TRIGGER MECHANISM FOR HAMMER FIRED-FIREARM
A trigger mechanism and related methods employ translating and pivoting of a trigger bar. A method of operating a firing pin safety includes generating a movement of a trigger bar pivotally coupled with a trigger. A sear is engaged with the trigger bar during the movement of the trigger bar so as to disengage the sear from a hammer. The trigger bar is engaged with the hammer during rotation of the hammer so as to induce a rotation of the trigger bar relative to the trigger. The firing pin safety is engaged with the trigger bar during the rotation of the trigger bar relative to the trigger so as to reconfigure the firing pin safety from an engaged configuration that prevents actuation of a firing pin by the hammer to a disengaged configuration that accommodates actuation of the firing pin by the hammer.
Most firearms are designed to inhibit inadvertent discharge. For example, some firearms incorporate a trigger mechanism that includes a “firing pin safety” operatively coupled with the trigger and deactivated by pulling the trigger. In such trigger mechanisms, however, the deactivation of the “firing pin safety” typically interferes with the trigger pull in a way that negatively impacts the smoothness of the trigger pull. As a result, sport shooters often modify or even remove such a firing pin safety in competitions. Modifying or removing a firing pin safety can lead to inadvertent discharge, such as if the firearm is dropped, especially when a lighter trigger pull is employed.
Many existing trigger mechanisms for hammer-fired semi-automatic firearms include a trigger bar and require space under the trigger bar to accommodate semi-automatic function. The required space under the trigger bar, however, results in the barrel being placed farther away from the shooter's hand, thereby degrading operational characteristics.
BRIEF SUMMARYThe following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented later.
In many embodiments, a trigger mechanism for hammer-fired firearms includes a translating and pivoting trigger bar pivotally coupled with the trigger. Following disconnection of the sear and the hammer resulting from pulling the trigger, the falling hammer induces a pivoting of the trigger bar that can be used to disengage a firing pin safety prior to the falling hammer inducing actuation of the firing pin. Because the firing pin safety is disengaged after disengagement of the sear, the trigger pull is only used to disconnect the sear instead of being used to disconnect the sear and disengage the firing pin safety. As a result, the trigger mechanism has a smooth trigger response. The trigger mechanism is compatible with a low bore-axis design.
Thus, in one aspect, a trigger mechanism for a hammer-fired firearm includes a trigger, a trigger bar, a trigger bar spring, a hammer, a hammer spring, and a sear. The trigger has a released configuration and a pulled configuration. The trigger bar is pivotally coupled with the trigger to rotate around a trigger bar axis. The trigger bar spring biases the trigger bar to rotate around the trigger bar axis in a biasing direction. The hammer is pivotally mounted and configured to rotate around a hammer axis between a cocked configuration and an uncocked configuration. The hammer includes a trigger bar cam configured to induce a rotation of the trigger bar around the trigger bar axis opposite to the biasing direction during a reconfiguration of the hammer from the cocked configuration to the uncocked configuration while the trigger is in the pulled configuration. The hammer spring biases the hammer to rotate around the hammer axis toward the uncocked configuration from the cocked configuration. The sear is pivotally mounted and configured to rotate around a sear axis between an engagement configuration and a disengagement configuration. The sear is configured to restrain the hammer in the cocked configuration when the sear is in the engagement configuration. The sear accommodates rotation of the hammer around the hammer axis from the cocked configuration to the uncocked configuration when the sear is in the disengagement configuration. The sear is configured to rotate from the engagement configuration to the disengagement configuration in response to a movement of the trigger bar induced by a reconfiguration of the trigger from the released configuration to the pulled configuration.
In many embodiments of the trigger mechanism, the rotation of the trigger bar is limited in the biasing direction. For example, the trigger mechanism can include a ground member configured to limit rotation of the trigger bar around the trigger bar axis in the biasing direction. In some embodiments, the ground member includes a hammer pivot pin by which the hammer is pivotally mounted to a frame of the hammer-fired firearm.
In many embodiments of the trigger mechanism, the sear is biased towards engagement with the hammer. For example, in many embodiments, the trigger mechanism includes a sear spring that biases the sear to rotate around the sear axis toward the engagement configuration from the disengagement configuration.
In some embodiments, the trigger mechanism provides a two-stage trigger pull. For example, the trigger bar can include a first engagement surface and a second engagement surface. The first engagement surface can be configured to engage the sear during a first portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration without inducing disengagement between the sear and the hammer. The second engagement surface can be configured to engage the sear during a second portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration so as to induce disengagement between the sear and the hammer. The first engagement surface can be oriented substantially normal to the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration. The second engagement surface can be angled relative to the first engagement surface by 40 degrees or more.
In many embodiments, the trigger mechanism is configured to block rotation of the hammer in the advent of disconnection of the sear from the hammer when the trigger is in the released configuration. For example, in many embodiments, the trigger bar is configured to interface with the trigger bar cam to block a rotation of the hammer toward the uncocked configuration when the trigger is in the released configuration.
