C. lh to allow time for the reagent to hybridize to its target. After completion of the hybridization time, the rubber cement and slips were removed, and the slide washed 2 min. in a solution of 0.4×SSC and 0.3% NP40 at 73° C., then lmin in 2×SSC, 0.1% NP40 at room temperature, then air dried.

The slide was prepared for viewing by placing 10 uL of a solution of DAPI on the target area and covering with a slip. The slide was viewed with a fluorescence microscope equipped with filters suitable for the fluorophore of interest.

Fluorescence Microscopy of Rsultant Hybridization Patterns

Ten μL of DAPI-II (Abbott Molecular (Des Plaines, Ill.)) was placed on the slide at the position of the target, covered with a 22×22mm slip and viewed under fluorescence microscope equipped with filters that allow simultaneous visualization of DAPI, fluorescein (green) and TAMRA (orange) signals. The photograph (FIG. 7) shows the pattern of orange and green signals consistent with those expected for the HER2 locus (orange) stained by the test probe and the centromeric position stained by CEP17-SG (green). On Metaphase chromosomes the orange and green signals are at adjacent positions on the same chromosome, while interphase nuclei show two strong signals for each, at arbitrary distances. Similar results were seen for probes prepared via Adaptor Mediated PCR of the same HPLC fractions. Removal of the adaptor ends by restriction digestion prior to labeling yielded probe with indistinguishable performance characteristics.

Primer Sequences Used for 1200mer Fragments:

SEQ Well ID Position Name Sequence NO A1 HER2_P_F_01 AAAGGGGCCAGTTATGCAG 1 A1 HER2_P_R_01 GGTCCGTGGAATTGGATTATT 2 B1 HER2_P_F_02 CTGGCGAAGGGGATCTATTT 3 B1 HER2_P_R_02 CATCTGTGTGCGGAATGACT 4 C1 HER2_P_F_03 TTGTCTGGAAGACGCAGAAC 5 C1 HER2_P_R_03 GTGCCAGTCTGTGCCACTC 6 D1 HER2_P_F_04 GGAGTGAGCTGGTTGGTCAC 7 D1 HER2_P_R_04 ATCTGTTCTCGCCAGAGTCG 8 E1 HER2_P_F_05 GGTTTTGCTTTGGCTCTTTG 9 E1 HER2_P_R_05 GACGTGAGAAGAAGGCCAAG 10 F1 HER2_P_F_06 GACCTGACCTAGCAGCCTTG 11 F1 HER2_P_R_06 TCTCTTGGCAACCTTTGCTT 12 G1 HER2_P_F_07 TCACCCAGGGAAACTTTGTC 13 G1 HER2_P_R_07 CCCAGAGATGCTCCAAGAAC 14 H1 HER2_P_F_08 AAAAGAGAAGCAGGCACAGC 15 H1 HER2_P_R_08 ACTTATCCCGAGGCCTGATT 16 A2 HER2_P_F_09 CTGCTCATCACACCATCTCG 17 A2 HER2_P_R_09 CTCCCTGACAAGCAGGAAAG 18 B2 HER2_P_F_10 GGGGTATGTGCCTTGCTCTA 19 B2 HER2_P_R_10 TGACATGTTTAGGGGTGTGG 20 C2 HER2_P_F_11 GGCCAACTCCTTTCTTCCAT 21 C2 HER2_P_R_11 TTGTATTTCGGTGGACTCAGG 22 D2 HER2_P_F_12 TTTCTCTCCCTGCCTTCTCC 23 D2 HER2_P_R_12 GACACCTGGGTTTGATCCAC 24 E2 HER2_P_F_13 GGTTCCCATGGAGACATAGC 25 E2 HER2_P_R_13 GACCTCGGTCTCTCAGCATC 26 F2 HER2_P_F_14 CCGCTCCACCAAAATACATA 27 F2 HER2_P_R_14 GCATTTGACCAAAGGGAAAC 28 G2 HER2_P_F_15 GAGTCCTGCCCCATGCTC 29 G2 HER2_P_R_15 AATACCGGCTCAGGACAGG 30 H2 HER2_P_F_16 CCCCCTCACATCTGACAATC 31 H2 HER2_P_R_16 TGCTGAACAGTTCTCCAGCTAA 32 A3 HER2_P_F_17 ACACGCTGAGCCAGATTGAC 33 A3 HER2_P_R_17 GGCACAAACGAGTACAGCAG 34 B3 HER2_P_F_18 CCCTCCCCATGTGAATTTT 35 B3 HER2_P_R_18 TGGGCTCCTCTCTTTCTCTG 36 C3 HER2_P_F_19 CTTGGCCCCAGGATTTAGA 37 C3 HER2_P_R_19 GGAGACAGGTGTGAGCCTCT 38 D3 HER2_P_F_20 TCCCACTCCTATGAGCAACA 39 D3 HER2_P_R_20 TGGAGTCCAGCAGAGAGGAT 40 E3 HER2_P_F_21 GAAGCATTCAGACCCTCTGC 41 E3 HER2_P_R_21 GCGTGTGTCTCTGCCTCTG 42 F3 HER2_P_F_22 CGAGACGCAGAGACACTCAG 43 F3 HER2_P_R_22 CTGCATCTCAGCTCAGCAAC 44 G3 HER2_P_F_23 GCAAGAGAGTTCCTGGCAGT 45 G3 HER2_P_R_23 GCCCTTCCTCTCTCCAGTTT 46 H3 HER2_P_F_24 GCAAGAGAGTTCCTGGCAGT 47 H3 HER2_P_R_24 GCCCTTCCTCTCTCCAGTTT 48 A4 HER2_P_F_25 AGCACTGTTTGTTCCCTGCT 49 A4 HER2_P_R_25 CTCGGGACTCCTGTGTTTTG 50 B4 HER2_P_F_26 AAAGCTGGAGACTGGGGAGT 51 B4 HER2_P_R_26 GTGCAGATCTGTGCAAATGG 52 C4 HER2_P_F_27 AATTTAACAGGCAGGCAAGG 53 C4 HER2_P_R_27 GTAAGGCAGGAGAGCAGGTG 54 D4 HER2_P_F_28 AAGACCTGGCTCTTGACTGC 55 D4 HER2_P_R_28 CCAAAAGATGGAAAGGAGCA 56 E4 HER2_P_F_29 GGCTCAAGATGAAGCTCTGC 57 E4 HER2_P_R_29 GGCAGAGAATACCCCCTCA 58 F4 HER2_P_F_30 AGCATAGCACCCTGCTCACT 59 F4 HER2_P_R_30 TCTGAGGCCTGGTTCTCATT 60 G4 HER2_P_F_31 CCCTGGAAAGCTTAACCTCA 61 G4 HER2_P_R_31 GCTTCCCCTGAAAGAGGAGT 62 H4 HER2_P_F_32 GGAGGATTCCAAGTCACCAC 63 H4 HER2_P_R_32 GCCAAGAGTCATTGCTGGAG 64 A5 HER2_P_F_33 GTAATGGGGCGTCCTGATAG 65 A5 HER2_P_R_33 TGTCAGAGCGGTACGAAGAA 66 B5 HER2_P_F_34 AGGCTGGAAAGAGGAAGGAG 67 B5 HER2_P_R_34 CCTGCTCCAAGTTCTTACGG 68 C5 HER2_P_F_35 AGAGGAGAGGTGGCATCAGA 69 C5 HER2_P_R_35 AAGGATGGGAGCCGAGTCT 70 D5 HER2_P_F_36 AAGACCCCTGTGCAAGGTTA 71 D5 HER2_P_R_36 CAAGATACCCTGGAGGAGCA 72 E5 HER2_P_F_37 CTTAGCCCCTTGCAGCTCTA 73 E5 HER2_P_R_37 GGGATCTGGGCTGGTCTC 74 F5 HER2_P_F_38 CTGTTCTCCGGTGCTCTGTC 75 F5 HER2_P_R_38 GGGCATGTTGCTCTCTGTTT 76 G5 HER2_P_F_39 AGAGAGAGAACAGGCCACGA 77 G5 HER2_P_R_39 TCTTGTTCCACAGCACCATC 78 H5 HER2_P_F_40 AGAGAACAGGCCACGAACAT 79 H5 HER2_P_R_40 CCCATCTGTGCCTTAAGAGG 80 A6 HER2_P_F_41 GCCGTTGTAGGAGGATTCAA 81 A6 HER2_P_R_41 CAGAGCAATCTGGTCCTCCA 82 B6 HER2_P_F_42 CGTGTTTGCACCTTTGTCTG 83 B6 HER2_P_R_42 ATACAAAGGTCCCCCAGGAG 84 C6 HER2_P_F_43 AGGTGTTGGGGTAGAACTGG 85 C6 HER2_P_R_43 CCCTGCTGGTGGTAGGTCT 86 D6 HER2_P_F_44 GAGGTGTCGGAGGAGAACTG 87 D6 HER2_P_R_44 TATTGCGGCACTAACAGAGG 88 E6 HER2_P_F_45 AGCACAGAGAGGCTGAGAGG 89 E6 HER2_P_R_45 CCTTCCCCTCTGGATGAGTC 90 F6 HER2_P_F_46 CAGTCCTGGCTTCTGTGTCC 91 F6 HER2_P_R_46 TCCCTTAGAACTGCCACACA 92 G6 HER2_P_F_47 CTGTGTCTCGCTCCACACC 93 G6 HER2_P_R_47 CCCCTCCCATCTCTCTTCTC 94 H6 HER2_P_F_48 CAGACCAGAACGAGGGAGAG 95 H6 HER2_P_R_48 GTGGGCATGTGAGATGAGTG 96 A7 HER2_P_F_49 GAAACCAGACCCAGCCATAA 97 A7 HER2_P_R_49 CCAGCCTTGGAGTCTGTTCT 98 B7 HER2_P_F_50 GCCCTGAAAGGGAGTATGGT 99 B7 HER2_P_R_50 GATGATCCTGGGGTCAGAGA 100 C7 HER2_P_F_51 TTGAGGCACACAGCTCTGAC 101 C7 HER2_P_R_51 TCTGTGCCTCCACTGTCATC 102 D7 HER2_P_F_52 ATCCAGGACCCAGAAGAGC 103 D7 HER2_P_R_52 AGCGTCCCTAAAGCCTTGTT 104 E7 HER2_P_F_53 CCATACTCCTCCCAGTGCTC 105 E7 HER2_P_R_53 GGCCAGTTTTCCTGGTACAT 106 F7 HER2_P_F_54 GGAGGAGTAGAGGGCAGGAC 107 F7 HER2_P_R_54 CTCTTCTCACCTCCCCCTTC 108 G7 HER2_P_F_55 TCGTGACAACCAAAGGAACA 109 G7 HER2_P_R_55 CCTCCCAAATCTGAGGAAAG 110 H7 HER2_P_F_56 CCCCATTGTTGTTGTTTTCC 111 H7 HER2_P_R_56 GATTCCAGTTGTGGGCATCT 112 A8 HER2_P_F_57 CCAGGTGATTCATCTCACCA 113 A8 HER2_P_R_57 GGCAGGTAGGTGAGTTCCAG 114 B8 HER2_P_F_58 GTCTTGCCCTGAGGAGGTG 115 B8 HER2_P_R_58 TGATCATGCTGGCAAGAGAG 116 C8 HER2_P_F_59 AGCATCTGGACCTAGCATGG 117 C8 HER2_P_R_59 GCACAAAGCAGAGGCACATA 118 D8 HER2_P_F_60 CCTGCTGCCTCTTCTCTCAG 119 D8 HER2_P_R_60 CATGACCAGCTCTCAAAGCA 120 E8 HER2_P_F_61 GGCTTTGAAGCCCAGGAT 121 E8 HER2_P_R_61 GACCGCAGGGGACTTTTAG 122 F8 HER2_P_F_62 GCCCACCTTTCTCCCATAGT 123 F8 HER2_P_R_62 ACCCTAGCACAGCCACAGTC 124 G8 HER2_P_F_63 GCTGTGGTTTGTGATGGTTG 125 G8 HER2_P_R_63 GGGATCCCATCGTAAGGTTT 126 H8 HER2_P_F_64 AGGACCTGCTGAACTGGTGT 127 H8 HER2_P_R_64 CCTCAAGAGTGGCTTTGGAC 128 A9 HER2_P_F_65 CCAAAGGTTCTGGCTGAAGA 129 A9 HER2_P_R_65 GGCAACGTAGCCATCAGTCT 130 B9 HER2_P_F_66 CAGCTCATCTACCAGGGTCA 131 B9 HER2_P_R_66 CTTGATGCCAGCAGAAGTCA 132 C9 HER2_P_F_67 CTTCCCCTAATGGGTCACCT 133 C9 HER2_P_R_67 CTGGATGTCTGGCTCCTCAT 134 D9 HER2_P_F_68 CTCGTTGGAAGAGGAACAGC 135 D9 HER2_P_R_68 TAGAAGATTCCGTGGCCTTG 136 E9 HER2_P_F_69 CCCTTTGACGACCAGATCAT 137 E9 HER2_P_R_69 GCAATCGTGTAGGGTTGGAG 138 F9 HER2_P_F_70 TTCCTAAGGCCACTCACCAG 139 F9 HER2_P_R_70 GCCTGTGGGGAAAAACCTAT 140 G9 HER2_P_F_71 CCAGAGCTTTCTCCAGGTCA 141 G9 HER2_P_R_71 GAGACCCAGCCTTTCCCTAC 142 H9 HER2_P_F_72 CCGCCTCTGACTTCTCTGTC 143 H9 HER2_P_R_72 TGCATTCATTCTCTGTCCTCA 144 A10 HER2_P_F_73 CTCTCCTCCGACTTGGCTTT 145 A10 HER2_P_R_73 ATCAGTTTGTCCCCTCAACG 146 B10 HER2_P_F_74 ACTGCAGAGACACTCCAGCA 147 B10 HER2_P_R_74 CCCTGTGTGGATGAAGTTCC 148 C10 HER2_P_F_75 CTGGCCCTCTCTGATCTCTG 149 C10 HER2_P_R_75 TCACTTATAGGGGCTGCACA 150 D10 HER2_P_F_76 CTAACCCCTTCCAAGCACTG 151 D10 HER2_P_R_76 ATCCACCCATTTGTCTGAGG 152 E10 HER2_P_F_77 TCATTCTGTCCTTCCCCAAG 153 E10 HER2_P_R_77 GTTTTTCCGGAAGACGAAGC 154 F10 HER2_P_F_78 CCTCTGCCTGAGGAGGTAAA 155 F10 HER2_P_R_78 GCACAGGACTTAAGGGTGGA 156 G10 HER2_P_F_79 CAAGTCCTGCTCACTCATGC 157 G10 HER2_P_R_79 CCAGCACCTCAGGAAGGTAG 158 H10 HER2_P_F_80 ATCGAAGGCAGAAACACAGC 159 H10 HER2_P_R_80 CTGGTGAGGAGGACAGGTTG 160 A11 HER2_P_F_81 CCTCTCGACCTCAAGCTCTC 161 A11 HER2_P_R_81 CTTCTTGTGCAGGGAAAAGG 162 B11 HER2_P_F_82 CTGGACAGGTGGTGAAATGC 163 B11 HER2_P_R_82 GGGCTCTGGGAAGGAGTTAG 164 C11 HER2_P_F_83 GGGCTGGGACCTCAGATACT 165 C11 HER2_P_R_83 TTCGAGAACGCTTGTGGAG 166 D11 HER2_P_F_84 GCCCCACACATCTACTGGAG 167 D11 HER2_P_R_84 GCTTCACAGCTCCCTCCTC 168 E11 HER2_P_F_85 GTTGGGGTAGGGGAGGATAC 169 E11 HER2_P_R_85 CAGCTGCACTTCTGAGAAACA 170 F11 HER2_P_F_86 ACAGGCACACATGGAGACAG 171 F11 HER2_P_R_86 TTTCAGCCCTGGAGAGAAGA 172 G11 HER2_P_F_87 GGCCAGTGTTTCTGGTCTTC 173 G11 HER2_P_R_87 CCTGGTTCCACTGGTCCTTA 174 H11 HER2_P_F_88 GCCTAGCCCCACATTTGTTA 175 H11 HER2_P_R_88 ACACGTGTGGTCTGTGGATG 176 A12 HER2_P_F_89 CGGGATGAAACCCTTCTACA 177 A12 HER2_P_R_89 TTTTAATGCACAAGGGCAGA 178 B12 HER2_P_F_90 CTTACAGGGTTCCAGCAAGG 179 B12 HER2_P_R_90 AGGGGTGGTGTGCATTATGT 180 C12 HER2_P_F_91 CCAGCATTTTGTGACCTCCT 181 C12 HER2_P_R_91 GCTGTGTTCACAGGGGTAGC 182 D12 HER2_P_F_92 TTTCACTGGAGATGGGAAGG 183 D12 HER2_P_R_92 TGTATCCCATAGCCCTCACC 184 E12 HER2_P_F_93 ATACCGATCATGGCTTCGAT 185 E12 HER2_P_R_93 AGTGTCCCCACTCTTTGCAG 186 F12 HER2_P_F_94 CGCTTCTCACCTGGAACAAG 187 F12 HER2_P_R_94 GGGCAGTGACAAATTTTGGA 188 G12 HER2_P_F_95 GTTAAGTTGCCTGCTGCTCA 189 G12 HER2_P_R_95 TGGAGACACCTCAAGAACAGG 190

Sequences used in adaptor modification and adaptor mediated PCR

SEQ ID NO BsPD CTCTACCATCGATCACAGTG 191 BsTB CTCTACCTTCGAAGAACGAC 192 BsPD24 CCAGCTCTACCATCGATCACAGTG 193 BsTB24 CCAGCTCTACCTTCGAAGAACGAC 194 BsPDc6 CACAGTG 195 BsTBc6 GAACGAC 196 BsPDc CACTGTGATCGATGGTAGAG 197 BsTBc GTCGTTCTTCGAAGGTAGAG 198 Gc6a CACTTCTCTC 199 Gc6b CACTCACATT 200 G6a GGAGATGAGTGGATGGGAGAGAAGTG 201 G6b GTGGTAGGAGGGATGAATGTGAGTG 202

Example 2

Designs were carried out using model targets p53, HER2 and p16 based on available BAC probes for comparison. Genomic sequence corresponding to the targets, with repeat sequence flagged for removal, was identified with UCSC Genome Browser.

For PCR probes, computer applications were used to isolate the repeat-free portions of the sequence, and to identify fragments to target for preparation as “kilomers”. The web based application “BatchPrimer3” was used to generate primer sequences to amplify as much of each kilomer sequence as possible, and the identified primer sequences were synthesized by IDT in a 96-well format. For Oligo and Oligo-PCR hybrid probes, the repeat-free portions of sequence were further processed to identify fragments of specified size and GC content. Excel spreadsheets were used for such processes as appending common adaptor sequences, sorting and formatting the sequence lists for placing synthesis orders.

Bulk DNA, which ends up in the final probe, was generated either by oligo synthesis, Oligo-PCR hybrid, or by 1- or 2-step PCR. The 1-step PCR method is as follows: After PCR using BAC or genomic DNA template the products are combined and fragmented by sonication to give a product that can be chemically labeled by the same process used for BAC based FISH probes. FISH probes made this way are structurally identical to the AM BAC probes—the only difference is that the PCR probes exclude the repeat sequence and vector sequence present in BAC DNA. The 2-step method is as follows: The sonicated product is ligated to adaptors to make a single template mixture containing all the chosen targeting sequence. This template can then be used in a single PCR reaction using a single set of primers to generate bulk DNA for amination and labeling. In this case sonication is no longer needed since the amplified product is already the desired size. The template is prepared once, stored indefinitely and samples taken for each new preparation. The adaptor sequences are present at the 5′ and 3′ ends of the product. While they can be removed by restriction digestion, testing shows that their presence does not damage the performance in FISH assays.

Amine groups for attachment of fluorophore labels were introduced either byinclusion of aminoallyl dUTP in the PCR reaction, or by chemical amination. The chemical amination was performed by the bisulfite/TFA/ethylenediamine process used

with AM probes, but with the exception that a small amount of tetramethylethylenediamine was added after desalting the reaction mixture, but prior to ethanol precipitation. This displaces residual unlinked ethylenediamine that would otherwise compete for fluorophore in the labeling reaction.

Labeling the aminated DNA with fluorophore was done by a modification of an established process more suited to the numerous small scale reactions. In this modification the aminated DNA is combined with a reaction buffer of tetramethylethylenediamine and sodium chloride in 25% DMSO, the active fluorophore added and the mixture is incubated 2h at 60° C. The product is isolated by ethanol precipitation and subjected to 75° C. 72h formamide treatment standard.

HER2 PCR Probes:

For HER2 PCR probes, three variants were generated, all using 76 kb of repeat-free sequence. For the simplest “1-step PCR” probe, the PCR generated DNA was treated the same as BAC DNA in conventional probes: fragmentation by sonication, followed by chemical amination and labeling. For the “2-step PCR” probe, the sonication fragments were ligated to adaptors to make a template. This template was amplified with a single primer to generate bulk DNA ready for amination and labeling. In the third format, “2-step PCR with aminoallyl dUTP”, this same template was amplified with a primer pair in the presence of aminoallyl dUTP to generate the aminated product, ready for labeling with any desired fluorophore.

Generation of repeat-free sequence in HER2 locus:

Sequence for the HER2 PCR format was identified using the locus defined by the P1 clones pVYS 174 C, E, H, I. These clones include 226 kb at hg18_dna range chr17:35004678-35230380. These coordinates were entered into UCSD Genome Browser, and the corresponding sequence presented using the Repeat Masker function to give the portions known to be repeat sequence in lower case. The upper case “unique” sequence portions were copied using an application to select out the upper case unique subsequences, retaining the position information of each. This yielded 35 sequences longer than 1200 bp (1234 to 5615 bp), totaling 76904 bp. These were processed with another application to break all the sequences into a total of 95 sequences, 1200 bp each, with at least 300 bp overlap. The 1200 bp sequences were entered into the web based application “BatchPrimer3”, with settings adjusted to give primers with Tm at least

  • 65 deg, to include as much as possible (at least 800 bp) of each sequence in the amplicon.
    The identified primer sequences were synthesized and placed as primer pairs in 96-well plate format. The primers were dissolved in water and prepared to give 5 uM each primer, while still in the 96-well plate format. PCR was in a 96-well plate in the same format as the primer pairs, using a master mix containing Phire polymerase, template consisting of a mixture of the P1 clones pVYS 174 C, E, H, I, and primers at 0.5 uM.

(Note, Genomic DNA can be used as template, but locus specific clones such as BACs and PAC's are preferred). The products were analyzed by 96-well eGel, and show strong clean bands for 94 of the 95 wells. When Taq polymerase was used only 87 of the 95 reactions showed product.

Fragmentation of HER-2 repeat-free sequence:

The contents of the PCR wells were combined and the DNA 1200mers were isolated by ethanol precipitation and PEG precipitation. The 1200mer mixture was sonicated by the same means used for fragmenting BAC DNA for other AM probes, and the sonicated product fractionated by HPLC with an ion exchange column to give narrow size fractions ranging from about 120 to about 400 bp. In some embodiments, the fractionation step is elminated

HER-2 probe from 1-step PCR process:

To prepare Probe 5/13-76A the fraction centered at 150 bp was aminated by a standard procedure and labeled with Spectrum Orange.

HER-2 probe from 2-step PCR process:

To prepare a HER-2 probe from the 2-step process, a portion of the same 150 bp HPLC fraction was treated with a blunting agent and ligated to adaptors. The adapted product was used as a template in a second PCR reaction, this time using only a single primer, with sequence corresponding to the adaptor. The use of a single primer to amplify the adapted template suppresses amplification of the shortest fragments via a stem-loop structure, and gives a product enriched in the longer fragments. The PCR product was aminated and labeled with Spectrum Orange, then subjected to 75° C. 72h formamide treatment.

HER-2 PCR probe via aminoallyl dUTP amination:

To prepare a HER-2 PCR probe via aminoallyl dUTP amination, the HPLC fractions of sonicated 1200mer were recombined (to simulate unfractionated fragments), treated with blunting agent and ligated to adaptors containing common 5′ end containing a BspQI restriction site. The adapted product was used as template in a second PCR reaction, this time using two primers corresponding to the adaptor sequences, and with aminoallyl dUTP replacing half of the dTTP. The PCR product was treated with the restriction enzyme BspQI to digest off the common ends, and the DNA product labeled with Spectrum Orange, then subjected to 75° C. 72h formamide treatment.

