Modular Well Pad Systems and Methods
A modular well pad system, which includes an inlet module, a 2 well-pair module and a 3 well-pair module. The inlet module, one or more 2 well-pair modules and one or more 3 well-pair modules may be configured to build an interconnected well pad system for accommodating two to twelve well-pairs wherein standardized connections enable the 2 well-pair module and the 3 well-pair module to be coupled together, to the inlet module, another 2 well-pair module and/or another 3 well-pair module.
Latest Bantrel Co. Patents:
The priority of U.S. Provisional Patent Application No. 62/294,418, filed Feb. 12, 2016, is hereby claimed and the specification thereof is incorporated herein by reference.
FIELD OF THE DISCLOSUREThe present disclosure generally relates to modular well pad systems and methods. More particularly, the present disclosure relates to a modular well pad system, which includes an inlet module, a 2 well-pair module and a 3 well-pair module. The inlet module, one or more 2 well-pair modules and one or more 3 well-pair modules may be configured to build an interconnected well pad system for accommodating two to twelve well-pairs wherein standardized connections enable the 2 well-pair module and the 3 well-pair module to be coupled together, to the inlet module, another 2 well-pair module and/or another 3 well-pair module.
BACKGROUNDSteam Assisted Gravity Drainage (SAGD) is a methodology of oil extraction where steam is injected into the underground oil reservoir through an injection well and bituminous product is collected though a production well. The steam is injected downhole to melt bitumen trapped within a sand layer, typically anywhere from 200 to 500 meters below grade. The resultant mixture of bitumen and water (hereinafter referred to as a production emulsion) flows up through the production well, potentially with some free gas, where a well pad and surface facilities handle the transfer of the production emulsion to a central processing facility (CPF). Because the production emulsion is a multiphase product, the liquid and gases are separated and sent to the CPF. Conventional SAGD well pads thus, require the use of separator vessels.
Conventional SAGD well-pads are often constructed in a way that allows for much of the construction and fabrication work to be performed offsite, in a more controlled environment, and then assembled on-site. Each well pad thus, may include multiple modules that can be shipped by highway on a flatbed trailer of a transport truck and then lowered or lifted into place for assembly on-site. Such modules, however, still lack the requisite standardization necessary to permit simple interconnectivity between the modules regardless of the module type, well pad location and design parameters. Moreover, the lack of simple interconnectivity also renders such modules significantly inflexible for expansion. As a result, conventional SAGD well pads remain highly customized and therefore, costly to construct.
The present disclosure is described with reference to the accompanying drawings, in which like elements are referenced with like reference numbers, and in which:
The subject matter of the present disclosure is described with specificity, however, the description itself is not intended to limit the scope of the disclosure. The subject matter thus, might also be embodied in other ways, to include different structures, steps and/or combinations similar to and/or fewer than those described herein, in conjunction with other present or future technologies. Moreover, although the term “step” may be used herein to describe different elements of methods employed, the term should not be interpreted as implying any particular order among or between various steps herein disclosed unless otherwise expressly limited by the description to a particular order. Other features and advantages of the disclosed embodiments will be or will become apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional features and advantages be included within the scope of the disclosed embodiments. Further, the illustrated figures are only exemplary and are not intended to assert or imply any limitation with regard to the environment, architecture, design, or process in which different embodiments may be implemented.
The pressure profile for a well-pad cannot be standardized because the location of each well pad in relation to the CPF is unique to each project. Similarly, the topography along the right of way is also unique to each project. Due to these factors, the selection of some well-pad design parameters (e.g. single phase pipelines vs multi-phase pipelines; separation on or off the well pad; pipeline size (internal diameter); and pumping configuration—pumps in series, multi-phase pumps), based on costs, cannot be easily made using a standardized design. As used herein, the terms “pipeline” and “pipelines” may also be referred to as piping, line or lines.
Other parameters of the well pad design and its production (engineering, procurement, fabrication, installation and construction), however, may be standardized to achieve substantial production savings. The modular well pad described herein employs carefully controlled reservoir pressure and temperature conditions along with the use of submersible downhole pumps that produce a product with a single liquid phase, thereby eliminating the requirement for separator vessels and a costly gas pipeline back to the CPF. The modular well pad and its production may thus, be standardized by (i) removing separators (group and test) from the design by raising the product pressure to above the bubble point using electric submersible pumps (ESPs); (ii) providing an option to connect to a multi-phase pump to boost the pressure further if need be to remain a single phase (liquid) for the product; and iii) providing an option to connect to a separation building if required to enable two single phase pipelines (1 gas, 1 liquid emulsion) for the product.