In many embodiments, the trigger mechanism provides semi-automatic functionality. For example, in many embodiments, when the trigger is in the pulled configuration, the trigger bar is configured to (a) rotate around the trigger bar axis in the biasing direction into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration, and (b) accommodate reengagement of the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration. In many embodiments, the trigger bar is configured to disengage from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
In many embodiments, the trigger mechanism includes a firing pin safety that is automatically disengaged after disengagement of the sear from the hammer. For example, in many embodiments, the trigger mechanism includes a firing pin and a firing pin safety. The firing pin is configured to be actuated by the hammer during a reconfiguration of the hammer from the cocked configuration to the uncocked configuration. The firing pin safety has an engaged configuration and a disengaged configuration. The firing pin safety is configured to (a) prevent actuation of the firing pin by the hammer when the firing pin safety is in the engaged configuration, (b) accommodate actuation of the firing pin by the hammer when the firing pin safety is in the disengaged configuration, and (c) reconfigure from the engaged configuration to the disengaged configuration during the rotation of the trigger bar around the trigger bar axis opposite to the biasing direction during the reconfiguration of the hammer from the cocked configuration to the uncocked configuration while the trigger is in the pulled configuration. In many embodiments, the firing pin safety includes a firing pin safety spring configured to reconfigure the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar around the first pivot axis in the biasing direction induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration.
In another aspect, a method of operating a firing pin safety of a hammer-fired firearm is provided. The method includes generating a movement of a trigger bar pivotally coupled with a trigger by reconfiguring the trigger from a released configuration to a pulled configuration. A sear is engaged with the trigger bar during the movement of the trigger bar so as to disengage the sear from a hammer in a cocked configuration. While the trigger is in the pulled configuration, the trigger bar is engaged with the hammer during a reconfiguration of the hammer from the cocked configuration to an uncocked configuration so as to induce a rotation of the trigger bar relative to the trigger. The firing pin safety is engaged with the trigger bar during the rotation of the trigger bar relative to the trigger so as to reconfigure the firing pin safety from an engaged configuration that prevents actuation of a firing pin by the hammer to a disengaged configuration that accommodates actuation of the firing pin by the hammer. In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm includes reconfiguring the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration.
In many embodiments of the method of operating a firing pin safety of a hammer-fired firearm, the rotation of the trigger bar is limited. For example, the method can include (a) biasing the trigger bar to rotate relative to the trigger with a trigger bar spring coupled with the trigger bar, and (b) limiting rotation of the trigger bar via a ground member when the trigger is in the released configuration.
In many embodiments of the method of operating a firing pin safety of a hammer-fired firearm, the sear is biased towards engagement with the hammer. For example, in many embodiments, the method includes biasing the sear into engagement with the hammer with a sear spring coupled with the sear.
In some embodiments, the method of operating a firing pin safety of a hammer-fired firearm provides a two-stage trigger pull. For example, the method can include (a) engaging the sear with a first surface of the trigger bar during a first portion of the movement of the trigger bar without inducing disengagement between the sear and the hammer, and (b) engaging the sear with a second surface of the trigger bar during a second portion of the movement of the trigger bar so as to induce disengagement between the sear and the hammer. The second surface can be angled relative to the first surface by 40 degrees or more.
In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm includes blocking rotation of the hammer in the advent of disconnection of the sear from the hammer when the trigger is in the released configuration. For example, in many embodiments, the method includes interfacing the trigger bar with the hammer to block a rotation of the hammer to the uncocked configuration when the trigger is in the released configuration.
In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm provides semi-automatic functionality. For example, in many embodiments, the method includes, while the trigger is in the pulled configuration, (a) rotating the trigger bar relative to the trigger into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration, and (b) reengaging the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration. In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm includes disengaging the trigger bar from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
In another aspect, a method is provided for blocking rotation of a hammer to prevent actuation of a firing pin when a trigger of a hammer-fired firearm is in a released configuration. The method includes pivotally supporting a trigger bar from a trigger having a released configuration. The trigger bar is biased into a fix configuration relative to the trigger in the released configuration. The hammer is restrained in a cocked configuration via a sear. In response to a disconnection of the sear from the hammer with the trigger in the released configuration, rotation of the hammer from the cocked configuration to an uncocked configuration is blocked with the trigger bar.
In another aspect, a trigger mechanism for a hammer-fired firearm includes a trigger, a trigger bar, a trigger bar spring, a hammer, a hammer spring, and a sear. The trigger has a released configuration and a pulled configuration. The trigger bar is pivotally coupled with the trigger to rotate around a trigger bar axis relative to the trigger. The trigger bar spring biases the trigger bar to rotate around the trigger bar axis in a biasing direction. The hammer has a cocked configuration and an uncocked configuration. The hammer is configured to induce a rotation of the trigger bar around the trigger bar axis opposite to the biasing direction during a reconfiguration of the hammer from the cocked configuration to the uncocked configuration while the trigger is in the pulled configuration. The hammer spring biases the hammer toward the uncocked configuration from the cocked configuration. The sear has an engagement configuration and a disengagement configuration. The sear is configured to restrain the hammer in the cocked configuration when the sear is in the engagement configuration. The sear accommodates reconfiguration of the hammer from the cocked configuration to the uncocked configuration when the sear is in the disengagement configuration. The sear is configured to reconfigure from the engagement configuration to the disengagement configuration in response to a movement of the trigger bar induced by a reconfiguration of the trigger from the released configuration to the pulled configuration.