HER-2 Oligo probe:

Design of the HER-2 oligo probe started with the same repeat-free sequence as the HER2 PCR probes. An application was used to select non-overlapping 80-base portions of this sequence, all with approximately 50% GC content (G+C min =39, max

=41). A total of 401 such sequences were found. These were entered into the web application QuickFold with parameters Na+=0.05M, Mg++=0.001M, maximum of 1 Folding and the results copied as text and deltaG. The Find feature of Excel was used to flag sequences containing certain restriction sites for removal (to allow these sequences to be used in adaptors without interference with target sequence). The remaining sequences were sorted by deltaG, and the 288 (three 96-well plates) with lowest tendency to fold were selected for further processing and sorted by genomic location. The 80mer sequences were joined in pairs via a common 20 base connecting sequence and a different common 20 base was also added to the 3′ end of the pair, bringing the total to 200 bases to be synthesized. All 288 of the 80mers (Figure were represented in 144 separate “Forward” 200mers. The complements of the target 80mers and common 20mers were also calculated, and assembled the same way to give 144 separate “Reverse” 200mers. The assembly of these was designed such that upon mixing the sequences should duplex in a staggered fashion, giving long chains of annealed product.

Nucleic acids were chemically aminated by the procedure above, and labeled with Spectrum Orange. The labeled products were purified by gel electrophoresis to remove truncated synthesis products, and the full-length products combined to give the final probe.

Design of additional HER2 Oligo Probes started with the same sequence as for HER2 PCR probes, masking repeat sequences. Additional masking was introduced to flag for removal other undesirable subsequences: 5 or more consecutive “G” or “C” bases, and sequences corresponding to the BspQI restriction site “GCTCTTC” and “GAAGAGC”. The remaining sequence was processed to identify 60 base stretches with 55-65% GC. Very few acceptable sequences were found in the downstream 40 kb of the sequence, so only those in the range 1-180 kb were carried to the next stage. To the 3′ end of each sequence was added the bases “GGTTGAAGAG” polymerase using a complementary primer. The web based application “Zipfold” was used to determine the energy of folding. Of the 1027 60-mers assessed, the 960 with the lowest tendency to fold were retained. These were separated into 5 groups (192 members each =two 96-well plates) according to energy of folding, with each group sorted by position in the overall genomic sequence. The oligonucleotides were dissolved in water, and combined into groups according to folding tendency. Samples of each group were annealed with a primer containing sequence corresponding to the common 3′ end and Phire polymerase to elongate each to a blunt ended duplex mixture. These were purified by ion exchange HPLC to remove products of truncated oligomers..

p53 PCR Probes:

Same as with the HER-2 probes, the p53 PCR probes were designed based on the sequence of the BAC for the corresponding BAC p53 probe. Kilomers were generated by PCR, combined and fragmented by sonication. For the 1-step PCR probe the sonication fragments were simply aminated and labeled. For the 2-step PCR variants the sonication fragments were blunted and ligated to adaptors to make the template. To generate bulk DNA for amination and labeling the template was amplified using primers corresponding to the adaptor sequences. Bulk DNA containing the amines for labeling was prepared from the same template but including aminoallyl dUTP in the reaction mixture. For an additional variant, the adaptor sequences were removed by digesting the PCR product with a restriction enzyme specific to a recognition site included in the adaptors.

Generation of repeat-free sequence in p53 locus:

Sequence for the p53 PCR format was identified using the locus defined by the BAC clone pVYS 173i. This clone consists of of 172 kb at hg18 dna range chr17:7435119-7606823. These coordinates were entered into UCSD Genome Browser, and the corresponding sequence presented using the Repeat Masker function to give the portions known to be repeat sequence in lower case. Table 1 below shows primer sequences.

TABLE 1 SEQ ID Direction Name Sequence NO. 1 01 FORWARD p53 AF01 TCCCCTCACGCTTCTCCTTCAGTTC 203 2 01 REVERSE p53 AR01 AGGGTCAGGGATTGGGGAGCTAGTG 204 3 02 FORWARD p53 AF02 TGATGAGGGGAAGGCTGTCTACCTGA 205 4 02 REVERSE p53 AR02 GCTGACTCTCAGCCCCTCCTCCAG 206 5 03 FORWARD p53 AF03 GTGAGGGGCGAGAAACAAGACAAGC 207 6 03 REVERSE p53 AR03 TGCAGAAGGGAAGAAGGTTGTTACGC 208 7 04 FORWARD p53 AF04 GCCCAGCCTTAACCCCAGAACTCAG 209 8 04 REVERSE p53 AR04 GCATCGGAACTCTGCTCATGGAAAG 210 9 05 FORWARD p53 AF05 ATGGCTCTGCTGACCCAACAAACAG 211 10 05 REVERSE p53 AR05 AAAACAGGATGGCCTGGCTCAGTTC 212 11 06 FORWARD p53 AF06 TCCCCATTTCTTGGAGTGGGATTGA 213 12 06 REVERSE p53 AR06 TTATAAGCCACTCGGAAGCCCCTCA 214 13 07 FORWARD p53 AF07 GGAGCCCTTAAGCAACTAGCCTCTCTCC 215 14 07 REVERSE p53 AR07 GGGCTGGCCATAGCGAAAAACACTA 216 15 08 FORWARD p53 AF08 AAAGTGTGAAAAGCGCCTGCCCATC 217 16 08 REVERSE p53 AR08 CCTGGGGTTCAAAAACAGCCTGACT 218 17 09 FORWARD p53 AF09 GGGCATCACTTTCTTTTCCCCCATC 219 18 09 REVERSE p53 AR09 TTGAAGATCTGGCAGGCAGTGATCC 220 19 10 FORWARD p53 AF10 CGGTCCTGCTCTGGTCAATAAAGGA 221 20 10 REVERSE p53 AR10 GACCCTAGCCGGGCTGTCCCTAC 222 21 11 FORWARD p53 AF11 GGGCCTTCACCTTGATAGGCACTCG 223 22 11 REVERSE p53 AR11 AGCTAGCAAAGGGGGAGATTGCACA 224 23 12 FORWARD p53 AF12 CAGTCACTTCGTCGCGGCTAAAACA 225 24 12 REVERSE p53 AR12 GGAGCTGAGCTGTAGTCTCCGAGCA 226 25 13 FORWARD p53 AF13 CAGAAAGGGTCACCCCCTTATGTCG 227 26 13 REVERSE p53 AR13 GAACCAAGCATTTCATGGCTCACAA 228 27 14 FORWARD p53 AF14 TTGTGGACTGTCCCTGACCTGGGTA 229 28 14 REVERSE p53 AR14 CTCCTGCCATAGGACCCAAGCTACG 230 29 15 FORWARD p53 AF15 ATGAGCACCTGCCTCTCTCTGCTCA 231 30 15 REVERSE p53 AR15 CATGCATCTTCTCGGTGAGCCAGTC 232 31 16 FORWARD p53 AF16 TGTTAAGCCGTGGATTCAAGGACCA 233 32 16 REVERSE p53 AR16 GTTTTCCCTGTTGGTGGGAAGGTCA 234 33 17 FORWARD p53 AF17 CCATCACCCAGGCAGTCATCTTCAT 235 34 17 REVERSE p53 AR17 TGAGGAGAGCCTCTGGGATCTGGAG 236 35 18 FORWARD p53 AF18 TGACCTTCCCACCAACAGGGAAAAC 237 36 18 REVERSE p53 AR18 TTGCTTGGCAGTTGTGGCAAGTAGC 238 37 19 FORWARD p53 AF19 AACCTCCAGATCCCAGAGGCTCTCC 239 38 19 REVERSE p53 AR19 GGCTCTTGGTAGTCCTGTGGCTGGT 240 39 20 FORWARD p53 AF20 CAGTCGGGAGAAGGGAGGGAGAGAA 241 40 20 REVERSE p53 AR20 CACCACGTGCTGGGCAGAGACTT 242 41 21 FORWARD p53 AF21 AGGCCAGCAGAAGAGCCCGATTAAA 243 42 21 REVERSE p53 AR21 GCGCTGTTGGAATTGTAAAGCTTGC 244 43 22 FORWARD p53 AF22 CCAGGTAGTCCAAGGTGCCCTTTCC 245 44 22 REVERSE p53 AR22 CGGTGACTTCCCCACTGGCACTAAT 246 45 23 FORWARD p53 AF23 GCGGAGAAAGGCAGGGGTGTAAATC 247 46 23 REVERSE p53 AR23 ACACTCTGACTGTCCCTGGCCCCTA 248 47 24 FORWARD p53 AF24 TGGAGGTGATCTTGAGAAGGGGTGA 249 48 24 REVERSE p53 AR24 TCAGATGGGGAGAACCCTGAGGTTG 250 49 25 FORWARD p53 AF25 GCCAGCTCTCAGCCATCACAGTCTT 251 50 25 REVERSE p53 AR25 CCTCTAACCCTCATGGACGCAGACC 252 51 26 FORWARD p53 AF26 GACTGAGTCTGGACGGCAGAGTGGA 253 52 26 REVERSE p53 AR26 GCCCCTCTTCTGGAGCCTTGGTG 254 53 27 FORWARD p53 AF27 ACGGCTGTTTTCCTCTTGGGGAGTC 255 54 27 REVERSE p53 AR27 GCAAAGGCTCCGGTTTAAGCTCTGG 256 55 28 FORWARD p53 AF28 CTTCTCGTCCTCGTCCAGCAGCTT 257 56 28 REVERSE p53 AR28 CCCAAGCACCTGCTGGAATGACTC 258 57 29 FORWARD p53 AF29 TGGCAAGTTTTAGCTTCAGTCGTCCA 259 58 29 REVERSE p53 AR29 GACCTGCGCTGGAGCTGCTCTTATC 260 59 30 FORWARD p53 AF30 AAAGAAGGCACAGGAGCCAGACAGC 261 60 30 REVERSE p53 AR30 TCTTAATCTCCTGCCTTCCCCAGTGA 262 61 31 FORWARD p53 AF31 GGGGTGCAGGTTGGAGGTTTTATGA 263 62 31 REVERSE p53 AR31 GCTCAGGTACCAGACAGCTGGGTTC 264 63 32 FORWARD p53 AF32 CACTGAACCCGAACCCCTGATTTTC 265 64 32 REVERSE p53 AR32 ATTGATGAGCAGCTTCGGCAGATTG 266 65 33 FORWARD p53 AF33 AGCTCGGTTGGGCTCCTCTCTCTTC 267 66 33 REVERSE p53 AR33 GATTGTCCTCTGAGGGCTGGGATTG 268 67 34 FORWARD p53 AF34 CCAAGCGAAGCTGCTCTACCTCCTG 269 68 34 REVERSE p53 AR34 TCTTCCTTTAGACTCCCGAGGCTTGC 270 69 35 FORWARD p53 AF35 ATGGAAGGCAAATCGCCTGAAACTG 271 70 35 REVERSE p53 AR35 CGGAGGTAGGCCCTTCTCTCTCGAC 272 71 36 FORWARD p53 AF36 AACCCCAGGCCCTGCTCCATAGTAG 273 72 36 REVERSE p53 AR36 ATGCATGGCTTTGGCCTCCTTAGTG 274 73 37 FORWARD p53 AF37 TGAAGTACAGGCAGAAACCACCCAAGA 275 74 37 REVERSE p53 AR37 TCAGGCCATTATTGTCCCTGGCTTG 276 75 38 FORWARD p53 AF38 CTGGGCAAAGGGGGAGGTGAAATAA 277 76 38 REVERSE p53 AR38 GGCCCGCACTCAGACTGCTGCT 278 77 39 FORWARD p53 AF39 CCCAACACCACATCAGGACATGTAA 279 78 39 REVERSE p53 AR39 GCCGAATTCGAAAAACTCTCGGATCA 280 79 40 FORWARD p53 AF40 CCCCCTCCATATACCCTTGCTTCTTCA 281 80 40 REVERSE p53 AR40 CCGGAATCCCAGCTCCACTTACCAG 282 81 41 FORWARD p53 AF41 CTTCTGGAAGCCTGTGGGGAGACCT 283 82 41 REVERSE p53 AR41 ATGCAAATGCCCCCAAGAGGTAACA 284 83 42 FORWARD p53 AF42 CACATAAGGAGGTGAGTTCCGACGTG 285 84 42 REVERSE p53 AR42 AACTGCGATGAAAAGGGGTGCTGTC 286 85 43 FORWARD p53 AF43 GCGGGCCCAACCTCTCCATATTTAC 287 86 43 REVERSE p53 AR43 AGGCCCCGAGAGGGAGTGTGAG 288 87 44 FORWARD p53 AF44 CTTTTGGGTGTGTGGAGGGCTTCAG 289 88 44 REVERSE p53 AR44 ATCCCAGGGGCTGGAGTTTGAGTTC 290 89 45 FORWARD p53 AF45 GGTTCTTCACGGCGGAAGTTGTCTG 291 90 45 REVERSE p53 AR45 TCCTGGTCCTAGGGCACAGTGAAGC 292 91 46 FORWARD p53 AF46 TCTGAGATGGAAGGATTGGGAGTCCA 293 92 46 REVERSE p53 AR46 TGAGGGACTGCACACAGAGGGAAGA 294 93 47 FORWARD p53 AF47 GGCTCTGTGATCAGTCCCAGTGCAG 295 94 47 REVERSE p53 AR47 GCATCCAGCCTTCTAACTGCAGAGC 296 95 48 FORWARD p53 AF48 TGGGAAGAAACTGCGGAATGAAACA 297 96 48 REVERSE p53 AR48 AGGAGTGGAGCTTTGGGGAACCTTG 298 97 49 FORWARD p53 AF49 AGTGAGCTGCTCCGGCAAAAAGAAA 299 98 49 REVERSE p53 AR49 GCAAAAGCTTTCTTCCTTCCACCCTTC 300 99 50 FORWARD p53 AF50 GGGAGACAGGTCTGAAGCCTGGAGAA 301 100 50 REVERSE p53 AR50 TTGGGTGCTGAACTCTGACCAGGAA 302 101 51 FORWARD p53 AF51 AAAAATGCGGACTCTGAACTGATGC 303 102 51 REVERSE p53 AR51 TGCTGCCACAAGAAATTCACTACTTTTT 304 103 52 FORWARD p53 AF52 GTGCGCGAGGTGAGGGAGGTGT 305 104 52 REVERSE p53 AR52 GCTGTGGGGAAGAGTTGGGAGACAG 306 105 53 FORWARD p53 AF53 CGGGCACAGCAGGAAGCAGGTC 307 106 53 REVERSE p53 AR53 GAAGTGGGATCCGCATGTAGGCAAG 308 107 54 FORWARD p53 AF54 CCAGCCTCCCTCACACTTCTCTGCT 309 108 54 REVERSE p53 AR54 CCTGGAACCTATGGGGAGGAGGGTA 310 109 55 FORWARD p53 AF55 ACTGGTCTGGACCACCCTCCACACA 311 110 55 REVERSE p53 AR55 GAAGACCCAGAGAGGGGCTGAGACA 312 111 56 FORWARD p53 AF56 TGCCCCAAACCTCCTTCTCACTTGT 313 112 56 REVERSE p53 AR56 CTGCCACGCCCAGCAAGAGCAG 314 113 57 FORWARD p53 AF57 ACCCTCCCTCCCTCTTCAGTTTTGG 315 114 57 REVERSE p53 AR57 GCCAACCAAAAGGTGGGCTGTTC 316 115 58 FORWARD p53 AF58 CCCCTTCTGCCCCCACTATGAGAA 317 116 58 REVERSE p53 AR58 TGAAAGGAAGTTCTTCCCGCCCTTC 318 117 59 FORWARD p53 AF59 AACCACTCCCCTCAGTCTGCCAAAA 319 118 59 REVERSE p53 AR59 CCGCCACCATGGCAATATCAACTTC 320 119 60 FORWARD p53 AF60 TGGACTTGAATTGGGACAAAGGCTTG 321 120 60 REVERSE p53 AR60 TTCCCTCTTGTCTCTCCACCTGTGC 322 121 61 FORWARD p53 AF61 GAAGGGATGTGGCTGATCAGAAGGA 323 122 61 REVERSE p53 AR61 TCCTGTGCCTGTAGTCGTTTTGCTG 324 123 62 FORWARD p53 AF62 AGTGGGAATTTCTGATGCGGAATGG 325 124 62 REVERSE p53 AR62 GGGAAAGGGAGCCAGAGGCTAAGGT 326 125 63 FORWARD p53 AF63 GTGGCTGCCTCCTCCCTCATCAAT 327 126 63 REVERSE p53 AR63 TGCTCAATCCGATTAAACGCTGCTG 328 127 64 FORWARD p53 AF64 CCAGCTCACCCCAAATCTGCTGTTC 329 128 64 REVERSE p53 AR64 TGGCAGTCCCTGGTACTCCTGAAGA 330 129 65 FORWARD p53 AF65 TGCAACCCTGGCTGTTTCTCTAGCC 331 130 65 REVERSE p53 AR65 GGGAAGACGGGAACTGGAGTTTTGG 332 131 66 FORWARD p53 AF66 ATTTTTAGCCCAGTGCCCCGAAGAC 333 132 66 REVERSE p53 AR66 GTGCTCTCAGGGAGATCCCAGCAAT 334 133 67 FORWARD p53 AF67 CAAGGAGGAGCCTGGTGGGTACTTG 335 134 67 REVERSE p53 AR67 GGAGCTGGGAGAGGCAGAAATCCTT 336 1 01 FORWARD p53 BF01 GCCATGGAAACGTCACAGTTCATCC 337 2 01 REVERSE p53 BR01 CTGCGTGGGGGAAGGACACATTGTA 338 3 02 FORWARD p53 BF02 TCCACCTCCAAGCCCAGATTCAGAT 339 4 02 REVERSE p53 BR02 ACTTTGCCCAAAGACCCCTGTGTG 340 5 03 FORWARD p53 BF03 ATTCCAACCAGCCTCTTCCGCTGAC 341 6 03 REVERSE p53 BR03 AGACGGTGAAGGTGGGGACCAATTT 342 7 04 FORWARD p53 BF04 TTCTCCTCCACCATGTTAGGCTTGG 343 8 04 REVERSE p53 BR04 CAGGGCGCAATCTTCCTACTCCAAA 344 9 05 FORWARD p53 BF05 CAACAGGGCCCAATTCTGAGAGAGG 345 10 05 REVERSE p53 BR05 GGGACTTTTTCTTCTAGCCTGCCTCCA 346 11 06 FORWARD p53 BF06 GGCAGAAAATGCTAACCTGCCCAGA 347 12 06 REVERSE p53 BR06 CCCATTTTTGCCTTACTTCCCTCATCA 348 13 07 FORWARD p53 BF07 GGCCTCTGATTTTGCTTCCCACCTT 349 14 07 REVERSE p53 BR07 CCTGCTTGAGTCCCAGGTCCAAAGA 350 15 08 FORWARD p53 BF08 CAGGGGTGGAACCCTAGCCAAGACT 351 16 08 REVERSE p53 BR08 GTTCCCTGGGCTGGAAACCTTCCTA 352 17 09 FORWARD p53 BF09 ACAGAGGCAAGGACAGGGACTGAGC 353 18 09 REVERSE p53 BR09 TGGCCATCTGCTCCATCAGAAAGTG 354 19 10 FORWARD p53 BF10 AAGGGGCTCCTGCTTGCACCTTC 355 20 10 REVERSE p53 BR10 GGAACAAAGGCTGGAGACTGGGTCA 356 21 11 FORWARD p53 BF11 TGAGCTCCTCAACCCGACTCTCCTC 357 22 11 REVERSE p53 BR11 CATCTGCATTTTCACCCCACCCTTC 358 23 12 FORWARD p53 BF12 TCAGGCAAAGTCATAGAACCATTTTCA 359 24 12 REVERSE p53 BR12 TTAACCTGTGGCTTCTCCTCCACCT 360 25 13 FORWARD p53 BF13 GGTTTCTTCTTTGGCTGGGGAGAGG 361 26 13 REVERSE p53 BR13 TGGCCTCATCTTGGGCCTGTGTTAT 362 27 14 FORWARD p53 BF14 ACCCTGTCAGCTGTGGAGCTTTTGG 363 28 14 REVERSE p53 BR14 AGATCCCAGCACAGGAGCTCAGCAT 364 29 15 FORWARD p53 BF15 CAGAGCGGCATCATCTCCTGCATAG 365 30 15 REVERSE p53 BR15 TCCTTCTGGGGCAGAAAACTCAACA 366 31 16 FORWARD p53 BF16 CTGCACCCTAGCCTGCCTCTCCTG 367 32 16 REVERSE p53 BR16 AGGAGAGTGCTCCTGCTCCCCTCAG 368 33 17 FORWARD p53 BF17 GCATATGAGTGAGGTGGGGGACCAG 369 34 17 REVERSE p53 BR17 TCGTCCCTTCCCTTTGATTGTGAGG 370 35 18 FORWARD p53 BF18 TGAGCAGGAGCTGGGTCAGACTGTT 371 36 18 REVERSE p53 BR18 CCAAGTGCTGTTGTTACCTGGGGGTTA 372 1 01 FORWARD p53 CF01 AGGGATGGGCCCTGAGACCTGTT 373 2 01 REVERSE p53 CR01 GCCCAGTGATTGTGCAGTTGGATCT 374 3 02 FORWARD p53 CF02 TGTCTGTCTCTGACATGTCCCTACTCAGC 375 4 02 REVERSE p53 CR02 GTTCCCTTTCCTCAGACCAGCTCCA 376 5 03 FORWARD p53 CF03 GGATGGCACTCAGGTGGGTGGTAG 377 6 03 REVERSE p53 CR03 CCCAGAGGTTTCCTTCCCCTCAAAA 378 7 04 FORWARD p53 CF04 GCCAGTAGGTGGAGGCATAGCGAAG 379 8 04 REVERSE p53 CR04 GAGGGAGGTAGTGCAAAGGTGGCATT 380 9 05 FORWARD p53 CF05 CTGGTCTTGGGACTCCCTCTTCAGC 381 10 05 REVERSE p53 CR05 GGTGGAGCTTTAATGGGAAGCGTCA 382 11 06 FORWARD p53 CF06 CAGCAAAAACCCCGACAGACAGACA 383 12 06 REVERSE p53 CR06 GGTAGGGGCTATGGGCTTGGATACG 384 13 07 FORWARD p53 CF07 TGAGACCAGTTTCCTGCCTCTGTGG 385 14 07 REVERSE p53 CR07 GGCTTTAGCCCCAGGGCTCCTTAGT 386 15 08 FORWARD p53 CF08 GGTCTGGATGCCCATCTTCGACAAC 387 16 08 REVERSE p53 CR08 GAACAGGGTCCCAAGGACAACGAAC 388 17 09 FORWARD p53 CF09 TTCTTTGCTCCTAGAGGCCCCATCA 389 18 09 REVERSE p53 CR09 GATGAGGGGATGGTCTGTCCCTGTC 390 19 10 FORWARD p53 CF10 TCCAGGGAGGCAGACTTGAGACAGG 391 20 10 REVERSE p53 CR10 CAAAAATACCTTTGGGGTGGGTGAGG 392 21 11 FORWARD p53 CF11 GTGCGGGTGGTGAGCTAGGGAAG 393 22 11 REVERSE p53 CR11 ACTCTCAGGGGATATGCAGGCAGGA 394

The upper case “unique” sequence portions were copied as above to select out the upper case “unique” subsequences, retaining the position information of each. This yielded only 17 sequences longer than 1200 bp totaling 35930 bp. To these were added 13 fragments with lengths 800-1200 and 10 fragments 650-800 bp to give a final total of 55661 bp. The application “SeqChop3” was used on the first set to generate 1200-mers with 400 base overlap, yielding 65 sequences. The second set (800-1200) for 800mers with 200 base overlap gives 26 sequences. To complete a 96 well plate an additional 5 sequences in the 650-800 base region are accepted. The sequences so generated were adjusted to give primers with Tm at least 65 deg, to include as much as possible of each sequence in the amplicon. The primers were dissolved in water to give 5 uM each primer, while still in the 96-well plate format. PCR was in a 96-well plate in the same format as the primer pairs, using a master mix containing Phire polymerase, template consisting of the BAC clone pVYS 173i and primers at 0.5 uM. At the conclusion of the PCR, additional primer, Taq polymerase and dNTP was added and the plate subjected to an additional 8 cycles to increase the product yield. The products were analyzed by 96-well eGel, and show strong clean bands for 91 of the 96 wells. The contents of the PCR wells were combined, and the DNA isolated by ethanol precipitation and PEG precipitation. The mixture was sonicated by the same means used for fragmenting BAC DNA for other probes.

p53 probe from 1-step PCR process:

To prepare p53 probes from the 1-step PCR process, the sonicated product was aminated and labeled with Spectrum Orange, then subjected to 75° C. 72h formamide treatment.

p53 probe from 2-step PCR process:

To prepare p53 probes from the 2-step PCR process, a portion of the sonicated product was fractionated using disposable silica based spin columns (PureLink PCR Purification Kit) but adjusting the binding buffer to isolate a fraction ranging from 100-300 bp. A portion of this fraction was treated with a blunting agent and ligated to adaptors. This adapted product was used as template in a second PCR reaction, this time using only a single primer, with sequence corresponding to the adaptor. The PCR product was aminated, labeled with Spectrum Orange, and subjected to 75° C. 72h formamide treatment.

p53 PCR probe via aminoallyl dUTP amination:

This probe was prepared as described above except the PCR step included aminoallyl dUTP added to the PCR mixture. The PCR product was labeled with Spectrum Orange and subjected to 75° C. 72h formamide treatment.