In many embodiments of the trigger mechanism, the rotation of the trigger bar is limited in the biasing direction. For example, the trigger mechanism can include a ground member configured to limit rotation of the trigger bar around the trigger bar axis in the biasing direction. In some embodiments, the ground member includes a hammer pivot pin by which the hammer is mounted to a frame of the hammer-fired firearm.
In many embodiments of the trigger mechanism, the sear is biased towards engagement with the hammer. For example, in many embodiments, the trigger mechanism includes a sear spring that biases the sear toward the engagement configuration from the disengagement configuration.
In some embodiments, the trigger mechanism provides a two-stage trigger pull. For example, the trigger bar can include a first engagement surface and a second engagement surface. The first engagement surface can be configured to engage the sear during a first portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration without inducing disengagement between the sear and the hammer. The second engagement surface can be configured to engage the sear during a second portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration so as to induce disengagement between the sear and the hammer. The first engagement surface can be oriented substantially normal to the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration. The second engagement surface can be angled relative to the first engagement surface by any suitable angle (e.g., an angle in a range from 30 degrees to 90 degrees).
In many embodiments, the trigger mechanism is configured to block rotation of the hammer in the advent of disconnection of the sear from the hammer when the trigger is in the released configuration. For example, in many embodiments, the trigger bar is configured to interface with the hammer to block a reconfiguration of the hammer to the uncocked configuration when the trigger is in the released configuration.
In many embodiments, the trigger mechanism provides semi-automatic functionality. For example, in many embodiments, when the trigger is in the pulled configuration, the trigger bar is configured to (a) rotate around the trigger bar axis in the biasing direction into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration, and (b) accommodate reengagement of the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration. In many embodiments, the trigger bar is configured to disengage from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
In many embodiments, the trigger mechanism includes a firing pin safety that is automatically disengaged after disengagement of the sear from the hammer. For example, in many embodiments, the trigger mechanism includes a firing pin and a firing pin safety. The firing pin is configured to be actuated by the hammer during a reconfiguration of the hammer from the cocked configuration to the uncocked configuration. The firing pin safety has an engaged configuration and a disengaged configuration. The firing pin safety is configured to (a) prevent actuation of the firing pin by the hammer when the firing pin safety is in the engaged configuration, (b) accommodate actuation of the firing pin by the hammer when the firing pin safety is in the disengaged configuration, and (c) reconfigure from the engaged configuration to the disengaged configuration during the rotation of the trigger bar around the trigger bar axis opposite to the biasing direction during the reconfiguration of the hammer from the cocked configuration to the uncocked configuration while the trigger is in the pulled configuration. In many embodiments, the firing pin safety includes a firing pin safety spring configured to reconfigure the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar around the first pivot axis in the biasing direction induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration.
In another aspect, a method of controlling articulation of a hammer in a hammer-fired firearm is provided. The method includes restraining the hammer in a cocked configuration via a sear engaged with the hammer. A movement of a trigger bar pivotally coupled with a trigger is generated by reconfiguring the trigger from a released configuration to a pulled configuration. A sear is engaged with the trigger bar during the movement of the trigger bar so as to disengage the sear from the hammer. In response to the disengagement of the sear from the hammer, the hammer is reconfigured from the cocked configuration to an uncocked configuration while the trigger is in the pulled configuration. While the trigger is in the pulled configuration, the trigger bar is engaged by the hammer during the reconfiguration of the hammer from the cocked configuration to the uncocked configuration so as to induce a rotation of the trigger bar relative to the trigger.
In many embodiments, the method of controlling articulation of a hammer in a hammer-fired firearm includes reconfiguring a firing pin safety during reconfiguration of the hammer from the cocked configuration to the uncocked configuration. For example, the method of controlling articulation of a hammer in a hammer-fired firearm can include engaging a firing pin safety with the trigger bar during the rotation of the trigger bar relative to the trigger so as to reconfigure the firing pin safety from an engaged configuration that prevents actuation of a firing pin by the hammer to a disengaged configuration that accommodates actuation of the firing pin by the hammer.
The method of controlling articulation of a hammer in a hammer-fired firearm can further include preventing engagement of the firing pin by the hammer when the trigger is in the released configuration. For example, the method of controlling articulation of a hammer in a hammer-fired firearm can further include interfacing the trigger bar with the hammer to prevent engagement of the firing pin by the hammer when the trigger is in the released configuration.
The method of controlling articulation of a hammer in a hammer-fired firearm can further include reengagement of the firing pin safety during cycling of the action of the firearm. For example, the method of controlling articulation of a hammer in a hammer-fired firearm can further include reconfiguring the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration.
In many embodiments, the method of controlling articulation of a hammer in a hammer-fired firearm includes controlling orientation of the trigger bar when the trigger is in the released configuration. For example, the method of controlling articulation of a hammer in a hammer-fired firearm can include (a) biasing the trigger bar to rotate relative to the trigger with a trigger bar spring coupled with the trigger bar, and (b) limiting rotation of the trigger bar via a ground member when the trigger is in the released configuration.
In many embodiments, the method of controlling articulation of a hammer in a hammer-fired firearm includes controlling orientation of the sear. For example, the method of controlling articulation of a hammer in a hammer-fired firearm can include biasing the sear into engagement with the hammer with a sear spring coupled with the sear.
The method of controlling articulation of a hammer in a hammer-fired firearm can provide a two-stage trigger pull. For example, the method of controlling articulation of a hammer in a hammer-fired firearm can include (a) engaging the sear with a first surface of the trigger bar during a first portion of the movement of the trigger bar without inducing disengagement between the sear and the hammer, and (b) engaging the sear with a second surface of the trigger bar during a second portion of the movement of the trigger bar so as to induce disengagement between the sear and the hammer. The second surface can be angled relative to the first surface by a suitable angle (e.g., between 30 degrees and 90 degrees).
The method of controlling articulation of a hammer in a hammer-fired firearm can provide semi-automatic functionality. For example, the method of controlling articulation of a hammer in a hammer-fired firearm can include, while the trigger is in the pulled configuration, (a) rotating the trigger bar relative to the trigger into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration, and (b) reengaging the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration. The method of controlling articulation of a hammer in a hammer-fired firearm can include disengaging the trigger bar from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
In another aspect, a hammer safety mechanism is described that is configured to block engagement of a firing pin by a hammer when a trigger of a hammer-fired firearm is in a released configuration. The hammer safety mechanism includes a trigger, a hammer, and a trigger bar. The trigger has a released configuration and a pulled configuration. The hammer is operable to be restrained in a cocked configuration via a sear. The trigger bar is pivotally coupled with the trigger and biased into a fixed orientation relative to the trigger in the released configuration. The trigger bar is configured to, in response to a disconnection of the sear from the hammer with the trigger in the released configuration, block engagement of the firing pin by the hammer.
In many embodiments of the hammer safety mechanism, the trigger bar rotates relative to the trigger. For example, in many embodiments, the hammer is configured to induce a rotation of the trigger bar relative to the trigger during a reconfiguration of the hammer from the cocked configuration to an uncocked configuration while the trigger is in a pulled configuration.
In many embodiments, the hammer safety mechanism includes a firing pin safety. For example, in many embodiments, the hammer safety mechanism includes a firing pin safety having an engaged configuration and a disengaged configuration. In many embodiments, the firing pin safety is configured to (a) prevent actuation of the firing pin by the hammer when the firing pin safety is in the engaged configuration, (b) accommodate actuation of the firing pin by the hammer when the firing pin safety is in the disengaged configuration, and (c) reconfigure from the engaged configuration to the disengaged configuration during the rotation of the trigger bar induced by the reconfiguration of the hammer from the cocked configuration to the uncocked configuration while the trigger is in a pulled configuration.
In many embodiments, the hammer safety mechanism is configured to control orientation of the trigger bar when the trigger is in the released configuration. For example, the hammer safety mechanism can include a ground member configured to limit rotation of the trigger bar in a biasing direction relative to the trigger when the trigger is in the release configuration. The ground member can include a hammer pivot pin by which the hammer is mounted to a frame of the hammer-fired firearm.
In many embodiments of the hammer safety mechanism, the sear is biased into engagement with the hammer. For example, the hammer safety mechanism can include a sear spring biasing the sear into engagement with the hammer in the cocked configuration.
In many embodiments, the hammer safety mechanism provides a two-stage trigger pull. For example, in many embodiments the trigger bar includes (a) a first engagement surface configured to engage the sear during a first portion of a movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration without inducing disengagement between the sear and the hammer, and (b) a second engagement surface configured to engage the sear during a second portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration so as to induce disengagement between the sear and the hammer. The first engagement surface can be oriented substantially normal to the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration. The second engagement surface can be angled relative to the first engagement surface by a suitable angle (e.g., 30 degrees to 90 degrees).
In many embodiments, the hammer safety mechanism provides semi-automatic functionality. For example, when the trigger is in a pulled configuration, the trigger bar can be configured to (a) rotate into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration, and (b) accommodate reengagement of the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration. The trigger bar can be configured to disengage from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
In another aspect, a method of blocking engagement of a firing pin by a hammer of a hammer-fired firearm when a trigger of the hammer-fired firearm is in a released configuration is provided. The method includes pivotally supporting a trigger bar from a trigger having a released configuration and a pulled configuration. The trigger bar is biased into a fixed orientation relative to the trigger in the released configuration. The hammer is restrained in a cocked configuration via a sear. In response to a disconnection of the sear from the hammer while the trigger is in the released configuration, engagement of the firing pin by the hammer is blocked with the trigger bar. In many embodiments, biasing the trigger bar into a fixed configuration relative to the trigger in the released configuration includes applying a biasing force to the trigger bar via a trigger bar spring.