A portion of the sonicated blunted repeat-free p53 DNA was ligated to adaptors containing a BspQI restriction site. The product was used as template with a pair of primers corresponding to adaptors in a PCR reaction containing aminoallyl dUTP and the product exposed to BspQI restriction enzyme to remove the adaptor ends. The digestion product, containing only the sequence specific to p53, was labeled with Spectrum Orange and then subjected to the 7° C. 72h formamide treatment.

Oligo-PCR Probe for p53

Sequences for p53 Oligo Probe were identified as above; however in this case, in addition to masking repeat sequence, all subsequences of 5 or more consecutive “G” and “C” were masked. Parameters were set to identify subsequences of length 140, with GC content of 45-60% . The 289 sequences identified were subjected to NCBI BLAST to find matches to other loci in the human genome. 281 unique sequences remained after this. To 280 of these was appended a common Forward and Reverse sequence, each 25 bases, and containing restriction sites, to give 280 sequences each 190 bases. These sequences were sent to IDT for synthesis as “Ultramers” in 96-well plate format. The products were combined and used as template in PCR with primer sequences corresponding to the adaptors. The adaptor ends were removed by digestion with the restriction enzyme, and the product aminated, labeled with Spectrum Orange, and subjected to 75° C. 72h formamide treatment.

Table 2 shows the 190 bp sequences.