In many embodiments, the method of blocking engagement of the firing pin by the hammer includes inducing rotation of the trigger bar relative to the trigger. For example, the method can include (a) generating a movement of the trigger bar by reconfiguring the trigger from the released configuration to the pulled configuration, (b) engaging the sear with the trigger bar during the movement of the trigger bar so as to disengage the sear from the hammer in the cocked configuration, and (c) while the trigger is in the pulled configuration, engaging the trigger bar with the hammer during a reconfiguration of the hammer from the cocked configuration to an uncocked configuration so as to induce a rotation of the trigger bar relative to the trigger.
The method of blocking engagement of the firing pin by the hammer can include disengaging a firing pin safety. For example, the method can include engaging a firing pin safety with the trigger bar during the rotation of the trigger bar relative to the trigger so as to reconfigure the firing pin safety from an engaged configuration that prevents actuation of a firing pin by the hammer to a disengaged configuration that accommodates actuation of the firing pin by the hammer. The method can include biasing the firing pin safety toward the engagement configuration via a firing pin safety spring. Reconfiguring the firing pin safety from the engaged configuration to the disengaged configuration can include disengaging the firing pin safety from the firing pin.
In many embodiments, the method of blocking engagement of the firing pin by the hammer includes biasing the sear into engagement with the hammer. For example, the method can include biasing the sear into engagement with the hammer with a sear spring coupled with the sear.
The method of blocking engagement of the firing pin by the hammer can provide a two-stage trigger pull. For example, the method can include (a) engaging the sear with a first surface of the trigger bar during a first portion of the movement of the trigger bar without inducing disengagement between the sear and the hammer, and (b) engaging the sear with a second surface of the trigger bar during a second portion of the movement of the trigger bar so as to induce disengagement between the sear and the hammer, the second surface being angled relative to the first surface by between 30 degrees to 90 degrees.
The method of blocking engagement of the firing pin by the hammer can provide semi-automatic functionality. For example, the method can include, while the trigger is in the pulled configuration, (a) reconfiguring the hammer from the uncocked configuration to the cocked configuration while the trigger is in the pulled configuration, (b) rotating the trigger bar relative to the trigger into engagement with the sear during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration, and (c) reengaging the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration. The method can further include disengaging the trigger bar from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
In another aspect, a firing pin safety mechanism for a hammer-fired firearm is described. The firing pin safety mechanism includes a trigger, a trigger bar, a hammer, a firing pin, and a firing pin safety. The trigger has a release configuration and a pulled configuration. The trigger bar is pivotally coupled with the trigger for rotation around a trigger bar axis. The hammer is reconfigurable between a cocked configuration and an uncocked configuration. The hammer is configured to induce a rotation of the trigger bar around the trigger bar axis during a reconfiguration of the hammer from the cocked configuration to the uncocked configuration. The firing pin is configured to be struck by the hammer to actuate the firing pin. The firing pin safety is reconfigurable between an engaged configuration and a disengaged configuration. The firing pin safety blocks actuation of the firing pin when in the engaged configuration. The firing pin safety accommodates actuation of the firing pin when in the disengaged configuration. The firing pin safety is reconfigured from the engaged configuration to the disengaged configuration in response to the rotation of the trigger bar around the trigger bar axis during the reconfiguration of the hammer from the cocked configuration to the uncocked configuration.
In many embodiments, the firing pin safety mechanism is configured to control orientation of the trigger bar when the trigger is in the released configuration. For example, the firing pin safety mechanism can include a ground member configured to limit rotation of the trigger bar around the trigger bar axis in a biasing direction when the trigger. The ground member can include a hammer pivot pin by which the hammer is mounted to a frame of the hammer-fired firearm.
In many embodiments, the firing pin safety mechanism includes a sear for controlling articulation of the hammer. The sear can be reconfigurable between an engagement configuration and a disengagement configuration. The sear can be configured to restrain the hammer in the cocked configuration when the sear is in the engagement configuration and accommodate reconfiguration of the hammer from the cocked configuration to the uncocked configuration when the sear is in the disengagement configuration. In many embodiments, the sear can be reconfigured from the engagement configuration to the disengagement configuration in response to a movement of the trigger bar induced by a reconfiguration of the trigger from the released configuration to the pulled configuration.
The firing pin safety mechanism can provide a two-stage trigger pull. For example, in many embodiments of the firing pin safety mechanism, the trigger bar includes (a) a first engagement surface configured to engage the sear during a first portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration without inducing disengagement between the sear and the hammer, and (b) a second engagement surface configured to engage the sear during a second portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration so as to induce disengagement between the sear and the hammer. The first engagement surface can be oriented substantially normal to the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration. The second engagement surface can be angled relative to the first engagement surface by a suitable angle (e.g., 30 degrees to 90 degrees).
The firing pin safety mechanism can provide a hammer safety that blocks engagement of the firing pin by the hammer when the trigger is in the release configuration. For example, the trigger bar can be configured to interface with the hammer to block reconfiguration of the hammer to the uncocked configuration when the trigger is in the released configuration.