TABLE 2 Sequence SEQ ID Name Sequence NO.: p53F193 TAT ACC CAG TGC TAC CAT CGA TCA CTT GCA GTG GGA ATT TCT GAT GCG GAA TGG 395 TTG ACA TCA TAT CTG GAA TTT TAA TTA GAA TGA AAA ATG GCC CTT CCT AAG GGG CTA TAT GGG CCA CCG TGG ACA TGG GGC TTG GGA GAG TTT TGA GAC CTG GGA GAA ATG GAC TTC GAA AGA CGC TcCC ACG ATA T p53F194 TAT ACG CAG TGC TAC CAT CGA TCA CAA GGA AAA GGG ACA CAG AAT GAA TGG GAA 396 TGA CAA CTG GGC AGC CAG AGA GCT ACT TGA AAG GTA GCA GGG AAA GTG GAG TTC TGA AGG GAG TTC TGA GGG GAC CAG GCC CCA GGT ACC CCA ATT CCC ACA GGG AAT CGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F195 TAT ACG CAG TGC TAC CAT CGA TCA CAG AAG GAT GAG TCA GGC TGT AGA GTA ATC 397 TAC TCT GGT TCT CAC GGG ACC AGC CCA GGG CAC AGC CGG CAG GGA GGC TGC TGG CAT AGA GGC CCT GTC TCC CCT GGC CTC TGT CTC TGA TGA ATG ATC CGG ACA GCA GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F196 TAT ACG CAG TGC TAC CAT CGA TCA CCT CTC CGT GGA GAT GGC TCT GAG AAA TCA 398 AAT ATT GAC AAT GAG GGA ACA GAA CTT ATT AAA TCT GGG ACA GGG ATG TGT GTG GGG AGC TGT GGG AAT GGC CGG ATG CCT GGG TTC GGA GGG TAA TGA AGG TTC TGG GAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F197 TAT ACG CAG TGC TAC CAT CGA TCA CGT TTA AGA AAA GAA ATG GGG TCT GTG CAA 399 AGT TCC TTT CCC CGA GGG ACC CAT GAA CCT TGC CCC TGA GGC TCC CCA CCC CAC GCC TCC AGC AAA TTT TCA CTC CTT TGG GAC TTT TCC CTA GGG GTT CTG GCC AAC CAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F198 TAT ACG CAG TGC TAC CAT CGA TCA CTC ACC TCT GTC TGC CAC CCA TGG CCT ATC 400 TGG CTA GAG GAA CAC CTC CAC GTT CCA TCT TAG CTG TGC TAG CTG TGC AGC TGG TTT TGG GGT GGG CGG TAC TCC TCT CCT TCC ATT CCT GCT GTC AGC AAC AGG AGT CTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F199 TAT ACG CAG TGC TAC CAT CGA TCA CGA GGG AAA GGG TTG ACA CTT CTG GGA ATA 401 AAG ATA CGG TAG GTG GGA GGG TGA GGT CAG CGC TGG GAT AGG GTG TGG TTA ATC CAC TTG CTC TTC AGG AGT ACC AGG GAC TGC CAC TCC TGG TAG TGC CAG GCT GGC ATA GAC TTC GAA AGA CGC TCC ACG ATA T p53F200 TAT ACG CAG TGC TAC CAT CGA TCA CAA CTG AGG TGC CAG CTT CTC TTC TCC TCA 402 TCC AGC AAA GAA AAT GTC ATA AAT TTC GCT CCT CAT GGA AAT GTA ATC AGT GGG CTC GCT GCT GGC TTT GTC TTA ATT AGG CAC TAT TGA TGG AAA CAG GGA GGG CGC CTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F201 TAT ACG CAG TGC TAC CAT CGA TCA CGG AAG AGC CAT TCT GAG GGG AAA TTT GCC 403 TGC TGG TAA CCA GTT TAA GGA TAC CAG CTG CTG GTA TAA ATA CTG CTG GAT AAA TAC TGC TGG ATT TAT ACT GCA GGA TAA ATA CTG CTG GCC CCT GCG GTA TTT CCT AGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F202 TAT ACG CAG TGC TAC CAT CGA TCA CCT AGA GTG AGC CCC GAC TTA GCA GAG CAG 404 TTC CTC CTG GGG CCT GCG GTG TGG GAT CGC GTG GTG AAC CCC ACG GTG CAT GCG CCT CAG GCT CTA GTT TGA GGC AGG AAA GCG CAG CTT GAT GCT TCT CTG GAG ACT GAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F203 TAT ACG CAG TGC TAC CAT CGA TCA CGC TGT AGT TGG TTT TAT TGA TTT GCT GGC 405 CTA ACA GAA CGT TTT TCC TTG GAG CAA AGT ACA AAT CCT TCA AGT TTG AAA TTC ATA ACC TGA GAT CAA TGC CTG TGG CAG CCT GTG GGG ATG AGG AAG GAG AGC CAC AGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F204 TAT ACG CAG TGC TAC CAT CGA TCA CGC CGT TAG GCT GCA GCC TAA TGA AAA GAG 406 AGT GCC CAG CGC CTC AGA CTT TGC GCC TGG GAT TCT GAG CAC CTG TCC GAG ATC CCC GCT TCC TGC CAT CCT ACC TTT CTG AGA GAG GCA CCA CTG TGA CCT TCC TCG TGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F205 TAT ACG CAG TGC TAC CAT CGA TCA CCC AAT CTG TTC TCA GGG CAT TTT GAG TCA 407 AAT AAA TGA TCC TGA CTG ATC TTA ACC ATT AGC ACA GAG TTC CTC AGC CAA CTC TGC TAA GAG ACC TCA GTA CAC ACA AAA CAG TGT TCC TGC CCC TCA GGA CTT CAA AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F206 TAT ACG CAG TGC TAC CAT CGA TCA CAT GTG CAC CCC TTC CTT GAT CCT CTC TCA 408 CTC ACT CAT GGT CCT GGA GGG TAG AGT GGA TGA GGG TTT GGG CAA CCA CAC TTC AGC TTG ATA GAT CTT TTC CTG ATT ATC TTA TGT TCT CAT ACC CCG GGG CAG AGA TAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F207 TAT ACG CAG TGC TAC CAT CGA TCA CTG GCC ATC ATC TTT AAC TCC CAT TTG TTC 409 CTA GTG CCT TGA GGG ACT GAC TTT GAT TTT TAG CCC AGT GCC CCG AAG ACA GTA GGA TAT CCT AGG GAA AAA CAG CAA GGC CTC CCA GGC CCC TGT GGA GTA CAG AGC CCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F208 TAT ACG CAG TGC TAC CAT CGA TCA CCT GGT TCA GGG GTG GTA TCT GCT TGT AGA 410 CTC TCC ACT CCT GTA TAC CTG TAG GTT TTG CCT GCA CGA TGT CCA GCA AAG CTG AGA AGA AGC AGC GAT TGA GTG GCC GAG GAA GCT CCC AGG CAA GCT GGT CAG GGC GGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F209 TAT ACG CAG TGC TAC CAT CGA TCA CTC CCC AAG GAG GAG CCT GGT GGG TAC TTG 411 CTG GGG CAG AGG ATG CTT AGC AAT GGA GGG TGG GGA AAG TCA GAG GGG CTT GGA GGC ATT TTA GGG CTG GGG AGC AGG CGC TGT TGC TTC TGG GCA GGA AAC GGG CTA AGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F210 TAT ACG CAG TGC TAC CAT CGA TCA CAG CCA TGG AGG TTC AGC AGC CCT GCC ACT 412 GAG TCC TTT TTT TGT ATG TCT TCC TCC TGG CCA GCC TCA TCC TTG TTC TTT CTG TCT TAA AAT TTC CCA CAA TAT ACC AGG AGT TCA CCA ACC AGT CCT TTC TCT AGC CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F211 TAT ACG CAG TGC TAC CAT CGA TCA CTC CTC CTT ATT TCA AGT GTT CCT GGT TGC 413 TCC TAC CCC ACT GAA GAG GGT TTG ATC TCT TCC TTT TTC CCA TTT TCA CCC TGG GTG GCA AAA CAA ATA ATG TTT TTC TCC CAT TAA GCC CAT CAC CAT GGA GAC TCA GCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F212 TAT ACG CAG TGC TAC CAT CGA TCA CGT TTT GCC ACC CTT TGA ATC CAA AGC CCG 414 GCT GAT GCT TTC TAC CAT CTG TTG AGG GCT GTT CTA TCT CCG CCC TCA TTT TGG CAG GGA CTT GGT AGA CTG CGG AGG TTC AGG TTC AGG ATG ACA GGA AAG AAG TCT AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F213 TAT ACG CAG TGC TAC CAT CGA TCA CCT AGG GAG GAA AGA GTT TAA CGA GGC AGC 415 CTC TTG TGG CTT TGA CCT GAG GGA TTC CTT TCC TGT GGG TGA GCC GGA GCC AGT AAG GTT GGA AGG TTT TTG GTA GTT GTT GCT ATT GCT GGG ATC TCC CTG AGA GCA CTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F214 TAT ACG CAG TGC TAC CAT CGA TCA CAG ACA GGA CTA TGA GCT AAG TGT AGA CCT 416 CCT TCT TTA CCT GGA GCT CCT TTA CAC TGA TAG TAG CTT GTG AAA TAG AAT CCC CTT CTA AAA TTA AAG GTT GAG AGG TTA AGC GTG GGC ATG GGA GAA AAG TCC CTG GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F215 TAT ACG CAG TGC TAC CAT CGA TCA CAT AAG AAC TTG CAT TAG GTT CCA GGA TCT 417 TAG AAA TGT GCA GAA TGT ATC CTT CTG AGT TCT GAA GTG CTC AGG TGA AAG CAG TTA AAA TGG GAT TGC TCG CTG CTA GGA GGA GTA GGG GAA GAT GGG AGG GAA GAC AGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F216 TAT ACG CAG TGC TAC CAT CGA TCA CTC CCC TGG CCT AGT TCT TGC CTG GAA CCT 418 GAA TGC CAG CAG TTT TCC CAA GGG AGT TGG ATC ATC TCA CCT ACT CAC CTA CTA CTA AGC TCC GGA ATC GCC TGT TCC ATC TTT TCA CGC CTT CCT GCC TCG GCC TCT GTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F217 TAT ACG CAG TGC TAC CAT CGA TCA CCT CAT TCC CCT CTT AGT TTT CCT TTC TGG 419 AAG CCA GAG GGA GTT TCC TGT TCC TCA TGG TCT TTT GGT TAT ATC TCA TTT GTT CCT TCC TCC TTT CAG CCC CTG GGG AAT GGG AAA GCC ACC AGT TTT ACT CCA ATC TCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F218 TAT ACG CAG TGC TAC CAT CGA TCA CGT GTG ACT AGT AGA TCA GGA GGC AGA GAA 420 ACA GAG CCG CTG GGT TTT ATG GGA GTC AGA GTG GGT GTG GCA GAA CTG AAT GCT CAG CAG GCC AGT GGT TTG GAG AAG GGC TGA TTC CTA TGA GCC CCA ACT TCT CCA TGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F219 TAT ACG CAG TGC TAC CAT CGA TCA CGA CTG TGT TTA ACT TTC CAA GAA ATG CCT 421 TCC TTT TTG TAT GTT TAT TCT TCC TAG AGC CAC GGT TGG AGG GAC CTC AAG CAC AGA GTG AAG AAT CAG TGG AGC CCG AGG CAG ATG TGG TAG GCT TGG GTC TTC CCT GTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F220 TAT ACG CAG TGC TAC CAT CGA TCA CCT GGT GAA TCA AAG GAT CAG TTG TGG ATG 422 GCA CAT GAG GAA TTC TCT CTT GTC TGC CAC TTC TTC TAC TTG CTC TCT GCT GTT AGC CTA CTC ACC ACA AAT CCA GTT CAC TGA GTA AAA GAC AAA GTC ATC TGT GCC TTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F221 TAT ACG CAG TGC TAC CAT CGA TCA CCC AGG ACA GAG GAG GGC TTT AAG TAA GGC 423 GCA GGT CTC TCT TGT CTC CCC ACC TTG GGT CAA ACT GTG ATG AGC TTA TTC ATC ATG CGG GTG AAC ACC TGA ACA AGT TGA ATG AGC TGG GAA GAT ATT GTC CTA ATT GGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F222 TAT ACG CAG TGC TAC CAT CGA TCA CTC TTT TGG ACT CCA TCG TGA AGA AAT TGC 424 TCC TAT ACC CTC TCC CTT TTC CAG CTT GTG GTC TCC CTG CTC CTA ATT GCT TGA TCT AGG CTA ATA TCC TAC ACA TTC CCT TAA TTC ACC TTT ACC TTT GAG ATC GAG GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F223 TAT ACG CAG TGC TAC CAT CGA TCA CCT GTT TCT TCC AAA GCT GGA AAG CTA TCT 425 TTC AGT TTC TCC TAA CCA TTC TGA ACC TGT CTG GCT TCT CTC ATC TCC CAT GTC CTC ACT TGT GAT TGT GGA TGG GAG GAA TGA CTC ATC CTG GCA GTT GTA GTT ACT TTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F224 TAT ACG CAG TGC TAC CAT CGA TCA CCC CTC TGC TCT CCT TCT GTA GAA GCC CCT 426 CTT CCT TTC CCG AGC TGC GCT GAC AGG ACT GGC GGA TGC AGT GTG GAC ACA GGA GCA TGA TGC CAT TCT GGA ACA CTT TGC CCA GGA CCC TAC AGA ATC CAT CCT CAC CAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F225 TAT ACG CAG TGC TAC CAT CGA TCA CTT CAT TGA CCC TTG TTT TGG GCT GAA GCT 427 AGA GCT GGG CAT GCC TGT ACA GGT GCG TAC CCT ACA TTC CCA GAT CAA AGG TGG TCC TAC AGA GAG CCG AGG GCT CTC AGT TCC TTC ATC ATC CTT AAG TCT TGT CAT CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F226 TAT ACG CAG TGC TAC CAT CGA TCA CCA TAC TCT CTG CAT TTC CTC CCC ACA TCT 428 CTG GAT ATG GAA TCA TAT CCG TGA AAA GAA CAG GAA GCA CTT CAT GGC ACT TCC ATT TAG AGA AGG ATC AGG ATA CCC TGA GGG ACG TGA GAA AGA ACT CAG CCG GGC TTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F227 TAT ACG CAG TGC TAC CAT CGA TCA CGT GAC TGG GTG TCA TGG CTG GGC CTG 429 GAG ACT GAA CTC TGA TCT GCT GTC TTC CAT GCA GAC CCA GAA CCA GCT TGT CTA CTT CAT TCG CCA AGC ACC AGT TCC CAT CAC CTG GGA GAA CTT CGA GGC AAC TGT GCA GTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F228 TAT ACG CAG TGC TAC CAT CGA TCA CGG GAC GGT GCG GGG CCC CTA TAT CCC 430 GGC CCT GCT TCG GCT GCT CGG TGG AGT CTT TGC CCC TCA GAT CTT TGC AAA CAC AGG CTG GCC TGA GAG CAT TAG AAA TCA TTT TGC TTC TCA TCT GCA CAA GTT CTT GGC CTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F229 TAT ACG CAG TGC TAC CAT CGA TCA CAA AGG GAA ATA TAG GTG CTG TGG GGA CAC 431 TGG GAG GAC TCA CAT GTC TCG TGG TAG AGA GTG TTG AAG GCG CGA TAC AGA TCT TTG ACC TTA TTT TAT GGC AAT TTC TTG TTA TAA CTC CAT GAG GTT TCC CTC TTG CCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F230 TAT ACG CAG TGC TAC CAT CGA TCA CTG GTC ATT TCT TGA TAT CAA AAA AGC ATG 432 AGT CAC CAT TTC TTC TAC CTG CTC TCC TGA AAT GCA TAT GCT TCC TGG TCC CCT ACC GAT CAT CAA CCG TGA TTC CTA CGG GGC CAG CAA GAA CTC ATC CCC TCT GTC CAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F231 TAT ACG CAG TGC TAC CAT CGA TCA CTC CAC AAA CTT TCC TTT CCT TAG ACA CTC 433 GGT ACA AAC TGG AGG GGC ACA CGG TCC TCT ACA TCC CTG CAG AGG CCA TGA ACA TGA AGC CTG AGA TGG TGA TAA AGG ACA AAG AGC TGG TGC AAC GGC TAG AGA GTG AGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F232 TAT ACG CAG TGC TAC CAT CGA TCA CGC TGG CAC TGC TAG CAT CAC CTG GCG ATC 434 ACA GGG GAG AGG GAA AGG GGA GGC TCG GAT GCT GAC AAT GGA GTT GGG TTA GGA GGT CTC TGT CGG GGT TGC GGG GAG TGA AGG ATG CTG TTG GGA AGC AGT GTG AAG AAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F233 TAT ACG CAG TGC TAC CAT CGA TCA CGA AGG AGA TTT TGT ACT CTC CCC TGC AGC 435 CTC CAT GAT CCA CTG GAC CCG GCA GAT AAA GGA GAT GCT CAG TGC CCA GGA GAC TGT GGA GAC AGG AGA AAA TTT AGG TCC TCT GGA GGA GAT TGA GTT CTG GCG CAA CCG GAC TTC GAA AGA CGC TCC ACG ATA T p53F234 TAT ACG CAG TGC TAC CAT CGA TCA CTG CAT GGA CCT GTC TGG CAT CAG TAA GCA 436 GCT GGT GAA GAA GGG AGT GAA GCA CGT TGA ATC CAT CCT GCA CCT TGC CAA GTC GTC CTA CTT GGC GCC CTT TAT GAA ACT GGC ACA GCA GAT CCA GGT TTG TGA GCG AAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F235 TAT ACG CAG TGC TAC CAT CGA TCA CAA AGG ATT CAG GCT CAG CAA GAA GTG GGC 437 AAT GGT TGG GAT GAT ACA GGG AGC TAA GTA AGG AGA GGG AGC CAA GGC AAT CTT CGA TAG CAC AGA CTG ACC CAC CCA GGG TTC GGC CTT GTA CTT GCA GGA GAG TAT AAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F236 TAT ACG CAG TGC TAC CAT CGA TCA CGT AGA ATA GAG GGT CCC TAA GGA GAG AGA 438 CAT CAA GTT AAC CAA TAA ATA TAC ATC AAG TAC CTT CTG TGA GCA CAA CCC CTG CCA CCC AGC TGG GAA AAT AAG ATT ACC CAA AAC AGG ATT ACT AGA CAG CGT GGG AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F237 TAT ACG CAG TGC TAC CAT CGA TCA CAT GAT GTG ACA GGC TGA TTA TGT TAG TGC 439 TAG GTC ACA CAG GAG GTA AGA GTG GCC TGT AGA ATA CAG ATA GAA GAC CTG TCT TCC TAG GTG AAA ATT TCA GCT GGG CAT TAA GGG AAT TGA GCC AGA ACT AAC TGG AGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F238 TAT ACG CAG TGC TAC CAT CGA TCA CGC CTA AAG CCC TGG CTG AGA ACA GGG 440 CAG TGA AAG GGA ACT GGG TGA CAA CTA TGG GGA CGA ATG AGA GTG ATA TGC GGC CAG TTG ATC CGA CAG CAA CAG AGT ATC CAC TTA GTG CGG AGT CCT GAA TTC AAC TGG AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F239 TAT ACG CAG TGC TAC CAT CGA TCA CCA GAC ACA AAA TCT AGA AAA ATC TAG ACT 441 CGA GGG AAT TCT TAG TCT GGT AGG GGA GCT AGG GCA CAC ACA TGA GAA AAG AAA AGT TGA CAT GTG CTA ACT CTG GTC CGA AGG CTC ACA GAG ACC TGA AAT GAT CGC TAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F240 TAT ACG CAG TGC TAC CAT CGA TCA CTC AGT GCT TTC TAG TGC ATA AAT CTA TTT 442 CTC ATC TCT CTT TAC TGC CAG GAT GGC TCT CGT CAA GCA CAG TCA AAC CTG ACC TTT TTG TCA ATC CTG AAG GAA CCT TAC CAG GAG TTG GCT TTC ATG AAG CCC AAG GAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F241 TAT ACG CAG TGC TAC CAT CGA TCA CTC TCT AGC AAG CTC CCT AAG CTG ATC AGT 443 CTC ATC CGC ATC ATC TGG GTC AAC TCT CCC CAC TAC AAC ACT CGG GAG AGA CTG ACC TCG CTC TTC CGA AAG GTG TGC ATA TGC TGA GGG TGG GAT GGA GGG GTT TAT GAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F242 TAT ACG CAG TGC TAC CAT CGA TCA CAA TGC ATT CGG CAG AGG ATC TGT GGT TGA 444 AAA GGT AGT GAA GAT TGC CCT TCT GCT CAG AGA CTG AGC TCA GAA GGC TTC TAC CGG CAT GAT CTG CTT TAG GGT TGC TCA GCA TTG GAG CCT GGG CTG GAC TTT CTG TTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F243 TAT ACG CAG TGC TAC CAT CGA TCA CCA GGG TGG CTG CAG AGC TGG GCT GAG 445 GCA GAG TAA GGG GCC ACC TAG GAC AAG GAG TGG GCA TGG AAC CCA GAG GTG TCG GCC TGG CCA GGG GTG GAG AAC CAG GGG TGG GAT GAG TTT CAG GAG TCA AAT TAA GGA GTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F244 TAT ACG CAG TGC TAC CAT CGA TCA CAT GCA GAG AAG GAG TTG GGT GTC AAG GAG 446 GTG GGG ACA GAG GCT GTG GGG ACT CCT TCT GCA GAT GAG CAA TGA GAT CAT CCG CTT ATG CTG CCA CGC CAT CTC CCT GGA CCG GAT CTT TGA GGG ATA TGT CTC TTC CAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F245 TAT ACG CAG TGC TAC CAT CGA TCA CAA GGA GGA CCT GCA AGG CTG CAT TCT CTG 447 TTG TCA CGC TTG GAA AGA TCA CTA CGT ACA GGC TGT GCA GAT GCA CAT CCA GTA TGA TAC GCC TCC CCT AAC ATC CCA TGT CTC AAC TCC CTT GTC AGC CCT GTA AGA GGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F246 TAT ACG CAG TGC TAC CAT CGA TCA CTA ATC TCT CCT CCC TGA TCC CAG GAA CCC 448 TAC CTG GTC TTT TCC TCC TAT CTT GAC CCC ATC GTC TAA AAT TCT ATT ATG TAT GAA TCT GCT CCT AGA ACT TAG ATG CTC TGT CTC CTG TCT GGT TCT TCT CAC CTT GAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F247 TAT ACG CAG TGC TAC CAT CGA TCA CCT TGT CCT TTG GGA TTC AGG AGG GTT GTT 449 TCT CGG GGT CTG ATT TTT CTA GGG CTT TCC CTG AAT GCA GGG CTC CTG GTC TAG GTT TGC ATA GCC AGA CTG CTC TTG CCT TCC AAT TCA GTC GGC CTT TCT CCT GAC ACA GAC TTC GAA AGA CGC TCC ACG ATA T p53F248 TAT ACG CAG TGC TAC CAT CGA TCA CGT TCT CCA GTC GGG GCT GGG TCC TAG ATC 450 AGA CCA GCA TCT TTG CTC AGG TTG ATG CCT TTG TGC AGC GCT GCA AGG ACC TTA TTG AGG TGG GAA GAC TGA AGA ACC AAA AGC TAA CAG CAG ACC CTC CAG AAT CCC TCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F249 TAT ACG CAG TGC TAC CAT CGA TCA CTT TTA GAC ATT TGA AGC TAA ACC AAA TAG 451 CTT AGG ACT TTG GAG TTT GGA AGG AAA GCA GGA ACC CTC ATG CTG TCT TCT TTT TTA GGT ATG TGA CTG TCA GTA TCA CTT CGC CCG CTG GGA AGA TGG CAA GCA GGG TCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F250 TAT ACG CAG TGC TAC CAT CGA TCA CTA TCC TGG ATG TCA AGA ACA CCT GTT GGC 452 ATG AAG ACT ACA ATA AGT GAG GGA ACC ACA GGC TGA TGC CAG GCG TGG GCA GGG AAG GCA GAT CAG GCA GCC AAG AGT GGG AGG AGT GGC GAG AGT ATG CAA AGG AAA TGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F251 TAT ACG CAG TGC TAC CAT CGA TCA CAC TCC CGC AGC GGG GTG CAG CTT TCC TCT 453 GGG ATG AGT GAC CGG AGG GAA CCC GCC TTC CCG GGC ACG TCG CCA GCC TCT TCC TCT TCT TCC CTA GGC TAT CAA GCG GAC TTA TGA CAA GAA GGC GGT GGA TCT CTA CAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F252 TAT ACG CAG TGC TAC CAT CGA TCA CCT GTT CAA TAG CGA GCT GGC CCT GGT GAA 454 CCG TGA ACG GAA CAA GAA ATG GCC AGA CCT GGA GCC CTA CGT GGC CCA GTA TTC CGG AAA GGC GCG CTG GGT GCA CAT CCT CCG GCG TCG CAT CGA CAG AGT CAT GAC CGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F253 TAT ACG CAG TGC TAC CAT CGA TCA CAT GGC TCC TGA GAG GTT CCC CAA AGA GTC 455 TTC AGG ACC AGC ACC TAT GTC GGT GAG GGG AGT GGC AGG TCC AGT TCA GTG AGG TCA GTC GTG GGT TAA GAT CTG CAG AGG TGG TGT GTG AGG CTG GTA GAA CAT GCG CCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F254 TAT ACG CAG TGC TAC CAT CGA TCA CTC ATT TTA GGA ATT TCA TAT CAG GCT GCA 456 GAG GAG GAA TAG GGC CGG TAT CTG GGG TGT TGG GTC AGT AGA AGA TAC AGC CTC ATG ATC CAG AGA CCT GGA CAG GTG ACA CCC TTA CAG AGC CTG GTC TCT CTG GAA AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F255 TAT ACG CAG TGC TAC CAT CGA TCA CTG AAC ACA CAC ACC CTT TGG GAA TAA AGG 457 TTG AAA GCT GTT GAG GTA GTG ACC TGC CAT CAT GCA GCT GGT GCT GGT AGA GAG TTA GGC AGC CTG CAG ATA GCT GGA GGC TGG TTT GGG CCT GGT GGA CTA CGC CCA GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F256 TAT ACG CAG TGC TAC CAT CGA TCA CGA CTC CTT TTC TCA TTG CGC CTT GGT CTC 458 TTC CTA TCA CCT TCC TTT TTG ACT CTA CCT TCC TTC TAA GTT ATC AAA ACT CAA TCC ATC TCC ATA GCA AGC CTT ATG CAT ATT GTT GGG GTA TGT GCG CAT GCG CGC ATG GAC TTC GAA AGA CGC TCC ACG ATA T p53F257 TAT ACG CAG TGC TAC CAT CGA TCA CGT AGG TCT CAG GGA GAT GGT GGC CCC 459 TGG AGG AAG GTG GCA GGC CGA CTC CAC CCA CCT GTT CTT CTT CCC CTC AGT GCC TTG CTG GTG CTC ATT TCC TGC CCC GTA TTG GGA CTG GAA AGG AGA GTG TGC ACA CCT ATC GAC TTC GAA AGA CGC TCC ACG ATA T p53F258 TAT ACG CAG TGC TAC CAT CGA TCA CGC AGA TGG TCC AGG CCA TTG ATG AGC TGG 460 TTC GAA AAA CCT TCC AAG AGT GGA CAT CAA GTC TGG ACA AGG ATT GCA TTC GGC GGT TGG ATA CCC CAT TGC TGC GAA TCA GCC AGG AGA AGG CGG GCA TGC TGG ATG TCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F259 TAT ACG CAG TGC TAC CAT CGA TCA CCC ACT CCA CTA TCT GAC TAA ACC AGT GAT 461 GTC GCT GTT CTG CCA CTA GAT GGC CAT AAT GGC TCA GCT AAG TCA CCC AAA CCC TGT CCC TTT CCT GAC TGT TGG TGG GGC TGT CAG ACC ATG CCT TCT TCT ACA GCT TCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F260 TAT ACG CAG TGC TAC CAT CGA TCA CTG CTT GTG GGG CCA AAT GTA GGA GGG GCT 462 TTG CCA GAG AAG TGC TGT GTG GAG ACG GAG TCC CAG GGA CAG ATG AGA CTG TGA GTG TTT GTC CTG GGC AGC AAA AGG TGG CCC AAC CAG GGG AAG AGG GCA CAT TCT GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F261 TAT ACG CAG TGC TAC CAT CGA TCA CGA GAA AGG AAG CAA AAG AAC CAG GAT GGA 463 GAA GCA GAG CGG AGT GTC AGG TGA GAG GGG TGA GGC AGA GGC ATC AGT GAG GAG GAC AGG GAT GTT GGG AGC TGC AGG GAT GAG GAA GCC GTT GAG GAG CAG AGT GTG CAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F262 TAT ACG CAG TGC TAC CAT CGA TCA CTG GCT AGG TCG AGA GGT TTG AGA AAA GGC 464 TTC GAG TAG TGA GAG TTG TTG GAG ATT GGC TTT GCT GAG CTT CCT GGT TTT GTG AGT TAT GGC CAA GCA CAG CCA CGT AAA CAT TGC CTC ATA AAT CAA CGA TAA GAT TCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F263 TAT ACG CAG TGC TAC CAT CGA TCA CAC AGT TTC TGT AAG GTT CTT GAC TAT TCC 465 GTG CTG GTG GAT TTC AAC TGT GAT TCC CGC ACT TTG TTC CCT TCC CTC TGC AGC ACT GTG TTT ACT GAA ATT TGA ACA CAG TGT CCC TCT AGT TAG GAT AAA CCA GGA GAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F264 TAT ACG CAG TGC TAC CAT CGA TCA CTG CTC TTT GTG TTC AAG CTC CAG TTA AGA 466 TCT TGA AAT AAG CAG ACT GTC CAA ATG TTC TGA TGT TCC TCG GAA TTA CCT GGC TCT CTT AGT CCT GGA GCC TTC CAG TCC CTA ATA GCA CTG ATT TAA TCC CAC AAG GGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F265 TAT ACG CAG TGC TAC CAT CGA TCA CTG GCT TTT ATC ACG TTT TAC GGA CAG AAC 467 AGC TTC ACA GAT TGC ACT TAA CAC AAA CAT ATT CCA GAT GTC ATC CAC ACC CTG GCT GAA GGA GCT GTA TTA TCA CCC TGT GTG GAG CAG AGT AGA ATT TCC TGA GAG GAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F266 TAT ACG CAG TGC TAC CAT CGA TCA CTC TGC TTC ATT TCT CAT CTC GAC ATT TCC 468 CTG TGC TTC CCA GCC TCT CCA CCT GTT CGA TTG TTG CTC TAG TTT ATC CCC TCG TGC GGT CCC CTC ACT GCC TGG CTG CTC TCT CTC AAA GGT CCC TTC TGA TTC TCT TTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F267 TAT ACG CAG TGC TAC CAT CGA TCA CGG AAA TTG ACT ACT GGG AGC GGC TGC TGT 469 TTG AGA CGC CCC ATT ACG TGG TGA ACG TAG CTG AGC GAG CCG AGG ACC TGC GCA TTC TGC GTG AAA ATC TGC TAC TCG TTG CTA GAG ACT ACA ATA GGT AGG GCT TCA GTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F268 TAT ACG CAG TGC TAC CAT CGA TCA CTC TGT CCT CTA CAT CTT TTC CAT CTC AAA 470 AAA AAA AAA TTG TCT CCC ACT CTT ACG GCC CTA TCA TTA TTC CTA CCC CTT GTA GTT TTA TTT TCT AGC TGC AGG GTG GAG AGT AAA GCC AAC CAG GTC CCC TCC CAC CCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F269 TAT ACG CAG TGC TAC CAT CGA TCA CTG GTC TAG AAA TGT TCA CAT TTC TCC ACT 471 GTT TCC TGA AGT GGA GGA AAG ATC TTC AGG GCT TGT CCC CTC TGG ATA CCA GGC CTC TCT TAT GCA CAG GAT TAT TGC CAT GCT GTC CCC AGA TGA GCA GGC CCT ATT CAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F270 TAT ACG CAG TGC TAC CAT CGA TCA CAT GAC GGG GCC TGA CTC TAG GTG CAG ATG 472 ATT GTG AAT GAG TTC AAG GCA TCC ACT CTG ACC ATT GGC TGG CGA GCC CAA GAG ATG TCA GAG AAG CTG CTG GTA CGC ATT AGT GGC AAA CGG GTA TAC AGG GAC CTG GAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F271 TAT ACG CAG TGC TAC CAT CGA TCA CTT GAA GAG GAC CAA AGA GAG CAT CGG GCA 473 GCT GTA CAG CAG AAA TTG ATG AAC CTG CAC CAG GAT GTG GTG ACC ATC ATG ACC AAC TCC TAT GAG GTC TTC AAG AAT GAT GGT CCT GAG GTA GGG TTC CTG TGG CCA GGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F272 TAT ACG CAG TGC TAC CAT CGA TCA CAG TTC CAT CAG GCC ATT CTC TTG CTC CCC 474 GAC CCT TTT TTC TTT TTT ACC AGT GTG TAC TTC TCA AAC ATC GTG CTC TAG TCT TGG ACT CAG CCA ACC TTC AGT CCT CAC ACC TCT TCC TCC AGG ACT CAG CGT CCT GCG GAC TTC GAA AGA CGC TCC ACG ATA T p53F273 TAT ACG CAG TGC TAC CAT CGA TCA CTT CCA TTA AAC CAA CTT GTT TCC TTC CCT 475 GTT GGC TGG TTC TCA CTT CCC AGG ATG TGC CCT GTC TTC CCT GAA AAG TTC TCT TTT TCC TCC CTC CAT CCC ATC AGA TTC AGC AGC AGT GGA TGC TGT ACA TGA TTC GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F274 TAT ACG CAG TGC TAC CAT CGA TCA CGG ACC GCA TGA TGG AGG ATG CCC TGC 476 GCC TGA ATG TGA AGT GGT CAC TGC TAG AAC TAT CCA AGG CTA TCA ACG GGG ATG GAA AGA CCA GCC CAA ACC CAC TCT TCC AAG TCC TTG TCA TTT TGA AGA ATG ATC TGC AAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F275 TAT ACG CAG TGC TAC CAT CGA TCA CTC TCA AAA CCA TTG CAT CTT ATT TGT CAG 477 TTT CCC TTA ATT CCT AAA CTT GGT CCT TGG CCT TGA CTT TAT CCT ATG GCC TTC AGA CCT GCT GCT GAA GTG TGT GAC CTT CCC AGT CCT AAG GCT TTT CTC TCC ATC TCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F276 TAT ACG CAG TGC TAC CAT CGA TCA CCT GGG TTC CTC ACA GGT GGA ATT CTC ACC 478 CAC TCT GCA GAC TTT GGC AGG TGT GGT CAA TGA CAT TGG CAA CCA CCT CTT TTC CAC CAT CTC TGT CTT CTG CCA CCT CCC TGA CAT TCT CAC CAA GCG CAA GTT ACA TCG GAC TTC GAA AGA CGC TCC ACG ATA T p53F277 TAT ACG CAG TGC TAC CAT CGA TCA CTT GAG ATT AGG TGA CTG ATG CTC ATG GGT 479 TTT GGG ATT TGG GAT GGG AGA TGA GGA AAG ACA AGC TTG GGA CTG GGA CTG GGA CTG GCC TGT AAG AGG CCT AGA TAC CAA CAG ACA AGA CAT CAC ATC CTA TGA AGG AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F278 TAT ACG CAG TGC TAC CAT CGA TCA CAC TAA GAG TCA CAT TTT CAC TTT CTG CCT 480 ACT CCT TTA CCT TCT AAT GTG CAT GTT TGA GCT GTA TTT CTC TGG GAA GCT GGT TTT AGA GTG GAA GGT CTG GAG CAG TGG GCA GGG CTC AGG CAG AAG TTG GGT TGG GGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F279 TAT ACG CAG TGC TAC CAT CGA TCA CGA AGT CAG TGA GAA GCA TCT TTC TTG GTC 481 CTT TGA AGA GCA AGA TGA GGA CAT CAA GAA GAT CCA GAC CCA AAT CAG CAG CGG CAT GAC TAA CAA CGC AAG CCT GCT GCA GAA CTA CCT CAA GAC CTG GGA CAT GTA CCG GAC TTC GAA AGA CGC TCC ACG ATA T p53F280 TAT ACG CAG TGC TAC CAT CGA TCA CGA GAT CTG GGA GAT CAA CAA GGA CTC CTT 482 CAT TCA TCG CTA CCA GCG CCT CAA CCC TCC TGT CTC TTC TTT TGT TGC CGA CAT TGC CCG GTG AGT GGT GAG GGT GGA TTG AAA GTC TGT CTG TAG GAG GCA CAG CAC TGC GAC TTC GAA AGA CGC TCC ACG ATA T SigFolig1 TGC GTA AGT GCA TCA GTC CAT CAT GCA TCC GTC GCT ACA TGA GTG ACT AGA TGA 483 ATC CGT CAG TCA ATG CCT GGA TGA GTA GAT CGC TGA CTG CAT ACG TGT TCA GTC AGT CAG TCA GGC ATC TAT ATA CGC AGT GCT ACC ATC GAT CAC SigRolig1 TAG ATG CCT GAC TGA CTG ACT GAA CAC GTA TGC AGT CAG CGA TCT ACT CAT CCA 484 GGC ATT GAC TGA CGG ATT CAT CTA GTC ACT CAT GTA GCG ACG GAT GCA TGA TGG ACT GAT GCA CTT ACG CAA TAT CGT GGA GCG TCT TTC GAA GTC SigFolig2 TGC GTA AGT GCA TCA GTC CAT CAT GAC CTA GCT ACA TGA CTC AGT CCA TAC CTG 485 CGT CAG TCA ATG GAT GGC TAA CTG GAT CCG TCG ATC AGT AGA TGA GTA ACT GAG TCG CTG CGT CAG TGA CTG TTC AGT CAG TCA GTC AGG CAT CTA TAT ACG CAG TGC TAC CAT CGA TCA C SigRolig2 TAG ATG CCT GAC TGA CTG ACT GAA CAG TCA CTG ACG CAG CGA CTC AGT TAC TCA 486 TCT ACT GAT CGA CGG ATC CAG TTA GCC ATC CAT TGA CTG ACG CAG GTA TGG ACT GAG TCA TGT AGC TAG GTC ATG ATG GAC TGA TGC ACT TAC GCA ATA TCG TGG AGC GTC TTT CGA AGT C SigFolig3 TGC GTA AGT GCA TCA GTC CAT CAT GGC ATC AAT GCA TGC CTG AGT AGA TCC GTA 487 ACT GAG TCG CTG TTC AGT CAG TCA GTC AGG CAT CTA TAT ACG CAG TGC TAC CAT CGA TCA C SigRolig3 TAG ATG CCT GAC TGA CTG ACT GAA CAG CGA CTC AGT TAC GGA TCT ACT CAG GCA 488 TGC ATT GAT GCC ATG ATG GAC TGA TGC ACT TAC GCA ATA TCG TGG AGC GTC TTT CGA AGT C SigFolig4 TGC GTA AGT GCA TCA GTC CAT CAT GAA CTA GAT ACA TAA ATC AAT CAG TGC GTC 489 AAT GAG TAA ATA GGT AAG TAG ATG ACT AGC TCC ATC GAT GCA TCA CTG CGT AGC TAG CTA CAT GAC TGC ATG TTC AGT CAG TCA GTC AGG CAT CTA TAT ACG CAG TGC TAC CAT CGA TCA C SigRolig4 TAG ATG CCT GAC TGA CTG ACT GAA CAT GCA GTC ATG TAG CTA GCT ACG CAG TGA 490 TGC ATC GAT GGA GCT AGT CAT CTA CTT ACC TAT TTA CTC ATT GAC GCA CTG ATT GAT TTA TGT ATC TAG TTC ATG ATG GAC TGA TGC ACT TAC GCA ATA TCG TGG AGC GTC TTT CGA AGT C p53F001 TAT ACG CAG TGC TAC CAT CGA TCA CAA TTC CCA GAA GTA AGA CCA TCT TTG GGA 491 CAA GAG ACA ATG AAG AGA AGT CAG ATG TGG AGG AAC AGA AAA CAA GAG CCA GGG GCC AGG GCA GGT CAG TCC TAG AGA AAC AAA TGG ACC AAA CTG GGG ACA AAG AAG GCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F002 TAT ACG CAG TGC TAC CAT CGA TCA CCG GAG AGC TCC CCA TTC TCC GAG GGG 492 CCC TTA GGA AGC TTG CTG ACA GAG TCA CCC TGA GGG GAA AGT GGG AAA GAA AAC AGA AAA GCA AGA AGC GGT GAG TAG AAA TTC AGG TGG GAG ACA TTC CCT ACC ATC CAA GCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F003 TAT ACG CAG TGC TAC CAT CGA TCA CTG GTG ATC CAG AGG TTG GTT CCC TGA TCT 493 CAT GAT CCA GTC TCT CTT ACT TGG GAT CCA GAA AAT GTG AAC CAC ACT TTC TTC TCT ATC CTA TTC AAA GTT TAC ACT GGT CTA AAC TCC ATC AGA CAC AGC TGC CTC TGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F004 TAT ACG CAG TGC TAC CAT CGA TCA CTG CCC CAG AGT AAC AAC AAA AAA GGG ATG 494 GGG TAA AGC ACA TCT TGC CTG CCT ACC TTC TGT CCT GAA AGA GAG TCT TCT GAG GGT TTA GTG CGT TCC AGG GGT GGC CTC TGG CGG CTC TGA GAC TCT GCT CGT GAG ATA GAC TTC GAA AGA CGC TCC ACG ATA T p53F005 TAT ACG CAG TGC TAC CAT CGA TCA CAG TCA GCC ACA GTC ACT GGG GAA GGC 495 AGG AGA TTA AGA CTT TCA GAT GGA ATT CTG GTA GCC AGC CTA AGA CAC CCA CTG AAC CCG AAC CCC TGA TTT TCA CAG GGG TGA GCA TCC CAT TCT CTC AGC TCT GAG GAA GGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F006 TAT ACG CAG TGC TAC CAT CGA TCA CTC TGG TGT CCA GAG TTG GCT GAC CTG GCT 496 GGC GGT CTC CAC TGA TAG AGC CAT CAG TCC GAT TAC CAC GGT TAC GGC GGC GGC GGC TGC GAT TAC GAC GTT GAG GTC TTG ATT CAT CTT CTG TAG GGT AGG AAA AAA CCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F007 TAT ACG CAG TGC TAC CAT CGA TCA CAG TCA CAC ATC CAA CCT CCC ACC CTC GAT 497 TCC TAC CCA TCT CTA ACT TTC CAG ACC CCA GGC ACA CCC TCA CCC AGG CCA TTC TCT GTC ATG TTG GGC CCA TCT GAT TCC AGG CCT CCA TCC ATG ACG GTC CTG TCT TCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F008 TAT ACG CAG TGC TAC CAT CGA TCA CCT CTG GTT CAG ACG TGT CCA ATA GGC TGT 498 AGG GAT TAC TGT CTG GAT CCT TCA GCA CTG GTC AGA GGA AGA AGA GGA GGA GTT GGC AGT CAG GTG CCC ATC ATC TTT CCT TTT GGC CCA TAT TCA TGA ACC CAG CTG TCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F009 TAT ACG CAG TGC TAC CAT CGA TCA CAT CCC TGT CGC CAG GCC CAG CTC GGT TGG 499 GCT CCT CTC TCT TCT CTG ACT CAG TCT CTG AAG CTG TAG ACA CAT CTG AGC TGG GGC CTG AAG AAC ACA ATG GGA TTT ATT CAC GGC CAT TCA TCC CAC CTC AGG ATC CAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F010 TAT ACG CAG TGC TAC CAT CGA TCA CAA ACT GGA AGA ATT CTC CTT CTC ACT CAC 500 AAG CCT CCC AGC CAA TCA ATC ACT TTT TCA TCA TCT CCA TTC CAG ATT TCC CCA AAC TTC CAT CCA GAC CTC TGC CTC TAC CCA CAA GCC CTG CCA CTC CTT GCC TCC TGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F011 TAT ACG CAG TGC TAC CAT CGA TCA CAT AGG TTC GAG TCG CAT GGA GGG AGG 501 AGG AGG AGC TCT CAT CAG TGC TAT ATC CAG CCT TGT CGC TGC CAC CGC TGC CCC GCC CAC TCC CAG GAG GGC GAA AGC CCA GCC CAA TCT GCC GAA GCT GCT CAT CAA TTT GTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F012 TAT ACG CAG TGC TAC CAT CGA TCA CCC TCT CCA AGC GAA GCT GCT CTA CCT CCT 502 GGT TGG GTA AAA GAT GGA AGA AGG GGA AGG AGA AAT AAG ATC AGT GCC TTG CTT CAT GCT TCT GCA CCC TGA CTG TCC CTC TAT ATC TAA CCT CTC AGG AAT GCA GGG AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F013 TAT ACG CAG TGC TAC CAT CGA TCA CAC AGC AGT CTT AGT TCC CTT TTC ACA CCC 503 AGC ATT TTT CTC TCC CGG CCT GGG TAC CTG CAG GTA GGA GAG GTG ATA CTC CAG CAA AGC CTG GGC ATT GCT GAT GTT CTC TCG GGT GCC AAC AAA AAT GAA GGG AAC CAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F014 TAT ACG CAG TGC TAC CAT CGA TCA CCC CTA GAG AAC AGA GAG CAG AAA CGA TGG 504 ATC AGA AAG GAA AAT GAA ATG GAA GGA TTA ACG CCG CCC AGT CTC CTA GGG GAG CCT GCC CAG TGG GAT CAT TCT GGG CTC TAA ATC TAC TAG TGT TAA ACA ACT TTC CGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F015 TAT ACG CAG TGC TAC CAT CGA TCA CCT CCA CCC TCT CAA AGA ACA ATC CCA GCC 505 CTC AGA GGA CAA TCC CAT TTA CTT CTG GAA ACC AAT CTC TAT GCC CAC TTG CCC CGT ACC CAT ACC TCC TCC CTG GGG TTC TTC TTG TCA TTA TCA CCT TCC ACT CGA ACC GAC TTC GAA AGA CGC TCC ACG ATA T p53F016 TAT ACG CAG TGC TAC CAT CGA TCA CTC ACT CCC ATT ACA GAC TGT TTC TCT GTC 506 CTT GTG AAA CTG GGA GTC CAC AGG GAG GTG CCA ATC CTG GAT AAA AGC TCA GAA TCA CTG TAG AGA ATC TTG ATT CTG ACC TCT AAC TGT ATA TAC ACA CCA CCA ACT CAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F017 TAT ACG CAG TGC TAC CAT CGA TCA CTT TTC GGG CCT GCT GGA TGT TGG CAC CGT 507 GAG TCC CAA TTG CCA GTC CCA TCA GGT CCT CTC GCA CTG TGA ACT CCT CTT GGA AGG CTG CTG CCA ACT GCT TGC TTG TCT GAA AGG AAA AGT CAC TGT AGG AAT CAT GGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F018 TAT ACG CAG TGC TAC CAT CGA TCA CGT GAG GGG TTA AGA AAA ACA GAA AAC ATG 508 CCT CTA GAA CAC CAG GCT TTC ACT TCA TTT CTC AAT CAG TCC TTA GAG GAA CCC CTG GGT TCA GGG GCA GGA AGA CAG GAA AGG TTT TAG AGG AGT GAA TCC CAT GTT GTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F019 TAT ACG CAG TGC TAC CAT CGA TCA CCA GGG GCT TCT GTG GTT GAC TGG GAG GAA 509 ACC AGT GGG AAA GTC ATT AAA ACT GGC TTG GAA TAA ACA CTA AGG GAG AGC CAG GGA CTA GAA ATC AGG ATG CCT AAG TCC CGG GAA AAG GGT TAA GAA ATG AAG CTA GGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F020 TAT ACG CAG TGC TAC CAT CGA TCA CTT CAG GCA GAA TAA ACT CAC CAG AAT GAA 510 GAG CTC ACT GTT TGT GAT GTT GAG AAA GAT GCA GTT GGC TCC CAG GGC TTT CTT GAA CTC TTT ATG GAC GTT TTC ATT GGA GCA GCT GCA GAG GAA AAA AGT ACT CAG CGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F021 TAT ACG CAG TGC TAC CAT CGA TCA CGA AGA GGG ACC ACA GTT AAA GAA CAA GGA 511 TGG GAA AAT AAA GAA ACT AAG TGT CTT CTT AGC AAG AAG GGC TCT AGT AGA GGG CCA GGG GAA CAA CAG AGA AAA CTG CAA AGT GGG AGT GAT GCC TGG GAG AAA TAA AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F022 TAT ACG CAG TGC TAC CAT CGA TCA CGA CAT AGA ACT GGC ACA TGG TAA AAA AGG 512 AGA AGT TGT GGA TGA CCT GAG CAA CTT TCT ATG AAT AAC ATA TTT GTT TCA GTA GTT CTC CAA AGG CAT TCC CAG TCA CTC ACA TCT CCC TTC ATC ATC CGC ACC CGG GCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F023 TAT ACG CAG TGC TAC CAT CGA TCA CGT TAC CAT AAA TGG AAG GCA AAT CGC CTG 513 AAA CTG GGG ATG TTC CTG AGA GTT TGG CTG ATC ACA ACA GTG ATA AAA GGG GAA CTG TTG CAT TTT ACA TTT CCA TAG GCT ACA TGG CTG GAT ATG GCT TAG TTG GGG AGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F024 TAT ACG CAG TGC TAC CAT CGA TCA CAG GAA CAT GAA CCA ACC AGA GAA AAG CCT 514 AGA ATC CTG GGG AAA AGT GAC ATT TAG AAA GGT GTA CTC CAC AGC CCT TAC CTC CAC TTC ATC CCC TTC TGT GAT CTC CTT ATT ATA GTC AGC TGG AGG TGG TAG CCG GAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F025 TAT ACG CAG TGC TAC CAT CGA TCA CAA TAT GAA AAA GCT ACT CTG ACT GAT ATG 515 GTT GCC CAT TTC TTT ACA AAA GGG TTA TTG CCT CAG CTG GGC GAG TTC CAC CTA TCT GGA TAA TTA GAG GCT AAA CCC CAG GCC CTG CTC CAT AGT AGT GTC TTC CAT CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F026 TAT ACG CAG TGC TAC CAT CGA TCA CCT TGA GTT TTA GAT AGG GAC ACA AGT GGT 516 GTA ATG AGA CAG CCT GAA AGG CTG CAC TGG GGA AAG AAT ATG GGC AGT CAA ACA GAG AAA GGA AAT GAT ATT GTC ATG GAG AGG TGT ATG TAC CAC CTG CAT CAG AAC AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F027 TAT ACG CAG TGC TAC CAT CGA TCA CTG GAA ACC AAT GAT CTA CTC AGG CTC CCA 517 CAG GGG CCT CCC TAT CTG TCT GCC TCC TGT TGT GCT AAG CAG CCT GCC AGA GTT CAA TTA AAA TAC CAA CAA CAT TCA GCA AGG CTA AGA ATA TCC CAT GAG ACA GTG TGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F028 TAT ACG CAG TGC TAC CAT CGA TCA CGC TGT CCT GGA ACA CCT AGA GGA CAT GAG 518 GAT CTG TCG AGA GAG AAG GGC CTA CCT CCG CAA TAC AGC AAG AGA TCT GAG CAG ACT CGC TGC CCT GAT GCA TGG GTC CTA AGA CAA TAA TCG GAA CAC TAG ACA AGT TCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F029 TAT ACG CAG TGC TAC CAT CGA TCA CAA AGG ATA ATA AAA TTT ATG GAA GAC TCC 519 AAT CTT GAT ATT TTG ACA AGA GCA AGA GGG ATG ACT GAA CAG CTG ATC CAC CTC CTG TGG TCT GTG TCC TCA CTA AGG AGG CCA AAG CCA TGC ATT CAC CCC TAT GCT CCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F030 TAT ACG CAG TGC TAC CAT CGA TCA CAG AAC CTG AGT TAT GAG CAT GTT CAT TCA 520 GGT TTA ATG CCA ACT CCT ACT GTT CTC CAT TCA AGT CTT CTG AGG CAC TTT TAC TTC TAC TTG CCT GGG TCT CTC TTC CCT TTT GGG TTC TTC CCT TAG CTC CTG CTC AAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F031 TAT ACG CAG TGC TAC CAT CGA TCA CTA CTG CTT TTG TGG AGA GAT TTC TAC TCC 521 TAG ATA TAT TCA AAT CGG CTA TGC CTA TGG TGT AAT CCA ATT CTC CTC CAC CAT GTT AGG CTT GGC CCC AGG GTG AGC AGC AAT ATT ACC CTA GTT TTC CCA GCT ACC ATG GAC TTC GAA AGA CGC TCC ACG ATA T p53F032 TAT ACG CAG TGC TAC CAT CGA TCA CCC TTC AAT TAG TCT CCA AAA CTA GCT CTG 522 TCC CCA ACT TCA TAT TCC AAT CCT GTC TCT GCT CCT AAA TTC CAC CCA TTC ATC CCA TAC TAG TTT TTT TCT CCA AGG GTA TCT GTG GTG GAA GTG AGC CCC AAG TTC TGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F033 TAT ACG CAG TGC TAC CAT CGA TCA CCA GTC TAC GCT CAT TGT GAA AAT AAG CAG 523 GTG AAG GCA AGA GCA GGT GGG TGG AAT GTA TTA GGG AGC CAC CTA GAT CCA GAG GAT AAC TTG ATT CAG TGG CCA TAG CAT CAC CTG GCT TTG GCT TCT GGA GCC TGG CAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F034 TAT ACG CAG TGC TAC CAT CGA TCA CTT CTA GGA GAA GAG CAG GAA CAG TCT GAG 524 TAA AAA CCA AGT ACT GAA GCT GAG GAT GCC ATG TTG ATT AAG AAA GGA ATG GGG ATT AGG ATA TCC AGA TGA GGT TTG GAG TAG GAA GAT TGC GCC CTG GAC GGT GAA TAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F035 TAT ACG CAG TGC TAC CAT CGA TCA CAA CTG ACA ACA GGG CCC AAT TCT GAG AGA 525 GGA GAA AGG GAC CTT CCC AAA TGT ACA ATT CCA GAA GCA GTG TAA ATA CTC CCT GAC CCA TCC CAA GTT TGC TGA GTC ATG AAT ATT AAA TCA GCA GCA AGG TCA AAA CGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F036 TAT ACG CAG TGC TAC CAT CGA TCA CGT ATC TGT AGG GTA CTG AGA GTG GAA GAT 526 TAG CCT GAA TTT AGG GAT TTG TGG TTT TTA ACT CAG GAA CAG GGC AGA AAA TGC TAA CCT GCC CAG ATC CAC ATT ACC ACA TTA CCT GGC TTT CAG CTC AAC CCC AAA CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F037 TAT ACG CAG TGC TAC CAT CGA TCA CAC TCT CTG AAT CAC AGT ATC CTG GTC CCC 527 ATC TAT TCA AGT CTA TCA CTG CCA CAG CAC ACA GGA GAA AGG GAA AAG ATT CAG AGA GAC TTT CTG CTG GAC ACT TAT ATG TGG GAC AGA AAA CGT GTC CCT TCC CAG CCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F038 TAT ACG CAG TGC TAC CAT CGA TCA CAT CCA CTC TTA ACA AGT GAT GCC ATG GGA 528 AGG TAT CTC TTC CCC AGC TCC CCA GGG TGA AAT CAA AGA ATG AGA CAG AAA TCA GGA GAG TCT CTA GGA CAA TTC CAG GCA TCA AAT CCA AGA GGT TCA GAA TAC CAA CAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F039 TAT ACG CAG TGC TAC CAT CGA TCA CTG ACT ATG AAG CTT ACA TGC CTC AAG ACG 529 AAG AAA CTA TAT GAA TGA CCT GAA GGT ATC TGA GGT CTA AGT GAG ACC TCA AAT CCA TTC CTG AGT AGA ATG GTA GAG CAG TGG GTC TTG AGA TCA AGG TGT GGT GGG GAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F040 TAT ACG CAG TGC TAC CAT CGA TCA CGA GAC TTG CGA AAG ATG CCA CCT TAT GGC 530 TGG CTG GGA AGC AAC TTG ACT GAT CCA ACC CAG GGT TCC TGA GGT CAA AGA TGC CAA ACG TCG TAA ATG GAT CTG ACC ATT TCT CCT TGG CTT GGG AAC CGG AAT ATA AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F041 TAT ACG CAG TGC TAC CAT CGA TCA CGA AAG TGG GGT GAG TGT TCC AGA GCC AGT 531 AGG CAG AGG CCT CTC TGA GGA AGA TGA AAG GAT CTT TTA CGG GAC AGA GGG CCT TCC CAA AGG GAC CGT GTG GAA GAA AGA CAA TTC TCC ATG TGC TTG GAT CGT GGG GAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F042 TAT ACG CAG TGC TAC CAT CGA TCA CAT GTG ATT AAG GTC TAA GGT ATG TCT TCC 532 ACC AGA CAA CGG ACA CAG TCA ATT AGA AGC TGG GTA AAG GGG TCT CTC CTG CGG AGC GGG GAG CGC CAA GCC AGG GAC AAT AAT GGC CTG AAG TTC ATT CTC CCG GAG ATT GAC TTC GAA AGA CGC TCC ACG ATA T p53F043 TAT ACG CAG TGC TAC CAT CGA TCA CTA GAA GCA GGT GCA GGT GCC TTA GAG 533 GGG TCA AAA ATA AGA GGA ACA GGG TTC ACT CTA AGC GGT CTC CCA GGG AAG GCT GCG GGT TGG AGC AAG GGT CCA AGA TTC TAA GGG CCA GGA CTC AGC TCC AGA AGC TCG ATC GAC TTC GAA AGA CGC TCC ACG ATA T p53F044 TAT ACG CAG TGC TAC CAT CGA TCA CAC AGC GCT CAG GCC ACA CCC ACT CCG 534 CCG CCG CTG GCC CCA CCG GGC TTG GAC AAG TTA GGG ATG GGC ATG CGC CTG AAC GAC TGC TTG GTC ACT TTC CCC ACC TTT GTC TTT CTT GGT GCG CAC GCT CCA AAA AGA AAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F045 TAT ACG CAG TGC TAC CAT CGA TCA CAA AAA GAA GAG GAG TCG CCG CAA GGA AAA 535 AGG TGC TTG GTG CGC ACG CGC TGA GCT TTA CCC TCT TCG CGT ATG CAT CGC CGA TAT TTT AAG AAT CTG TAA CTC TCT ACT GTA GTA GAT TTA ACA GTC ATG GCT CTT ACC GAC TTC GAA AGA CGC TCC ACG ATA T p53F046 TAT ACG CAG TGC TAC CAT CGA TCA CGA CCC AAC ACC ACA TCA GGA CAT GTA ATT 536 CTT ATT TAT TTT TCA CCC TCA ACA AGG AAG AAA GGT CTC TCC CTC AAT TCT GCT CTT CCA ATA CTT GAG GAT AGG CAC CCC TAA CCC TCC TTC CTC CAG GGA GGC CTC AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F047 TAT ACG CAG TGC TAC CAT CGA TCA CTC AGT GTC TGT GGA CGT AGT CTC TGA AGA 537 GTG CTT CAG CTG ATG GGG AAG GAG AAA CTC AAG ACA GAG ATC CTC CTA GGG ATG GCG TCA CTT TCC TGC CAA CTT TCT CGT TGC CTC TCC TTG AAA GCA GAA GAA GTG CCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F048 TAT ACG CAG TGC TAC CAT CGA TCA CCC CTC AGC TTC CGT CAG ATC TTG GGC TCC 538 TAG GGC CTT GTA CAA GTC CAT GGC CCT CTG GTT CCA GTC CAG GAC GGC CAG GCG GAA TTG GGA GCA GCC CTT ATC CAA GGC CAC CTG TGG GAG AAG ACA ACA CTA ACT TTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F049 TAT ACG CAG TGC TAC CAT CGA TCA CCT CCA TAT ACC CTT GCT TCT TCA GGT CCT 539 CAC TTG TCG CCC CAC CCA TCT CCT CAC CTC AGC CAC CTT TTT GAT TAT TTT GGA ACC AAT CCC TTG ACC TGT TGT GGA GAG AAA GAG GCA AAA AAT AGC TAT TGT TTG AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F050 TAT ACG CAG TGC TAC CAT CGA TCA CGA AGG GGA TCA GAA AAT GAC ACC GGC 540 TGG GCT CTG GGG ACA GGG GAT AAC AGT GGG GTC TGT GGG GTG CTT TGC TCC CAC CCC AGC CTC AGC TTC TGC CCA GTA CCC CGA TAT TCC GGC ATC ACA TAG ATA TCC TCC AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F051 TAT ACG CAG TGC TAC CAT CGA TCA CAA ATG GTG CGT CCC TTC CAT GTA CTG TAG 541 ATG AAA TAG TAT ATC CCA TAG CCC ACC ACG CAG GGC CCT GAG AGA GAG AAA AGG GGA GTA AGG CTT CTG GAA GCC TGT GGG GAG ACC TCT GAG GCC GGC TGG AGA GGT GGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F052 TAT ACG CAG TGC TAC CAT CGA TCA CTT CTA AGG GCC AGG TGC TCT TAC CCA GTA 542 GCT TCC CGG GCG CTG GAA GAA TCT CTG CTA CCA AAC AGT GAT AGA AAG GAT TGT CTC CAA AGC CAT CTG CTC TCA GGG CTG CCG AGA TTG GAG TTG TGA CAA AGA GAT AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F053 TAT ACG CAG TGC TAC CAT CGA TCA CTG CAG TCT TCA CCC GAA TCA GCC TCA GGA 543 TAT CTC CAC AGT CTC CCT CCT TGG CCT CTC GGA TCC GCA CGG AAG CCA TCC GGA TCC CCG CTG TCT GGG ACC AAA GTC CCA GGG CCT CGC AAA CGG CAA CTA GAC CCC TTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F054 TAT ACG CAG TGC TAC CAT CGA TCA CGC AGT GCT TTT TAA ATT GAC ATA TGC AGT 544 GAT AAC CTG CTT TAG CCT CAG GCT CAC TCA CCC GCC CAG ACC CTG GGT AAG CCT TAA GAC CCT CAG CTC TGA AAG CTG TTT CCT GCA GCT CTT GAG TAG CAT GAA GTG TTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F055 TAT ACG CAG TGC TAC CAT CGA TCA CTT TAG GAT TCC ATT ATC TCA TTT CTA GTC 545 CTG ATA CAG GAT GCT ACT TGG GAC GCA GGG GAG GAC TGT TTC TAG ACC TCA GGC CTG TGA ATG CAG GCT CCC CGA GTG GAC AGA AAT CTT GGA GGA CCT AGA TCA GGC CCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F056 TAT ACG CAG TGC TAC CAT CGA TCA CGA GGA GGA GAG GGG AGA TGG AAT ATC 546 CTC TCC CAG TTC AGA AAC TTT CTC GGC AGT GGA GGA TGA TAG TGG AGG GGA CTC TGT CCT TCA CCC CAT TGA TCC CCA GAG GGG TGA TAG CTG AGT CTT GTG ACT GGG CCC CTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F057 TAT ACG CAG TGC TAC CAT CGA TCA CGC CCT GAG ACC TGT TCT CCC CAC CCA GGT 547 GCA GGA GCG GGA CAG GGC ACT CAG CTC ATG CAG TCT TCC CTT CTC TCC TCT GGC CCT GTA GCA GGG CCT CTC CCT CTG TCT GTC TCT GAC ATG TCC CTA CTC AGC TTT GTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F058 TAT ACG CAG TGC TAC CAT CGA TCA CGT TTT CTC TTT CTG ATA GAG TGC CCA CGA 548 CCC TCC GGC TGT CCA CCT CAG CAA TGG CCC AGG ACA AGA GCC TAT CGC TGT CAT GAC CTT TGA CCT CAC CAA GAT CAC AAA GTA TGG GGT TGG CCT AGC CCT TGA CCC AGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F059 TAT ACG CAG TGC TAC CAT CGA TCA CAA ACC CAC ACT GGT TCT CAA AGG ACA CAT 549 GAC ATA CAC AAT CTT TCC TTC TGT GTC CTT CCA GAA CCT CCT CCT CCT TTG AGG TTC GAA CCT GGG ACC CAG AGG GAG TGA TTT TTT ATG GGG ATA CCA ACC CTA AGG ATG GAC TTC GAA AGA CGC TCC ACG ATA T p53F060 TAT ACG CAG TGC TAC CAT CGA TCA CCT GGT TTA TGC TGG GAC TTC GAG ACG GCA 550 GGC CTG AGA TCC AAC TGC ACA ATC ACT GGG CCC AGC TTA CGG TGG GTG CTG GAC CAC GGC TGG ATG ATG GGA GAT GGC ACC AGG TAA GCT AGC TCT GGT CCT CAG GGG AGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F061 TAT ACG CAG TGC TAC CAT CGA TCA CGC TGC TCT TCC CCG CTT CCA ACC TTC GGT 551 TGC CGG TAA CTA CAC CCC AGG GGT GGA ACC CTA GCC AAG ACT TGG TAA AGC ACT GCT GGG TGG CTG GCC GTG GGA ATC TAA GTC CAC ACT TTT AGG GAG AAG GGA AGG GTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F062 TAT ACG CAG TGC TAC CAT CGA TCA CGC CAA ATG CTC AGA GGG GAG TCA ACT GAG 552 GGC AGG GAG GTC GGG ACT GCG GCT CCG ATG CCC TGA TTT CTA CAT CCC CGT ATC TTA TCT CTG TCA CAC TCC AGC TGG TTC CTG CCC TGG ATG GCT GCC TGC GCC GGG ATT GAC TTC GAA AGA CGC TCC ACG ATA T p53F063 TAT ACG CAG TGC TAC CAT CGA TCA CTC TAC CAC TGG CCC CTT TCC TCC TTG AGA 553 CCC CAG CTT TGA GGC CTC AGG ATA ATC ATT TCT CCC CAC AGA CAT TCC CCA GCC TCA TGC AGA GCC CTG GGC CTT CTC TTT GGA CCT GGG ACT CAA GCA GGC AGC AGG CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F064 TAT ACG CAG TGC TAC CAT CGA TCA CAC AGT GGG GCA TTG CCT GTA TTC AGT GGA 554 GCC TGG AGC AAT GAG GGA AGA GGG GAG TCC AAC ATG TCA ATA TTA GGA AGG TTT CCA GCC CAG GGA ACA TAA CAA GAC TGG CTC CAC AGA ATT GTT TTT CAT TAA TAA TTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F065 TAT ACG CAG TGC TAC CAT CGA TCA CGG CTT ATG GAT GGC ACT CAG GTG GGT GGT 555 AGG GGC GAG GGA CAT ATC TTG AAG CTC CCC ACA GCA AGC AAA CAG TTT TGA CTT AGA CTG CAT ATT TAC TTG GGG CAG GTG TGG TTT CAA AAA GGG TCA AGC CAA AAA AAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F066 TAT ACG CAG TGC TAC CAT CGA TCA CTG GGG CAG GAT TTA AGT GGT GAG AAT GGC 556 CAG TAG GTG GAG GCA TAG CGA AGA GGC AGA ATT AAG GCA GCT AGG GGT GAG GCC ACA GGC AGT AGG CCC GGC TCA TTC TTC CCT CTC TCT CTA CCG TCC CTT TCC CAC ACA GAC TTC GAA AGA CGC TCC ACG ATA T p53F067 TAT ACG CAG TGC TAC CAT CGA TCA CTC TGC AGA AGG TGG TGT TGT CTT CTG GGT 557 CGG GGC CAG GGC TGG ATC TGC CCC TGG TCT TGG GAC TCC CTC TTC AGC TGA AGC TGA GTA TGT CCA GGG TGG TCT TGA GCC AAG GGT CGA AGA TGA AGG CCC TTG CCC TGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F068 TAT ACG CAG TGC TAC CAT CGA TCA CCA GTG GAA GGT AGT GCT TTT GCA AAC TCA 558 GGT TGG AGG AGT GGA AAA GTG GGG AGA AGA TTC TGG ATC CGA GCC ACC TTA ATG CTC TAA TGC CAC CTT TGC ACT ACC TCC CTC TAG GAG AAG ACT CTT CCA CCT CTT TTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F069 TAT ACG CAG TGC TAC CAT CGA TCA CGG AAA TGA GGA CTT CTT AGG CTG AGA TCC 559 CAG CAA AAA CCC CGA CAG ACA GAC ATA CTC TGG ATA CAG GTC ACT TTC TGG AAG CCA GGA CCC ACC TGG TTC CGC AGA AGC TAC TCC CTT TGA GAC CAG TTT CCT GCC TCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F070 TAT ACG CAG TGC TAC CAT CGA TCA CCG TGA GAG GGT CAC AGA GAG ATG TGG 560 GTA GGG GTT CTG GAA AAA GGG GTG GAG GCA GGG AGA AAG AAA AAG GGA GGA GAG CAG AGG GAG AAA GTC GCG TCT CTC TCT CTC TCT CCT AGT CTT GGT CCA CTT GCT GCC TTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F071 TAT ACG CAG TGC TAC CAT CGA TCA CCA GAC AAA TTT GTC TCT ACT CCA TTA AGC 561 AAG AAC TGG CTT GTG CTG GTC CCA GCT GGG AAA AAC AGA CAG ATT TGG GAA TAT CTC TCC CCT CAA AGA ATA CGG TGA CCC AGC TCT CAA CCA CAG ACC TCT AGA GAA TGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F072 TAT ACG CAG TGC TAC CAT CGA TCA CTG CCC AGC ATC CCT CCC TGG GGA ACC CTC 562 GTA TCC AAG CCC ATA GCC CCT ACC CCT CAG CTC CCA GTC TTC TGC CCT CTT AGG AAC CCT TGT GTC CTA GCC CAA AGC TCC CAG CCT ACT AAG GAG CCC TGG GGC TAA AGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F073 TAT ACG CAG TGC TAC CAT CGA TCA CTT AAA AAG AAC CAT TAG GTT AAA GCA TCC 563 TCC ATC TCC AGA CCC CAT GAG AAT CCC AGT GTC CAA GAC TCC TAA TTT CTT ACA AGA ATC TTT TCA CCA GTA ACC CAG GCA GCA GGC TGA GTC ACT CAC TGG AGC TGC TGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F074 TAT ACG CAG TGC TAC CAT CGA TCA CCC CTT CTG CAG AGA TCA GCC GGG ACC TAA 564 ATG ACT CCA GGG TAA GGA GGC CCT GGG GAG TCT GTA GGG TAG AAG ACA CAA ATC CCA AGC CCC ACC TTC TAC CTC TCC TAA TCT TGA CCC TAT AGA CCC TCT CAG GAT CTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F075 TAT ACG CAG TGC TAC CAT CGA TCA CTT GTT CCG AGT GCC AAT ATC CTG ACC TTT 565 TGT CCC TGG AAT CTC CTC GGA GCT GGC TTT TCT CTC CTC CCT CCA CCC CAC CTT CTC CAG GAC ACT GTG CCA CCA ACC TCT CTT TCC CCA GCC TGC CCT AGA TTC CAG GAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F076 TAT ACG CAG TGC TAC CAT CGA TCA CAT GTT GTT CTT ATT AAT CTC ACA CAG TTC 566 CTG ACA TAT TAG TTC TCA CAT AGT TCC TGA CAT ACT AGT CTG AGC CTG CTG GGT ATC AAA GAT CTG GGA GGG CGT GTG ACA TGG ATG AAC CAT GGA GAG GCT GAG ATG GAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F077 TAT ACG CAG TGC TAC CAT CGA TCA CTG TGA AGG CTT TCA TGC CCT GGT TTC TTT 567 CTG GAG ATG CTG GTG GGA AAG GTG GGC TCC AGG AAA AGG CTG GAG GTT TGT AAC AGC TCT TCT CCT GGA AAT TTT TCA GAT CTC CCC TCT CTC AGC GTG TTT CCC TCA GAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F078 TAT ACG CAG TGC TAC CAT CGA TCA CTA CAG TGC AGA GAA GAC ATT TCT TTC TTT 568 CCA AGT GAA CAT GGG GTA CAA GGG TAG AGA CTG AGC CGG GAA TCC GGA GGC CAC CCC TGG CTG TGT TTG CTA AGC TTT ACG TTT TGA GGA TAG GAC CAG GTT TCA TCT TTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F079 TAT ACG CAG TGC TAC CAT CGA TCA CAA ACA GAG GCT GTA TCA CTT CCG TGC TGC 569 TTG CCT GAG GAA GGA AAG AGC AAG TTG CCT CTG AGG TCC CTT GCA GAA GGA GCC TTT CCA TGT TCA TGC CAA TTT AAC CAG GCA CTA TCT TTG GTA GCT CTA TGG GTT TCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F080 TAT ACG CAG TGC TAC CAT CGA TCA CAC CAC ATC CAC TAG ATG AGA TAG GAG GTC 570 AAA AAT ATC CAG CCA TTC TCT AGG GTC TAC AAG GAC CCT TTA TGG TTT GGC CCC TGC CTA GGT CTT CAA TCT CTT GCT GTA TTC ATC TTG TCT TTG CTC ATT AAA GCC CAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F081 TAT ACG CAG TGC TAC CAT CGA TCA CTT AAT CTT TCT TCA AAT CTT GCC GGT TTT 571 CCT TGG AGA GGT TTT TCT TCT CCT TTC AAC TGT CAC CTT AAA TCC TTA GCC CAG TTT CTC AAC ACC TCA CAT CCA AAC TGC CGT CCA CAT CCT CAA ACC CAC TCC CTC CAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F082 TAT ACG CAG TGC TAC CAT CGA TCA CAG AGA ACC GAA GTA GAC CTG GCT GCA 572 GGG CTG GGA TCT CAG GGC AGT GCT GGG GAC TGG GAA TGT GGT GTT GAG AGG GCT TCA GGG AGA CGT GAT GGG AAG ATG GGG AAG CCT CTG CAC GTG GAC AGA GCC AGG TGG TGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F083 TAT ACG CAG TGC TAC CAT CGA TCA CTG GCC TTT ATC CAT CTC TGC GGG GCC TGT 573 CCT AGC TTC CCT CCT GGC TCG GCC AGC CTC CCG GCT GGT CTC TTC GCT CTC TTT CTT GAT CTC TAG CTC TTT ATT CCT CTG ACA TTC TGC CCC ATC TGC TCC CGG ACT CTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F084 TAT ACG CAG TGC TAC CAT CGA TCA CGC TGC TGA TAG TAT GAG TTT TAC CGA GGC 574 TGC AGG TTT TGC TCC CAT GTC GGT GAC GGA GGG AGG AGT GGT CGC TGT GGT GAT TTG TGT GCA TCA GCC AGC CAG GTG TCT GTG ACA GTC GGA TGA CTT GGA AGC CTC CCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F085 TAT ACG CAG TGC TAC CAT CGA TCA CTC TGG TGA CCG GCA CAG GTG CAG GTG 575 AGG GGT GGA ATT CTT CCA AGA GGG ATG GTC AAG CTG GGA CGT TGA GAC ACA GGG GAC AGA GGA CAC TGT GTG ACA CGA TTT ACA ATC TTT CCA CAC TGG GCA CCG TCC CCA TCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F086 TAT ACG CAG TGC TAC CAT CGA TCA CTC CAC CCA TTC GGG GCC TAC ACG AAG TGG 576 GTC CCA TGC AAT CCA TTC CCT CAG GGA ACT CAA ACT CCA GCC CCT GGG ATG AGA AGA ATC CAG CAA TGC TTG GGA GAG CCA GAG GAC TTC ATG GAA GAA GTG TCC TCT GAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F087 TAT ACG CAG TGC TAC CAT CGA TCA CAG CCA TGG AGA GAT CCC ACC AAG GGA 577 AGG CTG TGG GAG ATT CTG CCT TTC CTC CCT GCC TCT GCC CAG GGT GCT GGG TGT GAA CTG AGG GTG GGG TGA CTG TTG AAG GTT CTA ACA AGC CGT CTC TGA GAG ATT TGT AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F088 TAT ACG CAG TGC TAC CAT CGA TCA CAG GCT AGT GTT AGG TCT TTC ATT TCA GGA 578 ACT GTG TTC AAA GTT TGG CTT CTG AAG GGC ACC AGG AGA GAG ATG TTG CTA TTC AAA TCT GAG GGT CCA GTC TCT GCG GGG TGG TAT GAG GGT TTG CTT GTG AAT GGT GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F089 TAT ACG CAG TGC TAC CAT CGA TCA CGT ACC CGC TTT AAA AGG CAC CAT GCT AGC 579 ACA GCT TTA AGC ATG AGT ACG AAT GCA GAG GTA ACA GAT GTG TGC CTT GTC AGG ACT ATG CAT GGT TGA GAA GTT GGA AAT GTA ATT GGA GGC AAA ATA ACA GAC CTC CAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F090 TAT ACG CAG TGC TAC CAT CGA TCA CCT GGG AGT CAT GGC TAG AAG CCA GAC ACA 580 ACT GCC TGT TTC CAG TTT GTC TCA TTT TGC CTC CAG AGG AAG GCT CTA AGA CAT CCC TGT GGC TCT GTG ATC AGT CCC AGT GCA GAA CTT CAG AGT GGG TAG AGG GGT GTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F091 TAT ACG CAG TGC TAC CAT CGA TCA CGG GGA TAG TTG AGG TTA TGG TGG GAA CCT 581 TGG GCC CTG CTG ACC CTG TTT CCT CCT CCC TAG CCT TTA TCC TCC TCT TCT ACC TCG TTT TTT ATG GGT TCC TCA CCG CCA TGT TCA CCC TCA CCA TGT GGG TGA TGC TGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F092 TAT ACG CAG TGC TAC CAT CGA TCA CAA ACC TCC AGA AGG AAC TCA TAG TTC CTT 582 CCA GGA GTT TGA TTT TGA TGA CCC AAT CCC CAC GTG CTT GGA AGT TCT TGA AAT CTG TCC ACC TTC CCA TTT ACT GCA GTT GGG AGC TGT GTG ATT TGG GCA TGT GGC AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F093 TAT ACG CAG TGC TAC CAT CGA TCA CAA CTT CTG CCT TTG TTG GCT GTA GGC TTG 583 ATG ATT CGC CCC AAG ACT GAG AAC CTT GAT GTC ATT GTC AAT GTC AGT GAC ACT GAA AGC TGG GAC CAG CAT GTT CAG AAG CTC AAC AAG TTC TTG GAG CGT GAG TGT GGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F094 TAT ACG CAG TGC TAC CAT CGA TCA CCT GGT TAT GTG TCA GTT CAA GAC TTC GGG 584 CAG GGG ACT GGG GAC CTT GGA AGT GGA ACA TCT GGC CCC TGA GTC TCT CCC TCC CAC CTC TTT AGC TTA CAA CGA CTC TAT CCA AGC CCA AAA GAA TGA TGT CTG CCG CCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F095 TAT ACG CAG TGC TAC CAT CGA TCA CGG ACG CTA TTA CGA ACA GCC AGA TAA TGG 585 AGT CCT CAA CTA CCC CAA ACG TGC CTG CCA ATT CAA CCG GAC CCA GCT GGG CAA CTG CTC CGG CAT TGG GGA CTC CAC CCA CTA TGG TTA CAG CAC TGG GCA GCC CTG TGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F096 TAT ACG CAG TGC TAC CAT CGA TCA CTT CAT CAA GAT GAA CCG GGT ATC TAT GAC 586 CTT GGT CCC CAG GGT GAA TGG AGG AAG GAT CTG GGG ACA CCA CCT GCA GAC AAT TGC ATC CTT TCA CTG GGG CTA ATG GGC ATG AGA AAG ACT TGG ATG TTT GTG TAG CTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F097 TAT ACG CAG TGC TAC CAT CGA TCA CTC CCC GGC TTA GCT TGG TCT GGA TGC CCA 587 TCT TCG ACA ACT TCT TCC TCT GAC TCT CTT CAC CTT CCA CCC TCA CTC CAG GTC ATC AAC TTC TAT GCA GGA GCA AAC CAG AGC ATG AAT GTT ACC TGT GCT GGG AAG GTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F098 TAT ACG CAG TGC TAC CAT CGA TCA CCG CAC TCC TCT TGC TTC TCT CTG GGA TGC 588 AGA GGC CTG CTC TCC TAG GGG CCA GAC ACA CGC CCT CCT CCA CCA ACG CCC TGG CCT CTG GCT TCT CTC CCT AAC GCT TCC ACC TTC TCC TTC ATT CCC AGA TTG TCC GTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F099 TAT ACG CAG TGC TAC CAT CGA TCA CCC GGT CTG TCC TTT CTA GAA ACT GGC TGC 589 TCC CTC CAC ATC CCC TTC CTT GCT TCC TAT TCA ACC CTT AAT CAT GTA TCT CTT CTT TCT TGG CTC TGC TCC AGA AAC TGA TTC CTG AGG ATG GGG TAA GAA CTT GGG GTA GAC TTC GAA AGA CGC TCC ACG ATA T p53F100 TAT ACG CAG TGC TAC CAT CGA TCA CAC AGC GAG ATG AAG ATG CTG AGA ATC TCG 590 GCA ACT TCG TCA TGT TCC CCG CCA ACG GCA ACA TCG ACC TCA TGT ACT TCC CCT ACT ATG GCA AAA AGT TCC ACG TAA GTC CCA GGG GAG GCC CAG GCT GAT GGC GGG TGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F101 TAT ACG CAG TGC TAC CAT CGA TCA CAA CGT GGA GGT GAA TGT AGA ATG TCG CAT 591 CAA CGC CGC CAA CAT CGC CAC AGA CGA TGA GCG AGA CAA GTT CGC CGG CCG CGT GGC CTT CAA ACT CCG CAT CAA CAA AAC CTG AGG CCC CTT CCT CCC ACC CCA TCT CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F102 TAT ACG CAG TGC TAC CAT CGA TCA CCC TGT GGA TGC TCC TGG AAT GTC CCT GAC 592 CCT GCC TGA TCC CTC CCT CAC CCA CCC CAA AGG TAT TTT TGA TAA CAG AGC TAT GAC TTG TCT GAG CCT CAC ATC CTT TTC CTT GAC TTC TCA ACC CAG CCT GAA GTC CAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F103 TAT ACG CAG TGC TAC CAT CGA TCA CGC GGT TCC GTC ACT CGC CTT TCC CAC CAA 593 CTT CTC CCA ACC TCA GAT CAG TCA GAC AGG GAG CTG GGC TAA GAT GGC CAC GGA GGA GTT AGG AGC CTT TCT AGT TCT GGT TTA GCT GTG AGA GCT ATC CAC TCT CCT GCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F104 TAT ACG CAG TGC TAC CAT CGA TCA CAA CGT GCA CAC GCG TCT CAT TTG ACC CCT 594 TTG CTT CCA GAG ATG AAT GTG GCA CTC CCT CCT TCC ATT CCT AAG CTC TGG CCA CCG TCC CTT GAT CTC TCA TAC TTT CTC CCT GTC TAC ACA GTC GCC ATC TTG GTG ACT GAC TTC GAA AGA CGC TCC ACG ATA T p53F105 TAT ACG CAG TGC TAC CAT CGA TCA CTG AAT TTA TCT GGC TCC TGG GCA GGT CTT 595 CTC CTC CTC TCC ATC CCT ATT CCC TCC TCT GAA ATG CAC CCC TTT GTA ATT GAG GAC AAG GTG GTT CTG TGG CCT TTT CCC TCT TTG CTG GCA CGT TCT GCT TCT CAC CCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F106 TAT ACG CAG TGC TAC CAT CGA TCA CAA CCC ATA ATG CCC ACA GAA TGT CAA ATG 596 AGG GGC CTC CTG CCT CCT GCT CTG AAT ATT CTG TAG CTG TAG AGG CAT TTT AAC CCT TTG TCC TCC AGC ATC CCT TCA CTT CCT CAT CCT CTC TAA CCT CCT TTT TCT TTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F107 TAT ACG CAG TGC TAC CAT CGA TCA CGG AAG CTC ATC AAG GTG ACC TGT CTA CAG 597 AGG CAA GGA CAG GGA CTG AGC TTC AGG AGC TCT AGT TTG CCT GCT GGG TAG GGA CAG ATG TTT AAG TTA AAA GTC TCT GAA AGA GGC GGG TCT GGA TCT CCT GGG GAG AGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F108 TAT ACG CAG TGC TAC CAT CGA TCA CTT TGG CAT TCC CTA GTA AGA AAG AGA AAA 598 AAA AAA GGT GGT CTT GAG GTC AGG AAG GCT GGT GGC TTC ATA GCT GTC TGG GAT CCT TGG GGC AAG GCA AGG GGC TCC TGC TTG CAC CTT CAG CCT GGT TGA TGA GCT GAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F109 TAT ACG CAG TGC TAC CAT CGA TCA CCT CCC TGG GAG CCA GCA GCC CTG AGG 599 AGC ATG GGC AGG CAG TAC TGA GCT CCT CAA CCC GAC TCT CCT CCC TAT CCC AAG AAG CCC TTT GAA AGG TTT TCC TGG CAG AGT TTA AAG CTT CAA TTC ATT CAG CTA CCT GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F110 TAT ACG CAG TGC TAC CAT CGA TCA CGA CCC TGG CTA GCA GGC CTC CCA CTG 600 GCC TCT CTC CAT CCA GTA GCA CCC ACC CCT GTT CCC CTT GGG AAC CCA GGT ATC CTG CCA CTT TCT GAT GGA GCA GAT GGC CAC CCT GGA GGC TCA GCC TTG CTA AAT CAG ACA GAC TTC GAA AGA CGC TCC ACG ATA T p53F111 TAT ACG CAG TGC TAC CAT CGA TCA CCA GCC CAC ACT CAT TGC AGA CTC AGG TGG 601 CTG CTT CCC AGC ACC TCC TCA CTC ACC CCT GCA CCT GCT GAC CCC AGT AGC CTG CAC TGG CGT TCA CCC CTC AGA CAC ACA GGT GGC AGC AAA GTT TTA TTG TAA AAT AAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F112 TAT ACG CAG TGC TAC CAT CGA TCA CAA TTG ACC CTG AGC ATA AAA CAA GTC TTG 602 GTG GAT CCA GAT CAT CAT ATA CAA GAG ATG AAA TCC TCC AGG GTG TGG GAT GGG GTG AGA TTT CCT TTT AGG TAC TAA GGT TCA CCA AGA GGT TGT CAG ACA GGG TTT GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F113 TAT ACG CAG TGC TAC CAT CGA TCA CGA AGT GGG CCC CTA CCT AGA ATG TGG CTG 603 ATT GTA AAC TAA CCC TTA ACT GCA AGA ACA TTT CTT ACA TCT CCC AAA CAT CCC TCA CAG TAA AAA CCT TAA AAT CTA AGC TGG TAT GTC CTA CTC CCC ATC CTC CTC CCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F114 TAT ACG CAG TGC TAC CAT CGA TCA CCA ACA AAA CAC CAG TGC AGG CCA ACT TGT 604 TCA GTG GAG CCC CGG GAC AAA GCA AAT GGA AGT CCT GGG TGC TTC TGA CGC ACA CCT ATT GCA AGC AAG GGT TCA AAG ACC CAA AAC CCA AAA TGG CAG GGG AGG GAG AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F115 TAT ACG CAG TGC TAC CAT CGA TCA CTG GGA GGC TGT CAG TGG GGA ACA AGA 605 AGT GGA GAA TGT CAG TCT GAG TCA GGC CCT TCT GTC TTG AAC ATG AGT TTT TTA TGG CGG GAG GTA GAC TGA CCC TTT TTG GAC TTC AGG TGG CTG TAG GAG ACA GAA GCA GGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F116 TAT ACG CAG TGC TAC CAT CGA TCA CGG AGA GAT GAC ATC ACA TGA GTG AGA GGG 606 TCT GTG CCC CTT TTC CCT GAC CAA TGC TTT GAA GGG CCT AAG GCT GGG ACA ACG GGA ATT CAA ATC AAG ATG GTG GCC ACA CCC CAT GCA AAT ATG TTT ACT GAG CAC CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F117 TAT ACG CAG TGC TAC CAT CGA TCA CGG TGC ATG GCA GGG CTG AGT ATA TGA CCT 607 GAA ACT CTG GCT GTA TTC AGT ATT ACA CAA TTA TTA GGC CCC TCC TTG AGA CCC TCC AGC TCT GGG CTG GGA GTT GCG GAG AAT GGC AAA GAA GTA TCC ACA CTC GTC CCT GAC TTC GAA AGA CGC TCC ACG ATA T p53F118 TAT ACG CAG TGC TAC CAT CGA TCA CGG TTT GGA TGT TCT GTG GAT ACA CTG AGG 608 CAA GAA TGT GGT TAT AGG ATT CAA CCG GAG GAA GAC TAA AAA AAT GTC TGT GCA GGG CTG GGA CCC AAT GAG ATG GGG TCA GCT GCC TTT GAC CAT GAA GGC AGG ATG AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F119 TAT ACG CAG TGC TAC CAT CGA TCA CCA GTC AAG AAG AAA ACG GCA TTT TGA GTG 609 TTA GAC TGG AAA CTT TCC ACT TGA TAA GAG GTC CCA AGA CTT AGT ACC TGA AGG GTG AAA TAT TCT CCA TCC AGT GGT TTC TTC TTT GGC TGG GGA GAG GAG CTG GTG TTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F120 TAT ACG CAG TGC TAC CAT CGA TCA CCA GCT CGT GGT GAG GCT CCC CTT TCT TGC 610 GGA GAT TCT CTT CCT CTG TGC GCC GGT CTC TCC CAG GAC AGG CAC AAA CAC GCA CCT CAA AGC TGT TCC GTC CCA GTA GAT TAC CAC TAC TCA GGA TAG GAA AAG AGA AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F121 TAT ACG CAG TGC TAC CAT CGA TCA CAG AGG CAG TAA GGA AAT CAG GTC CTA CCT 611 GTC CCA TTT AAA AAA CCA GGC TCC ATC TAC TCC CAA CCA CCC TTG TCC TTT CTG GAG CCT AAG CTC CAG CTC CAG GTA GGT GGA GGA GAA GCC ACA GGT TAA GAG GTC CCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F122 TAT ACG CAG TGC TAC CAT CGA TCA CAG CCA GAG AAA AGA AAA CTG AGT GGG AGC 612 AGT AAG GAG ATT CCC CGC CGG GGA TGT GAT GAG AGG TGG ATG GGT AGT AGT ATG GAA GAA ATC GGT AAG AGG TGG GCC CAG GGG TCA GAG GCA AGC AGA GGC TGG GGC ACA GAC TTC GAA AGA CGC TCC ACG ATA T p53F123 TAT ACG CAG TGC TAC CAT CGA TCA CCA GGC CAG TGT GCA GGG TGG CAA GTG 613 GCT CCT GAC CTG GAG TCT TCC AGT GTG ATG ATG GTG AGG ATG GGC CTC CGG TTC ATG CCG CCC ATG CAG GAA CTG TTA CAC ATG TAG TTG TAG TGG ATG GTG GTA CAG TCA GAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F124 TAT ACG CAG TGC TAC CAT CGA TCA CCT ACT GCT CAC CTG GAG GGC CAC TGA CAA 614 CCA CCC TTA ACC CCT CCT CCC AGA GAC CCC AGT TGC AAA CCA GAC CTC AGG CGG CTC ATA GGG CAC CAC CAC ACT ATG TCG AAA AGT GTT TCT GTC ATC CAA ATA CTC CAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F125 TAT ACG CAG TGC TAC CAT CGA TCA CCG CAA ATT TCC TTC CAC TCG GAT AAG ATG 615 CTG AGG AGG GGC CAG ACC TAA GAG CAA TCA GTG AGG AAT CAG AGG CCT GGG GAC CCT GGG CAA CCA GCC CTG TCG TCT CTC CAG CCC CAG CTG CTC ACC ATC GCT ATC TGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F126 TAT ACG CAG TGC TAC CAT CGA TCA CTG TGG AAT CAA CCC ACA GCT GCA CAG GGC 616 AGG TCT TGG CCA GTT GGC AAA ACA TCT TGT TGA GGG CAG GGG AGT ACT GTA GGA AGA GGA AGG AGA CAG AGT TGA AAG TCA GGG CAC AAG TGA ACA GAT AAA GCA ACT GGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F127 TAT ACG CAG TGC TAC CAT CGA TCA CAT ACG GCC AGG CAT TGA AGT CTC ATG GAA 617 GCC AGC CCC TCA GGG CAA CTG ACC GTG CAA GTC ACA GAC TTG GCT GTC CCA GAA TGC AAG AAG CCC AGA CGG AAA CCG TAG CTG CCC TGG TAG GTT TTC TGG GAA GGG ACA GAC TTC GAA AGA CGC TCC ACG ATA T p53F128 TAT ACG CAG TGC TAC CAT CGA TCA CAC CCT TCC CCA CCT GAT ACA CGG CTC CAT 618 TTC TTT GAT TCC TTT CAC TGC AAA GCT TCT GGA AGA ACA ACT GTC TCA CCG CTC ACC TGC CCA TTC TCT TCG GAC ACT CCT CAG CCC TGC ATT ACA AAC CCC TCA CGA ATG GAC TTC GAA AGA CGC TCC ACG ATA T p53F129 TAT ACG CAG TGC TAC CAT CGA TCA CGA ATA ACA CAC AAG CCT GTT ATA TGA GAG 619 GTT AAG AGA GCG AGA AAG AGC AAG GGG CAG CCC CTG TGT GGA CCA GCA TCT TGC ACG AAG TTA TGC AAC TAT CAT CGC ACC TTC TCC CAG ACA AGC TTT CAA AGG CTT TGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F130 TAT ACG CAG TGC TAC CAT CGA TCA CGC CCA AAG TCT CAA TCC CAC TTG GAG GGA 620 CAC AGG TCT ACA GAC AGG TCT CCC TGT CTT TAT CTC TCA AAT CTT CAG TAG CAA CTA AAA TCT CCG TGT TTT TCA GAG CAG GAC CTT CCC AGG GGT ACC AGC ATC AGT GGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F131 TAT ACG CAG TGC TAC CAT CGA TCA CCA GGA TAC AAA TGT GCC AGG CTG AAC TAG 621 GCC TTC CAA ATG GCC AGG GAG CCA AGA GAA ATG CAG GTG CCC TTG GCT GGG TGG GAA GGC AAT GAG ATC AAC TGA GAC CCC AAA CAG GGG CAG GCC TGA CCA GAA TCT TAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F132 TAT ACG CAG TGC TAC CAT CGA TCA CAG ATG ACG TAA GTA CGG CAC AAA GTG GCC 622 GGT ACG CGG CAG GTG CAT GGG AAG AAA CTG CGG AAT GAA ACA ACC GCG AGC TAA GAG ATG GGG CAG CGG GAG AAA TGA ATT CGA GTT CCG CCT CCT ACC AGG AAG AAC CGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F133 TAT ACG CAG TGC TAC CAT CGA TCA CTC GGG CCG GAG GGC TGC ACG GAG GAC 623 CAC ACG GAC GCC TGC GGG CCC GCC CCT TCC GCT TCA CGA CGT TCA GCC TGC GTC TGG AAC TGG AAT GGC CTA GCC CAA AGC TAG ATA ACA GGT AGA TTG TTT TTC CGA CAA ATT GAC TTC GAA AGA CGC TCC ACG ATA T p53F134 TAT ACG CAG TGC TAC CAT CGA TCA CTT CAA AAT TTG ATT CTC AGA CGT ACC CAT 624 TCT TTT TTT TTT TCC TCC GGG AAG ATG AGA TAT ACT CAT TCT TGA AAA TAC CTC CGG GCT TGC CTT CTG CAC ACT TCT TTC CCT CCC TGT CTC ACG CCA TGG TAG CGT CCG GAC TTC GAA AGA CGC TCC ACG ATA T p53F135 TAT ACG CAG TGC TAC CAT CGA TCA CCT AGG TTG CAG GCG ACC CGC GGG GTG 625 GGG CAC ACC ATT CAA AGA AGG GGA GGG ATT GAG GTT TGC ATC AAA ACA AAT ACC CCT GCC TTT GCA AAG GCC ATA ACT AAG TAA TCC AGA AAA AGA AAT GCA GGC GGA GAA TAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F136 TAT ACG CAG TGC TAC CAT CGA TCA CAG CCT CCC TCT GCC AAG TAA GAG GAA CCG 626 GCC TAA AGG ACA TTT TCT CTC TCT CTC CTC CCC TCT CAT CGG GTG AAT AGT GAG CTG CTC CGG CAA AAA GAA ACC GGA AAT GCT GCT GCA AGA GGC AGA AAT GTA AAT GTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F137 TAT ACG CAG TGC TAC CAT CGA TCA CTC GGA ATG GAG CCC CAG TTT TCA CTA GGA 627 TGC CAT GGG CTC TAA AAT ATA CAG CTA TGA GTT CTC AAT GTT TCG AGA TCC AAA AGT CTC AGA CCT CAA TGC TTT GTG CAT CTT TTA TTT CAG GGA TTC CCT ACG CCC AGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F138 TAT ACG CAG TGC TAC CAT CGA TCA CCC GGG TGG ATG TGC AAA GAA GTA CGC TTT 628 AGG CCG GCT CAA GGT TCC CCA AAG CTC CAC TCC TCT GCC TAG GCG TTC AAC TTT GAG TTC GGA TGG TCC TAA CAT CCC CAT CAT CTA CAC CCA GGT CTC CCA ACA ATG CAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F139 TAT ACG CAG TGC TAC CAT CGA TCA CAG CCC CAG CGA TTT TCC CGA GCT GAA AAT 629 ACA CGG AGC CGA GAG CCC GTG ACT CAG AGA GGA CTC ATC AAG TTC AGT CAG GAG CTT ACC CAA TCC AGG GAA GCG TGT CAC CGT CGT GGA AAG CAC GCT CCC AGC CCG AAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F140 TAT ACG CAG TGC TAC CAT CGA TCA CCA AAG TGT CCC CGG AGC CCA GCA GCT ACC 630 TGC TCC CTG GAC GGT GGC TCT AGA CTT TTG AGA AGC TCA AAA CTT TTA GCG CCA GTC TTG AGC ACA TGG GAG GGG AAA ACC CCA ATC CCA TCA ACC CCT GCG AGG CTC CTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F141 TAT ACG CAG TGC TAC CAT CGA TCA CCA CAA AGC TGG ACA GTC GCC ATG ACA AGT 631 AAG GGC AAG TAA TCC GCC TGC CGG AGG AAG CAA AGG AAA TGG AGT TGG GGA GGA GGG TGC AGA GTC AGG ATT CTC GCC GAC CTG GTG CCG TAG ATA CTA ACA TTT TGG GGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F142 TAT ACG CAG TGC TAC CAT CGA TCA CGT AGG CGC TTC TCG CCA AGA TAG AAG CGT 632 TCA GAC TAC AAC TCC CAG CAG CCA CGA GGA GCC CTA GGG CTT GAT GGG AAC GGG AAA CCT TCT AAC CTT TCA CGT CCC GGC TCC GCG GGT TCC GTG GGT CGC CCG CGA AAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F143 TAT ACG CAG TGC TAC CAT CGA TCA CGC CCA ATC GGA AGG TGG ACC GAA ATC 633 CCG CGA CAG CAA GAG GCC CGT AGC GAC CCG CGG TGC TAA GGA ACA CAG TGC TTT CAA AAG AAT TGG CGT CCG CTG TTC GCC TCT CCT CCC GGG AGT CTT CTG CCT ACT CCC AGA GAC TTC GAA AGA CGC TCC ACG ATA T p53F144 TAT ACG CAG TGC TAC CAT CGA TCA CGA GGA GGG AAG CAC AGG TGG GTT TCT TTA 634 GCT CTG CGT CGG ATC CCT GAG AAC TTC GAA GCC ATC CTG GCT GAG GCT AAT CTC CGC TGT GCT TCC TCT GCA GTA TGA AGA CTT TGG AGA CTC AAC CGT TAG CTC CGG ACT GAC TTC GAA AGA CGC TCC ACG ATA T p53F145 TAT ACG CAG TGC TAC CAT CGA TCA CAC CCA GTT TCT CTC TCC ACT CCC CTG GAA 635 ACA GAG TTT GGT TCC CCT AGT GAG TTG AGT CCT CGA ATC GAG GAG CAA GAA CTT TCT GAA AAT ACA AGC CTT CCT GCA GAA GAA GCA AAC GGG AGC CTT TCT GAA GAA GAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F146 TAT ACG CAG TGC TAC CAT CGA TCA CCG AAC GGG CCA GAG TTG GGG TCT GGA 636 AAA GCC ATG GAA GAT ACC TCT GGG GAA CCC GCT GCA GAG GAC GAG GGA GAC ACG TAA GTG GTG ATG GCA GTG GAG TGT GGA GTC TGG GGA GAT GAA GTG TGA GGT CGA TCT GTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F147 TAT ACG CAG TGC TAC CAT CGA TCA CAT CTT CCT TTC AGC GCT TGG AAC TAC AGC 637 TTC TCC CAG CTG CCT CGA TTT CTC AGT GGT TCC TGG TCA GAG TTC AGC ACC CAA CCT GAG AAC TTC TTG AAA GGC TGT AAG TGG TAA GGA TAA CAA CGG GGC AGG GAG CTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F148 TAT ACG CAG TGC TAC CAT CGA TCA CGC TTA CCT ACC CCA GAG GCA GGC TCA GCC 638 CTA GCC CTA CAC TTG AAA AGC ATA GGT CTG GCC AGC TTT CTA ACT CTC CCC TGT TTC TAG GGC TCC TGA CGG TTC CTG CAT CTT GAC CAA TAG TGC TGA TAA CAT CTT GCG GAC TTC GAA AGA CGC TCC ACG ATA T p53F149 TAT ACG CAG TGC TAC CAT CGA TCA CAG CAG GTG GAA TAT GCA GAA ATG GTA AGG 639 ACT GGG GCT AAC TGC CTC TTC ATC AAT GCT GCA CAT TTA AGT CCT TCG TGG AGA TGG AAA AAG TGT AGT CCA AGT GTT TCC TGT TCA CAA ACG GGA CTG TTT TTC AAG ACG GAC TTC GAA AGA CGC TCC ACG ATA T p53F150 TAT ACG CAG TGC TAC CAT CGA TCA CTT CCA TAT ACT TGT GTG TAC TGA GTC TTC 640 TTC CCA ATA TAG TTT CTC GGG TTT TCT CCT TTC TTT TCC ACC TTT TCA CAG AAC TTT CTG CAA GTC TCA TTT CCA GCT CCC CAG CGT CTT TCC TGA GTA CTT GCC CTG CCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F151 TAT ACG CAG TGC TAC CAT CGA TCA CGT GGG TCT TGC AGG AAG CCT TTA CTC CTC 641 GTC TTG CCC TCT CCA GGA GAC ACT TTG CAT CCT CTG TAC CCT TTA TCT CTC AGG GTG GGG ACG GGG AAT GTC CTC ATT CCC AAA TGC TGT AGC CAC ACA ATT GCT CTT TCG GAC TTC GAA AGA CGC TCC ACG ATA T p53F152 TAT ACG CAG TGC TAC CAT CGA TCA CCC TTT TGC TCA TTA AAA CCG TAT TTG TTG 642 ACT CTG CTT ATT CTG CAC CAC GTG TTG GGG AAG CAG TGG TGA GAG CGA GGC AGA TGT GAT TCC CTC CTT CTC TGA TAG GTA TGA CGG AAG GGG AGT GAG GAG CAC CAG GGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F153 TAT ACG CAG TGC TAC CAT CGA TCA CAA AGT ATG AAT CTA TAT GGC TTT TGG TGG 643 CTA AAT TTG ACA TTA AAG TCT GAG CTC ACC CTT GAA CAT TGA GAC AGA GTC TGT GCT CCA TAT ATA CAC CCC ATC TGC CAC AAC ACT GCT AGA GGC ACG CGC CTC AGA CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F154 TAT ACG CAG TGC TAC CAT CGA TCA CGT CTC TGT ATA GGT CCC TGT CCT TCG AAT 644 GGT GGA AGG TGA TAC CAT CTA TGA TTA CTG CTG GTA TTC TCT GAT GTC CTC AGC CCA GCC AGA CAC CTC CTA GTA AGT AAT GTT TGC CTC CCT GCT CGC CGC CCC ACC ACC GAC TTC GAA AGA CGC TCC ACG ATA T p53F155 TAT ACG CAG TGC TAC CAT CGA TCA CAT TCC TCC CCT TCC TTT GAC AGC ACC GGG 645 GTT TCA GTG TCC ATG TCT CTC TCA GCG TGG CCA GCA GCA GCC GGG AGA ACC CGA TTC ATA TCT GGG ACG CAT TCA CTG GAG AGC TCC GGG CTT CCT TTC GCG CCT ACA ACC GAC TTC GAA AGA CGC TCC ACG ATA T p53F156 TAT ACG CAG TGC TAC CAT CGA TCA CCA TAC CCT GTC AGC TGT GGA GCT TTT GGT 646 CTC TGA AAT CTT TCT AGA AAA TTG TTG ATA AAG CTG ATT CCG TTT TCC TGT AGG CCT TCA ACT TGC ATC TCT CCA AGG AAG AAC TGG GAT TTG AGA GGG ATG AAG TGG GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F157 TAT ACG CAG TGC TAC CAT CGA TCA CAC TTT GTT CCT TCC CTC TCT AGC AAA AAA 647 GCA GGG CCA GAG CGG CAT CAT CTC CTG CAT AGC CTT CAG CCC AGC CCA GCC CCT CTA TGC CTG TGG CTC CTA CGG CCG CTC CCT GGG TCT GTA TGC CTG GGA TGA TGG CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F158 TAT ACG CAG TGC TAC CAT CGA TCA CTT TCA TCC CGA TGG CAA CCG CTT CTT CTC 648 AGG AGC CCG CAA GGT AGG GGT CAC ACC CTG AGA GCC CAA AGC AGC TGG GCA GCG GGG CAG GAG CAG GGA TGT AGT CTG CAG TGT AGG GGA ATG GGT GGG GAT GGG GAA AAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F159 TAT ACG CAG TGC TAC CAT CGA TCA CTG ACT CCA GGT CCT GTT CCT TGT CTC CAG 649 GAT GCT GAG CTC CTG TGC TGG GAT CTC CGG CAG TCT GGT TAC CCA CTG TGG TCC CTG GGT CGA GAG GTG ACC ACC AAT CAG CGC ATC TAC TTC GAT CTG GAC CCG TGA GTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F160 TAT ACG CAG TGC TAC CAT CGA TCA CAG TTC CTA GTG AGT GGC AGC ACG AGC 650 GGG GCT GTC TCT GTG TGG GAC ACG GAC GGG CCT GGC AAT GAT GGG AAG CCG GAG CCC GTG TTG AGT TTT CTG CCC CAG AAG GAC TGC ACC AAT GGC GTG AGG TCC TCA GTT CAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F161 TAT ACG CAG TGC TAC CAT CGA TCA CTC AGG GTG AGC GGG GCT GAG CAG GAG 651 CTG GGT CAG ACT GTT GGG TGT GAC CGT GTG AGA CTG TGC AGA CAG TGA CAG GGC GCC TGT CGC CCA CAC TCC ACA CTG TTT GCC ATT CTC CAG CAG CAT GGG GAC CAT TAC TCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F162 TAT ACG CAG TGC TAC CAT CGA TCA CCT CTG AGG GGA GCA GGA GCA CTC TCC TCC 652 GCT CCC CGG GGC TCC CCA GGA GGC AGA CAA CCC AGT TGC CAG AGT CAA GGA CAC ACA TAA AAG AGT AAA GGT GTT GAA AAA TAC AGT CGT CAC CTT TGA TAT TGC TGT TCC GAC TTC GAA AGA CGC TCC ACG ATA T p53F163 TAT ACG CAG TGC TAC CAT CGA TCA CGA CTT TGA AGA AAT ACT GCC AGC AGG GGA 653 TGT GAT TTT GGA CCT CAC AAT CAA AGG GAA GGG ACG AAA GGC CTG GGG AGG CTT GAG AGG GAG AGG AAT GTC ACC CCT GCC CAG AGG TGC TGA AAG CCA GGG CTC TTA CAC GAC TTC GAA AGA CGC TCC ACG ATA T p53F164 TAT ACG CAG TGC TAC CAT CGA TCA CCT TCA AGG TTA TTA TTA TTC TCT CCA AAC 654 CTG CCG GGA GCA GCG GTG TTG TTT TGG GAT GGA GGA GGA GGC TGC GGG AGC GAA AGG GGT GGG TTC CTC GGG GTG GAG AGG GCG AGA GCC TTT CTG GAT TCG AGA GAG GAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F165 TAT ACG CAG TGC TAC CAT CGA TCA CCT TCT GTG GGC AGG GAG GAG GCG GGA 655 GGG AAG GTG CTG GTG CTC TGA TGT GTG ATG GGT TAC TAG ACA GGT GAT CTT GGG AGC CAG ACT CCG GGT CCC ACG CAG AGC TGG ATG CGG GTG GTG CTA TGG ATG TCA GGA GTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F166 TAT ACG CAG TGC TAC CAT CGA TCA CCT CTG GGG ACA ACT TCC CCA AGG CTC CTT 656 GAC TCT CTT CAC AGT CTG TCT CCC AAC TCT TCC CCA CAG CCA GAG GGT CAG TGA ACT GTT GGC TGA ACG ATT TCC CAG CCA GAA CAT ATT CCT GCC TTC CTG GCT TGC CGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F167 TAT ACG CAG TGC TAC CAT CGA TCA CAA TCT TTG CTG CAA ACT CTT CCA TCA GAC 657 CCT CTG TTC CAT GGC ATG CCA GCT TTG CTC TGA AAA GAG GCC AGG GGT CAG ATG AAA CTT CAA GCC ACG CTG GGT AGG ACA GAA CCT TCG GGA GGT CAC CTG GGT CCC TTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F168 TAT ACG CAG TGC TAC CAT CGA TCA CGC GGT AAG GTG TTT GAA TGT ATT ATG TGC 658 TCA TTA AAG GAG AGC TAG GAT TAT TGT TCC TCT CTT TAC TTC CCA GCC TCC CTC ACA CTT CTC TGC TCT GCC ATC CCT CCC TCT CTT TTC CCT GGA TCT CTT TGG GTA TAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F169 TAT ACG CAG TGC TAC CAT CGA TCA CCT CTT TCG GAT GTG GGG TGG GAG TGG 659 GAC ACT TGG GAG TCT GGG AAG ATA TCA AGT AGC AGT CCC CTG GGA CCC AGT CCT GAG ACC CTG TCT CAG CAG CTA TTG ATG TCC AGG AAG GGG CTG CAG GGG TTG GCA AGT TGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F170 TAT ACG CAG TGC TAC CAT CGA TCA CGC TGT GCT GGG ACA GTG GAT GCC TGG 660 GTG CAC TGG CCA AGG AGA TGG TGA AGT GTG TTG GTT GTG GTT AGA AAA GTC AAC TCC TTT CCT TTC CAA AGC AAT AGA GCA CTT GCC CCA GAA GTC TAA GAC CCA GTG TGG GAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F171 TAT ACG CAG TGC TAC CAT CGA TCA CCT GAG TGG GAG AAT GAC TCA GGC AGC 661 AGG TTC CTA GAC CCT GGT TCC CAT CAG CCC CAA TGA TGG TCG TGG CCA AAC CAG GCA TTT GCC TTC TGT GCT ATT AGC TGG CTA ACT TAG GAC ACT GGT CTG GAC CAC CCT CCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F172 TAT ACG CAG TGC TAC CAT CGA TCA CTT TGC CCG GAA ATC CCT GAA ATT CAG TGG 662 TGG CCT GAA GGA GGG GAG GCT CTG CCC GCA TGG TTG GCT GCC ATG GAA TAG TGA AAT CAC CTG GGA GGG GTG GGC TGT GTG GTT CCA GAG AGG CCA GCT CCT TGG TAA CTG GAC TTC GAA AGA CGC TCC ACG ATA T p53F173 TAT ACG CAG TGC TAC CAT CGA TCA CTG GTG ATG GAG CGG GAG ATG GCG GTG 663 TGC ATG TGG TGA GGG CGG GCT GAA GAG TGG AGT GCA TTT GGG CAC ACC AAG GGG CAG GAG ACC CCT GAG CCT GGC TTC CTG CTG CTT CCA ATG TGA ATG CAC AGA GTC CTT GGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F174 TAT ACG CAG TGC TAC CAT CGA TCA CTG CCC CAA ACC TCC TTC TCA CTT GTG ATC 664 GCC CAG ACC TGG ATC TCC GCT TCA CCA TCA AGT TCC AGG AGT ATA GCC CTA ATC TCT GGG GCC ACG AGT TCC GCT CGC ACC ACG ATT ACT ACA TCA TTG GTA CTG CTG GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F175 TAT ACG CAG TGC TAC CAT CGA TCA CTG GGG CCA GAA TCA GGG CTA GAT TCT GGA 665 GTG CCA ACC TCT TCC TCT GGC TTT TCT CTC CCA GCC ACA TCG GAT GGG ACC CGG GAG GGC CTG GAG AGC CTG CAG GGA GGT GTG TGC CTA ACC AGA GGC ATG AAG GTG CTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F176 TAT ACG CAG TGC TAC CAT CGA TCA CCG GTG ATA CAG GAA AGA GGA GAA GAG 666 AGG ATG GGA GGG TGG GAG GGG AAT GGA AAC CAA ATG AGG AAA AGA CTC AAT TAG AAC TAA TTA GCC AAG TCA GTG CTT CAA TCA GTG CTG TCA GAG AAG TGG GGA GGA CTC CGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F177 TAT ACG CAG TGC TAC CAT CGA TCA CTC ACC CAC CCA GAG CTA GGG GCG GGA 667 ACA GCC CAC CTT TTG GTT GGC ACC GCC TTC TTT CTG CCT CTC ACT GGT TTT CTC TTC TCT ATC TCT TAT TCT TTC CCT CTC TTC CGT CTC TAG GTC TGT TCT TCT TCC CTA GCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F178 TAT ACG CAG TGC TAC CAT CGA TCA CCC TTA TGG GGA AGG CTC TGA CAC TCC ACC 668 CCA GCT CAG GCC ATG GGC AGC AGG GCT CCA TTC TCT GGC CTG GCC CAG GCC TCT ACA TAC TTA CTC CAG CCA TTT GGG GTG GTT GGG TCA TGA CAG CTA CCA TGA GAA GAA GAC TTC GAA AGA CGC TCC ACG ATA T p53F179 TAT ACG CAG TGC TAC CAT CGA TCA CTG TCC CGT TTT GTC CAG TGG CCA ATA GCA 669 AGA TAT GAA CCG GTC GGG ACA TGT ATG GAC TTG GTC TGA TGC TGA ATG GGC CAC TTG GGA CCG GAA GTG ACT TGC TCC AGA CAA GAG GTG ACC AGG CCC GGA CAG AAA TGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F180 TAT ACG CAG TGC TAC CAT CGA TCA CAT CAG GAG GTG GGA GGT GGA TGG TTC TTA 670 TTC TGT GGA GAA GAA GGG CGG GAA GAA CTT CCT TTC AGG AGG AAG CTG GAA CTT ACT GAC TGT AAG AGG TTA GAG GTG GAC CGA GAA GGA CTT TTC CCA GTC TTC AGT GGC GAC TTC GAA AGA CGC TCC ACG ATA T p53F181 TAT ACG CAG TGC TAC CAT CGA TCA CTC CCA AGA TCT CCC TTC CCT TGT GCT CTG 671 TGC TGA TTT TAG GAC AGC TAA GAT GAC TGC CAT GTG CTG TGG CAG GCC TAA TTT GTC TTG TTC TTT CCT TTC CAT ATC CCA GTA TAA TCT CTG TTA ATC AAC AGG ACT ACC GAC TTC GAA AGA CGC TCC ACG ATA T p53F182 TAT ACG CAG TGC TAC CAT CGA TCA CCA AGA ACC CAT GTG CTC TCC CGA GTA ACC 672 CAG ATG GCT GTC TTG TTC ATT CCA TCC TAC ATT TCT GAC TCC TTT CAG ACT CAA CAC AGT TCC CTT CTT AGT GAC CAA AAT GGT GGC CTA CTG GCT GGT CTA GCT GAC AGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F183 TAT ACG CAG TGC TAC CAT CGA TCA CGT ACT TAG CAA AGG CCA CTG TTT CCA TAG 673 TGA CCA GCT GAT ACC TCT TCC TGC CCT CTA GTG TGC AAT TGG GTG TTG CCT CAG TTT CCT CCC AGC TCA GTT TTA TTA GAT CAA AGC TGT TGT TGG GCA CCA GGT TGG CCA GAC TTC GAA AGA CGC TCC ACG ATA T p53F184 TAT ACG CAG TGC TAC CAT CGA TCA CCT CAA TCA CCA GCC AAG ATG GTT GCT TTG 674 TCC ACC AGA GGT CAA GTT CAC CTC TCT GGT GCT GTA GTT CCC AGC TCC TTC CTG ATT TTT CTA ATC GCT CCT TCT GGG GAA CAG GAA GTT GAT ATT GCC ATG GTG GCG GGG GAC TTC GAA AGA CGC TCC ACG ATA T p53F185 TAT ACG CAG TGC TAC CAT CGA TCA CGT GGG TAG GGA TAG GGC TAG TTT GGA GTG 675 GTG AGG TTG GCA GTG CTT GGG GAG GCG AAA ATG GGC TGG GCG AGA AGG CAG AGG AAG GTG TCA CCT CTA GGG GAG GGA GAG AGT AAT GCA GGC AGG AGT GGG GTC GCC AAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F186 TAT ACG CAG TGC TAC CAT CGA TCA CCA TCC ATG GGG ACA GTC TGA GTG TCT TGC 676 TAA GCC AAA GCA CCA GAG ACA GGG TAA GAC GCA ATT AGG ATC AAA GTG GTA AAA ACA TGT TCA CAT GTT AAA GTC TAT TCC CTA CCA TCC CTA CCC AAG GCA CTT GAG AAG GAC TTC GAA AGA CGC TCC ACG ATA T p53F187 TAT ACG CAG TGC TAC CAT CGA TCA CAA AAA GCC CAG GTG CCC AGT CCC CTA GAC 677 TTA GCC CCA TTC TCC AAC CAC AAA AGC AGC CGT CAG GAG CAT CAC TGG AGC GAG TCA GCA GGG GTC ACA ACC TCT GCC CTC CCT GCC CCT CCC CTG ACT TTA GGT CCC CTC GAC TTC GAA AGA CGC TCC ACG ATA T p53F188 TAT ACG CAG TGC TAC CAT CGA TCA CAG CAA GAT GCC TGG GTC TTG AGA GGT GCG 678 GGC ACC GCA GGA GGG GAG TTG AAA GCT GGG AGG CCA GGT ACT GGG CTG TCT GGA ATT TAC TCT TGC CTT CTG AGC CCA CAC TGG AGC TGC CCG AAG TGG GGA GGC TCG TAT GAC TTC GAA AGA CGC TCC ACG ATA T p53F189 TAT ACG CAG TGC TAC CAT CGA TCA CTC CAC CTA CAT CTA GAG GCA CAG GTG GAG 679 AGA CAA GAG GGA AGA GAC GTG GGG ATA AAT AGT CTC CGT GAC AGA CAA GCA CCT CGC CAA AGC AGC CAA GAC ATC ATA ACA TGC TGA GAG ACA GGA AGA CAC CTG GGG ACA GAC TTC GAA AGA CGC TCC ACG ATA T p53F190 TAT ACG CAG TGC TAC CAT CGA TCA CTC AGA GCG CTG GCA TCC AGA GAC TCC CCG 680 CAG CCC CGC TCG AAT AGC ACA AGA CCA ACA GCC TTT CAC ATG TGT AGT GAC TTG GGT GTC TGG AGC TAT TTG AAA ATG CTG GTG ACT TCC ACG CAG AAT AAC ACA GGC CGT GAC TTC GAA AGA CGC TCC ACG ATA T p53F191 TAT ACG CAG TGC TAC CAT CGA TCA CTC ACC ACC ACA TGC ATG TTT CGG ATG TGT 681 CCT GTT CTT CCC TAG CCT CGG CCT GGA GGG GAG TAA GTC ACT TAG GGT CTT GGA TCC ACA TTA AGG AAG TTG ATC TCA CTC AGT CTC CCA TCC CCT TGC CTT TTG TTT CTT GAC TTC GAA AGA CGC TCC ACG ATA T p53F192 TAT ACG CAG TGC TAC CAT CGA TCA CCT GTG GCA CAG CTG CTG GCA GAG TCC AGA 682 GCA GGA AGG CAG AGC GGA AGT AAA GGA ACC GAG AGG GCT GGG ACC ACA GAA GCT AGA GCT GTC GCC CTG CCA TCC CCA AAC CGC ATA GGA TTG AGG CTG TCT TGG GGC TGA GAC TTC GAA AGA CGC TCC ACG ATA T