The firing pin safety mechanism can provide semi-automatic functionality. For example, when the trigger is in the pulled configuration, the trigger bar can be configured to (a) rotate around the trigger bar axis in the biasing direction into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration, and (b) accommodate reengagement of the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration. The trigger bar can be configured to disengage from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
In many embodiments, the firing pin safety is biased towards the engagement configuration. For example, the firing pin safety mechanism can include a firing pin safety spring configured to reconfigure the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration.
In another aspect, a method of operating a firing pin safety of a hammer-fired firearm is provided. The method includes generating a movement of a trigger bar pivotally coupled with a trigger by reconfiguring the trigger from a released configuration to a pulled configuration. A sear is engaged with the trigger bar during the movement of the trigger bar so as to disengage the sear from a hammer in a cocked configuration. While the trigger is in the pulled configuration, the trigger bar is engaged with the hammer during a reconfiguration of the hammer from the cocked configuration to an uncocked configuration so as to induce a rotation of the trigger bar relative to the trigger. The firing pin safety is engaged with the trigger bar during the rotation of the trigger bar relative to the trigger so as to reconfigure the firing pin safety from an engaged configuration that prevents actuation of a firing pin by the hammer to a disengaged configuration that accommodates actuation of the firing pin by the hammer. In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm includes reconfiguring the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration.
In many embodiments of the method of operating a firing pin safety of a hammer-fired firearm, the rotation of the trigger bar is limited. For example, the method can include (a) biasing the trigger bar to rotate relative to the trigger with a trigger bar spring coupled with the trigger bar, and (b) limiting rotation of the trigger bar via a ground member when the trigger is in the released configuration.
In many embodiments of the method of operating a firing pin safety of a hammer-fired firearm, the sear is biased towards engagement with the hammer. For example, in many embodiments, the method includes biasing the sear into engagement with the hammer with a sear spring coupled with the sear.
In some embodiments, the method of operating a firing pin safety of a hammer-fired firearm provides a two-stage trigger pull. For example, the method can include (a) engaging the sear with a first surface of the trigger bar during a first portion of the movement of the trigger bar without inducing disengagement between the sear and the hammer, and (b) engaging the sear with a second surface of the trigger bar during a second portion of the movement of the trigger bar so as to induce disengagement between the sear and the hammer. The second surface can be angled relative to the first surface by 40 degrees or more.
In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm includes blocking rotation of the hammer in the advent of disconnection of the sear from the hammer when the trigger is in the released configuration. For example, in many embodiments, the method includes interfacing the trigger bar with the hammer to block a rotation of the hammer to the uncocked configuration when the trigger is in the released configuration.
In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm provides semi-automatic functionality. For example, in many embodiments, the method includes, while the trigger is in the pulled configuration, (a) rotating the trigger bar relative to the trigger into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration, and (b) reengaging the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration. In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm includes disengaging the trigger bar from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
In many embodiments, the method of operating a firing pin safety of a hammer-fired firearm provides for reengagement of the firing pin safety. For example, the method of operating a firing pin safety of a hammer-fired firearm can include reconfiguring the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration. The method of operating a firing pin safety of a hammer-fired firearm can include biasing the firing pin safety toward the engagement configuration via a firing pin safety spring. Reconfiguring the firing pin safety from the engaged configuration to the disengaged configuration can include disengaging the firing pin safety from the firing pin.
For a fuller understanding of the nature and advantages of the present invention, reference should be made to the ensuing detailed description and accompanying drawings.
In the following description, various embodiments of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the embodiments. It will, however, also be apparent to one skilled in the art that the present invention may be practiced without the specific details. Furthermore, well-known features may be omitted or simplified in order not to obscure the embodiment being described.
Referring now to the drawings, in which like reference numerals represent like parts throughout the several views,
The trigger 12 is pivotally mounted to a frame of the hammer-fired firearm to rotate relative to the frame around a trigger axis 20 between a released configuration (illustrated in
The trigger bar 14 is pivotally mounted to the trigger 12 to rotate relative to the trigger around a trigger bar axis 24. In many embodiments, the trigger mechanism 10 includes a trigger bar spring that applies a tension force to the trigger bar 14 in a trigger bar spring direction 26, which has forward and downward components relative to the view of
The sear 16 is pivotally mounted to the frame to rotate relative to the frame around a sear axis 30 (shown in
The hammer 18 is pivotally mounted to the frame via the hammer pivot pin 28 to rotate around a hammer axis 32 between the cocked configuration and an uncocked configuration. In many embodiments, the trigger mechanism 10 includes a hammer spring that biases the hammer 18 towards the uncocked configuration.
In the starting configuration, the sear 16 is in the engagement configuration in which the sear 16 restrains the hammer 18 in the cocked configuration. In the illustrated embodiment, the trigger bar 14 is not in contact with the sear 16, thereby providing an initial amount of travel of the trigger 12 prior to bringing the trigger bar 14 into contact with the sear 16.
In the illustrated embodiment, the trigger mechanism 10 provides a two-stage trigger pull.