Table 3 shows the summary of the probe designs and the downstream/cleanup methods.

TABLE 3 PCR Amination Linker Probe Kb Steps Fractioned? Fraction or Removed? loci Method coverage (1 or 2) (Yes/No) Size (bp) Allylamine (Yes/No) HER2 HER2 1-step PCR 76 1 Y 100-300  Amination NA HER2 HER2 2-step PCR 76 2 Y 120-180  Amination N HER2 HER2 2-step 76 2 Y 100-300  Allyl Y PCR-Aminoallyl dUTP p53 p53 1-step PCR 60 1 N 50-400 Amination NA p53 p53 2-step PCR 60 2 Y 70-300 Amination N p53 p532 2-step 60 2 Y 70-300 Allyl N PCRAminoallyl (2%) dUTP p53 p532 2-step 60 2 Y 70-300 Allyl Y PCRAminoallyl (3%) dUTP HER2 HER2 oligo 21 NA NA NA Amination NA HER2 HER2 Oligo + 76 1 NA NA Amination N PCR hybrid p53 p53 Oligo + PCR 60 1 NA NA Amination Y hybrid

Testing Results

Probes were first tested on male lymphocyte slides, and probe intensity, specificity, background and cross-hybridization were evaluated, with corresponding BAC probe as the control.