In many embodiments, the trigger mechanism 10 includes a firing pin safety that is automatically disengaged via rotation of the hammer 18 after disengagement of the sear 16 from the hammer 18. A hammer-fired firearm in which the trigger mechanism 10 is incorporated can include a firing pin configured to be actuated by the hammer 18 during a reconfiguration of the hammer 18 from the cocked configuration to the uncocked configuration. The firing pin safety can have an engaged configuration and a disengaged configuration. The firing pin safety can be configured to (a) prevent actuation of the firing pin by the hammer 18 when the firing pin safety is in the engaged configuration, (b) accommodate actuation of the firing pin by the hammer 18 when the firing pin safety is in the disengaged configuration, and (c) reconfigure from the engaged configuration to the disengaged configuration during the rotation of the trigger bar 14 around the trigger bar axis 24 induced by reconfiguration of the hammer 18 from the cocked configuration to the uncocked configuration while the trigger 12 is in the pulled configuration. In many embodiments, the firing pin safety includes a firing pin safety spring configured to reconfigure the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar 12 around the trigger bar axis 24 induced by a reconfiguration of the hammer 18 from the uncocked configuration to the cocked configuration.
Any suitable rotation of the trigger bar 14 induced by the hammer 18 can be employed. For example, in the illustrated embodiment, the hammer 18 induces a rotation of the trigger bar 14 of about 7 degrees. Smaller or larger induced rotations of the trigger bar 14 can be used, such as any suitable angle from 2 degrees to 20 degrees.
In many embodiments, the trigger mechanism 10 provides semi-automatic functionality. While the trigger 12 is in the pulled configuration, the trigger bar 14 can be configured to (a) rotate around the trigger bar axis 24 into engagement with the sear 16 during a reconfiguration of the hammer 18 from the uncocked configuration to the cocked configuration induced by articulation of a slide of the hammer-fired firearm (e.g., during ejection of a spent cartridge), and (b) accommodate reengagement of the sear 16 with the hammer 18 during the reconfiguration of the hammer 18 from the uncocked configuration to the cocked configuration to restrain the hammer 18 in the cocked configuration.
In many embodiments, the trigger mechanism 10 is configured to block rotation of the hammer 18 to the uncocked configuration in the advent of disconnection of the sear 16 from the hammer 18 when the trigger 12 is in the released configuration. For example,
The method 100 includes generating a movement of a trigger bar pivotally coupled with a trigger by reconfiguring the trigger from a released configuration to a pulled configuration (act 102). For example, in the trigger mechanism 10, the trigger bar 14 is pivotally coupled to the trigger 12 at trigger bar axis 24. The movement of the trigger bar 14 is generated by reconfiguring the trigger 12 from the released configuration shown in
The method 100 further includes engaging a sear with the trigger bar during the movement of the trigger bar so as to disengage the sear from a hammer in a cocked configuration (act 104). For example, in the trigger mechanism 10, the sear 16 is engaged with the trigger bar 16 during the movement of the trigger bar 14 so as to disengage the sear 16 from the hammer 18 in the cocked configuration as shown in
The method 100 further includes, while the trigger is in the pulled configuration, engaging the trigger bar with the hammer during a reconfiguration of the hammer from the cocked configuration to an uncocked configuration so as to induce a rotation of the trigger bar relative to the trigger (act 106). For example, in the configuration of the trigger mechanism 10 illustrated in
The method 100 further includes engaging the firing pin safety with the trigger bar during the rotation of the trigger bar relative to the trigger so as to reconfigure the firing pin safety from an engaged configuration that prevents actuation of a firing pin by the hammer to a disengaged configuration that accommodates actuation of the firing pin by the hammer (act 108). For example, in the configuration of the trigger mechanism 10 illustrated in
Other variations are within the spirit of the present invention. Thus, while the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
Claims
1. A trigger mechanism for a hammer-fired firearm, the trigger mechanism comprising:
- a trigger having a released configuration and a pulled configuration;
- a trigger bar pivotally coupled with the trigger to rotate around a trigger bar axis, the trigger bar being biased to rotate around the trigger bar axis in a biasing direction;
- a pivotally-mounted hammer configured to rotate around a hammer axis between a cocked configuration and an uncocked configuration, the hammer comprising a trigger bar cam configured to induce a rotation of the trigger bar around the trigger bar axis opposite to the biasing direction during a reconfiguration of the hammer from the cocked configuration to the uncocked configuration while the trigger is in the pulled configuration, the hammer being biased to rotate around the hammer axis toward the uncocked configuration from the cocked configuration;
- a pivotally-mounted sear configured to rotate around a sear axis between an engagement configuration and a disengagement configuration, the sear being configured to restrain the hammer in the cocked configuration when the sear is in the engagement configuration and accommodate rotation of the hammer around the hammer axis from the cocked configuration to the uncocked configuration when the sear is in the disengagement configuration, the sear being configured to rotate from the engagement configuration to the disengagement configuration in response to a movement of the trigger bar induced by a reconfiguration of the trigger from the released configuration to the pulled configuration.
2. The trigger mechanism of claim 1, wherein a rotation of the trigger bar around the trigger bar axis is limited in the biasing direction.
3. The trigger mechanism of claim 2, wherein the rotation of the trigger bar around the trigger bar axis is limited in the biasing direction by a hammer pivot pin by which the hammer is pivotally mounted to a frame of the hammer-fired firearm.