All probes tested passed the cross-hybridization test on lymphocyte slides. Once a probe design passed on lymphocyte slides, it was then tested on FFPE slides. All probes were tested on breast cancer tissue FFPE slides. Some probes were tested on both breast and gastric slides. Universal pretreatment method was used for all FFPE slides. HER2 and p53 BAC probes from AM inventory were used as controls for all experiments. BAC control probes passed overnight hybridization on both lymphocyte slides and FFPE tissue slides, but failed 1 hour hybridization on both slide types.

Results indicate that RF PCR probe designs surpassed the performance of synthesized oligo designed either by direct synthesis or oligo-PCR hybrid. Directly synthesized HER2 oligo probe and oligo-PCR hybrid p53 probe failed lhr FFPE, while oligo-PCR hybrid HER2 probe failed all quality evaluation. Based on these data, oligo probe designs were excluded from further evaluation, while RF PCR method was used for the selection of optimal probe designs.

All RF PCR designs passed quality evaluation for 1 hour and overnight hybridization on both lymphocytes and FFPE slides, except some sub-optimal specificity data points observed on lymphocyte slides.

2-step PCR design has several downstream or cleanup options, such as DNA fragment fractionation after sonication, 2nd PCR with aminoallyl-dUTP, and adaptor removal after 2nd PCR. Table 1 lists all the downstream or cleanup steps for each probe designs For both HER2 2-step probes, the different fractionation size, 2nd PCR with aminoallyld-UTP or not, and adaptor removal or not after 2nd PCR did not have a positive impact on the final probe quality.

Same as the three p53 2-step PCR probes, 2nd PCR with aminoallyl-dUTP vs. amination, and adaptor removal or not after 2nd PCR did not impact final probe quality.

The final procedure for Repeat-Free PCR FISH Probe design and preparation is the following.

  • 1: Identify desired coordinates of locus on Genome Browser.
  • 2: Download sequence with repeats masked to N.
  • 3: Enter sequence in Sequence Processing program.
  • 4: Process to identify kilomers of unique sequence, and format for BatchPrimer3
  • 5: Use BatchPrimer3 (web) to identify F and R primers for each kilomer.
  • 6: Order mixed primers in 96-well plate format.
  • 7: PCR in plate using Phusion polymerase, assess by eGel-96.
  • 8: Combine PCR products, fragment by sonication.
  • 9: Blunt sonicated DNA.
  • 10: Ligate Adaptors to make template.
  • 11: PCR with: Adaptor-primers to make bulk DNA for amination, labeling.
  • OR Adaptor-primers and AAdUTP to make aminated DNA for labeling.
  • 13: Aminate (if needed)
  • 14: Label, formamide treat.

Example 3

This example describes the development of repeat-free probes targeting p16. A map of the p16 probe is shown in FIG. 9. Primer sequences are shown in Table 4.

TABLE 4 SEQ. ID Name Sequence NO.: 17603_1_F AATGAGACACGTGAGATCTGGAAGG 683 17603_1_R CAATTTGTTTTGTTTTAGGGCAGGA 684 20736_1_F ATTTACGGTAGTGGGGGAAGGCATA 685 20736_1_R AATGCAAGCTACGGGAGAAAGAAAC 686 22171_0_F TTAATTGTGCTTGAAGAGGGGGTGT 687 22171_0_R TTATACTTCCCAAAGCATACCACCA 688 22171_545_F CGTGTTAATTCCCGTGTACTGTTTCA 689 22171_545_R CGAGTGGCGGAGCTGCTG 690 22171_1090_F CCTCTAGCCTCTTGAGTCTTCATTGC 691 22171_1090_R TGAAGTTCAACATTCCCAGAAGCTAA 692 25362_1_F TCCCAGGTTTATGATTTGAGAGTTCA 693 25362_1_R GGAACTTAGGAAATAATGAGCCACA 694 26887_0_F TTCCAACATACACCACAGATTTCCA 695 26887_0_R GCCATACTTTCCCTATGACACCAAA 696 26887_494_F GACCGTAACTATTCGGTGCGTTG 697 26887_494_R TGTGAGAAGTGTGAAGGAGACAGGA 698 31895_1_F TTATTCCTGAAAACCAGCCTGTGAA 699 31895_1_R TTGATGGTTGTTACCAATACATGCTC 700 34379_1_F ACAGATTGTGGTTTAGCCCCGAAGT 701 34379_1_R TGTTCTCAGCTGATCAAATAGCTACAAA 702 36757_0_F TGAAGTTATTCATTTAGGTCATCAA 703 36757_0_R ATTCTGTTATCATTGCCTTTTTGAA 704 36757_584_F GGTTTTCACTACTGGGAGTGGAGGT 705 36757_584_R TCCTGGTATGTTCCAAGGTGTTAGG 706 44110_1_F TCAGTTTTAGTTCGGCCTAGAATGTT 707 44110_1_R TTGCCTCTGAAAATCTGTAGTAACAAA 708 45454_1_F CAGTTACCGGTCACAGTGGCTAAAC 709 45454_1_R TCAAGCACACTTTCTTTCTCCTTGG 710 47238_0_F CCAAGATCTCGGAACGGCTCT 711 47238_0_R GTCCTCGACTCACCCCTCCTTT 712 47238_654_F ACAAGCACCGAGTCCTTTGTGTCTA 713 47238_654_R ACGGTGTTGGGTAAATTCTGAGTGA 714 53456_1_F AAGAGAGAAACCCGAAGAACAATGG 715 53456_1_R CGTTTCTCAATTTCAGCTATCCAAATG 716 54621_1_F CTCAACTGTTGTTGCCCCTTTAAGT 717 54621_1_R CATTCATTTGGCTTCATTTTTATCTT 718 55625_1_F CCAGATCTTCTTGGAATAAATGTCAGG 719 55625_1_R CACAATGATCTCCCTTGTAAGCTCCT 720 56854_1_F CCTTTCCCCAATAACATATGCTCTGA 721 56854_1_R CGGAAATCCCCTTATGACTTGCTAC 722 57838_0_F AACCGTTACAATTGCTCTCACTCCA 723 57838_0_R GGTGTTTCTTTAAATGGCTCCACCT 724 57838_736_F GGGTGGGAAATTGGGTAAGAAAATA 725 57838_736_R AAAATGATGAACTGTTAAGGAAAAATCA 726 60520_0_F TGCTCCTTTAAAAATCCCTCATTTG 727 60520_0_R GAGTGTCGTTAAGTTTACGGCCAAC 728 60520_779_F GGATTTTTGCTGGGTAAAAGCCTGT 729 60520_779_R GAAACTTGTGAAGCCCAAGTACTGC 730 60520_1558_F AAGCCTGCCCAAAGATGCTAGGAC 731 60520_1558_R TAATTCTACAGGGATTTGGGGGATG 732 60520_2337_F GGGCTTGTCATTAAACAGGCTGAAC 733 60520_2337_R TCATATTTGAAAACCAGGTTGAGCAG 734 81987_1_F AATAGGAGAGCCTGATCATGTGTGG 735 81987_1_R TCTGCCAGTAGTTTTAAAGGGCTGA 736 87808_0_F TTTAGAGAAAATAAGTGCTGCTGAGG 737 87808_0_R GCACTACTGGTTGTTTTAGGCTTTTTC 738 87808_643_F TGCCTGATAGAAGTCAGACTCTGTGG 739 87808_643_R GAGCCACCTTTCAATCCCATTCTAC 740 89872_1_F TAGCAATTCTCATTTGGATTCCTGT 741 89872_1_R CCTCTCTCCTCTAGGTGGCAAACTC 742 91063_1_F CTATTTTGCCAGCGCAGATTTGATA 743 91063_1_R CAACAACAATGCTATCCACACAGATG 744 93683_1_F TGGTTTTGTACCACTCCCTCTCTCA 745 93683_1_R AGCCCCTAGACAGCTGGTAGAAGAA 746 96599_1_F ATATTCAAGCATGAGGAATGGCAAA 747 96599_1_R TTTCCAAAAGAAAAATACTTCTCCTCA 748 103078_0_F AAGTCCCAGCTGAAAGGTAACCAAA 749 103078_0_R AACTGCCTTTGGAAGAAAATTCAGG 750 103078_648_F GGTTTTCATGAACCTCACATGGACT 751 103078_648_R CTCGAAATTCCAAGGGCACTGAAAA 752 105020_0_F GAAAAGCTAGAGTCACATTTTAGTGACC 753 105020_0_R AAACCAAACAGAATTTCCACAGACC 754 105020_376_F TCAGTCCAGAGCAAGTGAATACTGC 755 105020_376_R TTTTTCCTTCGATGGCTGTAACAAT 756 114540_1_F ATGTAGGCTTGTGCCTGACATTAAA 757 114540_1_R TTAGGGGAAATTTTAGAGCCAACGA 758 116353_1_F TGCTGATGAGTGACCAGTTTAGATGA 759 116353_1_R GCCCACCTTTTAGGTTTGTCGTTAG 760 117676_1_F CCCACACCTTTGATGTATTTCTCTTTG 761 117676_1_R GATTTCAGCTCTTCATCACCCACAT 762 121286_1_F TCTTTTCCAGTGACGTAGTGTGTGG 763 121286_1_R TCTCTCAGTGAATCATTTTCCTAGGAGTT 764 125649_1_F TGCTATTATGGCACAATTGATGTTGA 765 125649_1_R CATGATCTTATTTCAACCAACTCTCAAA 766 132233_1_F GAGGGAACAACTTGTGGAAAAGTGA 767 132233_1_R GAAGCATAGGCTAATTCTCATGCAA 768 136934_1_F TAGGGCTATTTCACAAAAGGGCTGT 769 136934_1_R GTGTGGCTAGGTCCTTGGGATAAAC 770 141163_1_F AAGGTCAGTAGGTTCACAGGCCCTA 771 141163_1_R TTCACTTGAAGATAATGAACATCTTACC 772 149647_1_F CTGGATTTGCAGTGTTGTGTCCTAT 773 149647_1_R CAACATTCTGTTCTGAGTGCTGGTG 774 156352_1_F GAGTAGACAGCCAACCCCCTGTATT 775 156352_1_R AGCATGTAGGAGAGGTACGGTGGTA 776 159972_1_F AGCCGTTAGTCAACTCTGAGTGCAG 777 159972_1_R TGACCAAGCAATGTGCATAGACAAG 778 161650_1_F CCCAAAACTGAAAGATGAAAACATA 779 161650_1_R TGCAGAAAGGATCCTATTGTTGGTG 780 168102_1_F CTCAGAAGCGAGGGAGACTTAAACC 781 168102_1_R CCCTGGCTCATCTCCATACCTACTC 782 169536_1_F CCATTCTTCCTGAATAACTTGGCTA 783 169536_1_R TCAAAGGTTTGAACTTGCCTCTCAC 784 176637_1_F AACAAAGCAAATTGCAGGCAATAAA 785 176637_1_R AGCCTGTGGTCATAAAACACCTCAC 786 181078_0_F GAAGCATAAAGCAATGGACCAGGTT 787 181078_0_R TTTTCCTCACCTTATGTCAACAAGGA 788 181078_648_F CTTGGGGTTTCAGGAGAGAAATTGT 789 181078_648_R TGACACAGACAAACAGGTGACTCAA 790 181078_1296_F AATTTGTTCTTTCAATTTGGCATGG 791 181078_1296_R TCAATTTTCTGCATGAATTTCCACT 792 185793_1_F CATAATGGGCCACATGATTTTTACC 793 185793_1_R GTAAAGTCAAAAACCTTCCCCATCC 794 187891_0_F CAACTGCTGAACATAGACCCAAGG 795 187891_0_R AAATTCATAACATTTTTCCTTTGAA 796 187891_480_F TTGTTGGAAAGCACATTAGGTGTGT 797 187891_480_R TCCTGTGAAGAAAGCTATGCAGTTG 798 187891_960_F AAAATCTTGGTCTTTCCCACAGAGG 799 187891_960_R AGACTCTTATTGGTGGTTTGTGGAA 800 194665_1_F GCCAGCATTGAGCTGATAAAGACCT 801 194665_1_R CAAAAGTGAAAGAAAATGAATGAAACA 802 197665_1_F CCGGATTTATTTATTGTTCCTGGTTG 803 197665_1_R TGCCAGGCTCTATATGTGTTTTGTG 804 199017_1_F TGAAAAGAGTGGTGCTAGATACTTGGA 805 199017_1_R TCACCTACAACTGATTGGCAGTGTC 806 208772_1_F GGCCTAAGAATTAGTGAAAATCCCAAC 807 208772_1_R TCATCCTTCACAGATCAACCTCCTC 808 210208_1_F CTGAACTCAGAAGGTGAACCACACC 809 210208_1_R CCTGTAAAAGTCCTCAGGTCAACTCA 810 211384_1_F TGAGAATTTGTGATTTCCTGGTGTTG 811 211384_1_R GAAATCCTATAGATAGAAAAGCATTCA 812 212493_1_F ATATCTCTCTTTGGTTCCCTTTTT 813 212493_1_R TCCTTAAGAAATCAGTATTCCAATGCAAA 814 214609_1_F CATCCAAAAGGAGAGTTTGGATTTG 815 214609_1_R CATGCCTAGAAAATCGTGGCTGATA 816 216869_0_F AAAAAGGGTGTGGCTTTATTTATTT 817 216869_0_R CCAACAAATCTGTAGATTGCTGACA 818 216869_500_F AAAGAAAGCCAAGTTAGGTTCAGACA 819 216869_500_R TGAGAGGTTGCTGAGGAATTCTTGT 820 222534_0_F GCCTAGTGGAAAAACATTTCCAAGC 821 222534_0_R ACAGCTGGACATGCATGCTCTTAAT 822 222534_366_F TTGCAACTTTCCAGACATTTATTTTC 823 222534_366_R AGGGTTTCCAAAGTTTTGGTGAATG 824 225452_1_F TAAAATTTGTTTGGAGGTGGGGTCT 825 225452_1_R ACCCACAGAAACTTCCATTTCACTG 826 228586_1_F CACAAGAAAAGGTTTCATGAGATAGG 827 228586_1_R TGCCATCTAAAATATTGCTCCTACCA 828

PCR of 1200mers with Phusion: To 24, each pl6RF 5 uM, 184, Phusion MM was added and placed on thermocycler with program 98 deg 30 sec, 25×(98° C. 8 sec, 68° C. 30 sec, 72 deg lmin), 72° C. 10 min, 4° C. Extend PCR: To each well, 24, of the same 5 μM primer and 24, (80 uL 2×perMM+60 μL dNTP+20 μL 1M MgCl2) was added and thermocyling was performed: 10×(98° C. 8 sec, 68° C. 30 sec, 72° C. 2 min). Loaded 3 μL to wells of eGel, electrophoresed 8 min. Most wells (68/73) showed strong clean bands at expected (same) MW. However some show closely spaced doublets. Wells of p16RF Phusion PCR were combined to total 1200 μL, split to 3×400 μL in tubes and 40 μL 3M NaAc and 1 mL EtOH was added and tubes were placed at −20° C. Tubes were spun at 15000 rpm at 4 deg for 12 min, pellets were washed in 400 μL 70% EtOH, dried in speedvac, combined, and resuspended in 200 μL water, placed in 65 deg oven 5 min, and spun at 4000 rpm 5 min to sediment polymerase. The supernate was transferred to a new tube, 300 μL PEG rgt was added. After 15 min, the tube was spun at 14000 rpm for 5 min, the pellet was resuspended in 400 μL water. Electrophoresis showed bands consistent with 1200mer mix.

Sonicate p16-1200mer: (reserved 20 μL for use as template) To 380 uL p16-1200mer, 40 uL 3M NaAc was added, the tube was sonicated intensity 3, 30% duty cycle 2×10 min, and 1 mL EtOH was added. The tube was spun at 15000 rpm 4° C. for 10 min, the pellet washed in 4004, 70% EtOH, dried, and resuspended in 1004, water. The tubes was then spun at15000 rpm 4 deg 5 min to sediment residue from sonicator probe. Electrophoresis showed a size range of approximately 50-400 bp.

Fractionation: To 10 μL of the sonicated 1200mer, 40 μL water and 10 μL buffer was added, the tube was mixed and pipetted to spin column 1, spun 14000 rpm 1 min; to effluent added 10 μL buffer, mixed, pipetted to spin column 2, spun 14000 rpm 1 min; to effluent added 10 μL buffer, mixed, pipetted to spin column 3, spun 14000 rpm 1 min. Columns were washed with 2×200 μL wash buffer and eluted with 50 μL elution buffer. Electrophoresis showed size of approximately 100-300 bp.

Blunt p16son and p16s2 using Fast DNA End Repair Kit: To 3 μL of the above in 40 μL water, 5 μL of 10×buffer and 2.5 uL enzyme mix was added and the tube was vortexed and placed in 20° C. bath for 20 min. An Inverse PCR purification kit (Life Technologies) was used according to directions to isolate products in 50 μL buffer.

Ligate Adaptors to p16sonB, p16s2B: One μL each of 1000 μM PadBsPD1, CadBsPD1, PadEcoR1, CadEcoR1, 5 μL 10×Ligase Buffer, 5 μL 50% PEG4000, 5 μL 7/28(p16sonB, p16s2B) was added to each tube, the tube was vortexed and 1 μL Ligase was added. An Inverse PCR purification kit was used to isolate products.

PCR of adapted p16: To wells of strip added (8,8,2,8,2) μL water and (1 each 20 μM, 2, 8 μL 20 uM PadBsPD1; 2, 84, 20 uM PadEcoR1). To wells added 10 μL of 50 μL DreamTaq Green 2×perMM+2 μL of the above probe. Thermocycling was performed with program 25×(95° C. 30 sec, 55° C. 30 sec, 72° C. 30 sec). Analysis showed product bands from p16sonA template slightly broader than those from p16p2A. For both, single primer at 2 μM gave yield similar to 8 μM; no difference between PadBsPD1 and PadEcoR1 primers. PadEcoR1 gave best overall performance.

Prep PCR of adapted p16 with PadEcoR1 single primer 5 μM. To wells of strip added 100 μL (400 μL water+4 μL 1000 μM PadEcoR1+2 μL (p16sonA, p16s2A)+200 μL DreamTaq 2×perMM), capped, placed on thermocycler with program 25×(95° C. 30 sec, 55° C. 30 sec, 72° C. 30 sec). Next, an additional 3.0 μL (30 μL 25 mM dNTP+10 μL 1M MgCl2+8 μL 1000 μM PadEcoR1) was added to each well and thermocycling was performed with program 10×(94° C. 30 sec, 55° C. 30 sec, 72° C. 2 min). Product was precipitated and resuspended as above.

Aminate p16 preps: Transferred 50 μL of above p16son to tube and used speedvac to reduce volume to 20 μL. Placed this and remaining 20 μL 7/29 p16sp, p16sp2p in boiling water bath 1 min, then to each added 180 μL (500 μL water+300 μL TFA+174 μL ethylenediamine+95 mg Na2S2O3 and placed in 65° C. water bath for 15 minutes. Next, solutions were desalted into water and 450 μL of each nanodrop was collected. TMED/NaCl was added, the tubes were placed in 65° C. bath 5 min, 50 μL 3M NaAc and 1 mL isopropanol were added. The resulting solutions were precipitated and resuspended in water.

Label aminated p16 products with TAMRA, CR6G: One μL 1M NaOH was added to above; after 1 min 25 μL (75 μL TMED/NaCl+75 μL DMSO), were added, the tubes were vortexed, and 2 μL (100 mM TAMRA, 100 mM CR6G) was added. Resulting solutions were precipitated and resuspended in water+15 μL 20×SSC and 105 μL formamide to give 150 μL at 2×SSC. Resulting solutions were purified as above.

All publications and patents mentioned in the present application and/or listed below are herein incorporated by reference. Various modification, recombination, and variation of the described features and embodiments will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although specific embodiments have been described, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes and embodiments that are obvious to those skilled in the relevant fields are intended to be within the scope of the following claims.

Claims

1-20. (canceled)

21. A probe set generated by a method of generating a probe to a nucleic acid target of interest, comprising:

a) identifying regions of said nucleic acid target of interest substantially free of undesired sequences that are at least 100 bp in length;
b) generating a plurality of probe-containing nucleic acids corresponding to said regions substantially free of undesired sequence; and
c) fragmenting said probe-containing nucleic acids to generate probes of said probe set.

22. The probe set of claim 21, wherein said probes are hybridization probes.

23. The probe set of claim 21, wherein said probes detect expression of an oncogene or chromosomal aneuploidy.

24. The probe set of claim 23, wherein said oncogene is selected from Her2, p53, and p16.

25. A method of performing a hybridization assay, comprising contacting a target nucleic acid with said probes of claim 21.

26. The method of claim 25, wherein said hybridization assay is an ISH assay.

Patent History
Publication number: 20180371543
Type: Application
Filed: Jul 24, 2018
Publication Date: Dec 27, 2018
Inventors: John Russell (Des Plaines, IL), Ekaterina Pestova (Des Plaines, IL), Neeraj Adya (Des Plaines, IL)
Application Number: 16/043,795
Classifications
International Classification: C12Q 1/6876 (20060101); C12Q 1/6816 (20060101); C12Q 1/6832 (20060101);