4. The trigger mechanism of claim 1, wherein the sear is biased to rotate around the sear axis toward the engagement configuration from the disengagement configuration.
5. The trigger mechanism of claim 1, wherein the trigger bar comprises:
- a first engagement surface configured to engage the sear during a first portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration without inducing disengagement between the sear and the hammer; and
- a second engagement surface configured to engage the sear during a second portion of the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration so as to induce disengagement between the sear and the hammer.
6. The trigger mechanism of claim 5, wherein:
- the first engagement surface is oriented substantially normal to the movement of the trigger bar induced by the reconfiguration of the trigger from the released configuration to the pulled configuration; and
- the second engagement surface is angled relative to the first engagement surface by at least 40 degrees.
7. The trigger mechanism of claim 1, wherein the trigger bar is configured to interface with the trigger bar cam to block a rotation of the hammer toward the uncocked configuration when the trigger is in the released configuration.
8. The trigger mechanism of claim 1, wherein when the trigger is in the pulled configuration, the trigger bar is configured to:
- rotate around the trigger bar axis in the biasing direction into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration; and
- accommodate reengagement of the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration.
9. The trigger mechanism of claim 8, wherein the trigger bar is configured to disengage from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
10. The trigger mechanism of claim 1, further comprising:
- a firing pin configured to be actuated by the hammer during a reconfiguration of the hammer from the cocked configuration to the uncocked configuration; and
- a firing pin safety having an engaged configuration and a disengaged configuration, the firing pin safety being configured to: prevent actuation of the firing pin by the hammer when the firing pin safety is in the engaged configuration; accommodate actuation of the firing pin by the hammer when the firing pin safety is in the disengaged configuration; and reconfigure from the engaged configuration to the disengaged configuration during the rotation of the trigger bar around the trigger bar axis opposite to the biasing direction during the reconfiguration of the hammer from the cocked configuration to the uncocked configuration while the trigger is in the pulled configuration.
11. The trigger mechanism of claim 10, wherein the firing pin safety reconfigures from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar around the trigger bar axis in the biasing direction induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration.
12. A method of operating a firing pin safety of a hammer-fired firearm, the method comprising:
- generating a movement of a trigger bar pivotally coupled with a trigger by reconfiguring the trigger from a released configuration to a pulled configuration;
- engaging a sear with the trigger bar during the movement of the trigger bar so as to disengage the sear from a hammer in a cocked configuration;
- while the trigger is in the pulled configuration, engaging the trigger bar with the hammer during a reconfiguration of the hammer from the cocked configuration to an uncocked configuration so as to induce a rotation of the trigger bar relative to the trigger; and
- engaging the firing pin safety with the trigger bar during the rotation of the trigger bar relative to the trigger so as to reconfigure the firing pin safety from an engaged configuration that prevents actuation of a firing pin by the hammer to a disengaged configuration that accommodates actuation of the firing pin by the hammer.
13. The method of claim 12, further comprising:
- biasing the trigger bar to rotate relative to the trigger; and
- limiting rotation of the trigger bar when the trigger is in the released configuration.
14. The method of claim 12, further comprising biasing the sear into engagement with the hammer.
15. The method of claim 12, further comprising:
- engaging the sear with a first surface of the trigger bar during a first portion of the movement of the trigger bar without inducing disengagement between the sear and the hammer; and
- engaging the sear with a second surface of the trigger bar during a second portion of the movement of the trigger bar so as to induce disengagement between the sear and the hammer, the second surface being angled relative to the first surface by at least 40 degrees.
16. The method of claim 12, further comprising interfacing the trigger bar with the hammer to block a rotation of the hammer to the uncocked configuration when the trigger is in the released configuration.
17. The method of claim 12, further comprising:
- while the trigger is in the pulled configuration, rotating the trigger bar relative to the trigger into engagement with the sear during a reconfiguration of the hammer from the uncocked configuration to the cocked configuration; and reengaging the sear with the hammer during the reconfiguration of the hammer from the uncocked configuration to the cocked configuration to restrain the hammer in the cocked configuration.
18. The method of claim 17, further comprising disengaging the trigger bar from the sear during a reconfiguration of the trigger from the pulled configuration to the released configuration.
19. The method of claim 12, further comprising reconfiguring the firing pin safety from the disengaged configuration to the engaged configuration in response to a rotation of the trigger bar induced by a reconfiguration of the hammer from the uncocked configuration to the cocked configuration.
20. A method of blocking rotation of a hammer to prevent actuation of a firing pin when a trigger of a hammer-fired firearm is in a released configuration, the method comprising:
- pivotally supporting a trigger bar from a trigger having a released configuration;
- biasing the trigger bar into a fixed configuration relative to the trigger in the released configuration;
- restraining the hammer in a cocked configuration via a sear; and
- in response to a disconnection of the sear from the hammer with the trigger in the released configuration, blocking rotation of the hammer from the cocked configuration to an uncocked configuration via contact between the hammer and the trigger bar.
Type: Application
Filed: Jul 10, 2017
Publication Date: Jan 10, 2019
Inventor: Mohamed Al-Mutawa (Abu Dhabi)
Application Number: 15/645,862