Because the modular well-pad connections between modules are standardized, the modular well-pad allows for increased flexibility and repeatability without any additional engineering. Moreover, production costs for the modular well-pad are lowered because the modular well-pad is based on a design that: i) reduces the scope of a well-pad to the maximum possible extent without sacrificing life cycle cost; ii) reduces the scope of on-site field production using modularization; iii) reduces materials; and iv) provides options to enable the design to be customized.
The modular well-pad thus, overcomes one or more of the prior art disadvantages with an inlet module. a 2 well-pair module and a 3 well-pair module. The inlet module, one or more 2 well-pair modules and one or more 3 well-pair modules may be configured to build an interconnected well pad system for accommodating two to twelve well-pairs wherein standardized connections enable the 2 well-pair module and the 3 well-pair module to be coupled together, to the inlet module, another 2 well-pair module and/or another 3 well-pair module.
In one embodiment the present disclosure includes a modular well-pad system, comprising an inlet module comprising a plurality of service lines, wherein one or more of the plurality of service lines is connected at one end of the inlet module to a central processing facility and the plurality of service lines is connectable at another end of the inlet module to a respective plurality of service lines connected to one end of a 2 well-pair module and a respective plurality of services lines connected to one end of a 3 well-pair module; at least one of the 2 well-pair module and the 3 well-pair module, wherein the plurality of service lines connected to the one end of the 2 well-pair module and the plurality of service lines connected to the one end of the 3 well-pair module are connectable to i) a respective plurality of service lines connected to another end of the 2 well-pair module or a respective plurality of service lines connected to another end of the 3 well-pair module, and ii) a respective plurality of service lines connected to another end of another 2 well-pair module and a respective plurality of service lines connected to another end of another 3 well-pair module and wherein the plurality of service lines connected to the another end of the 2 well-pair module and the plurality of service lines connected to the another end of 3 well-pair module are connectable to a respective plurality of service lines connected to one end of another 2 well-pair module and a respective plurality of service lines connected to one end of another 3 well-pair module; the 2 well-pair module connectable to two well pairs and the 3 well-pair module connectable to three well pairs, wherein each well pair represents an injection well and a production well.
Referring now to
The modular well-pad system is based on receiving a pre-drilled well-pad to rough grade with an installed power transformer 126. Each module is sized for highway transport and designed to be lowered onto piles from the bed of a transport vehicle so that the on-site use of cranes is no longer required. Because the modular well-pad system and its production is largely standardized, it is expandable from two well-pairs up to a maximum of twelve well-pairs within a well-pad boundary 134 using 2 and 3 well-pair modules that can be assembled in any configuration necessary to achieve the required count. Because module operating platforms are designed to mate closely field platforms or handrail construction is not required. Field installed stairways. however, can be provided on any module based on local construction and safety requirements.
Referring now to
Referring now to
Referring now to
Those skilled in the art will appreciate that the inlet module 102, the 2 well-pair module 104 and the 3 well-pair module 106 may include many possible different internal configurations of piping, mechanical and electrical components. If, for example, these modules needed to support a water flood reservoir support design (high pressure water injection downhole), then each steam line would be replaced with high pressure water line (with suitable controls) and each emulsion line would be replaced with another reservoir production fluid line such as a water, solution gas or oil line. Suitable controls for these new lines may require electrical actuation in which the instrument-air line may be replaced with an electrical line. In these cases the piping may vary at the Christmas tree accordingly.
While the present disclosure has been described in connection with presently preferred embodiments, it will be understood by those skilled in the art that it is not intended to limit the disclosure to those embodiments. It is therefore, contemplated that various alternative embodiments and modifications may be made to the disclosed embodiments without departing from the spirit and scope of the disclosure defined by the appended claims and equivalents thereof.
Claims
1. A modular well-pad system, comprising:
- an inlet module comprising a plurality of service lines, wherein one or more of the plurality of service lines is connected at one end of the inlet module to a central processing facility and the plurality of service lines is connectable at another end of the inlet module to a respective plurality of service lines connected to one end of a 2 well-pair module and a respective plurality of services lines connected to one end of a 3 well-pair module;
- at least one of the 2 well-pair module and the 3 well-pair module, wherein the plurality of service lines connected to the one end of the 2 well-pair module and the plurality of service lines connected to the one end of the 3 well-pair module are connectable to i) a respective plurality of service lines connected to another end of the 2 well-pair module or a respective plurality of service lines connected to another end of the 3 well-pair module, and ii) a respective plurality of service lines connected to another end of another 2 well-pair module and a respective plurality of service lines connected to another end of another 3 well-pair module and wherein the plurality of service lines connected to the another end of the 2 well-pair module and the plurality of service lines connected to the another end of 3 well-pair module are connectable to a respective plurality of service lines connected to one end of another 2 well-pair module and a respective plurality of service lines connected to one end of another 3 well-pair module;
- the 2 well-pair module connectable to two well pairs and the 3 well-pair module connectable to three well pairs, wherein each well pair represents an injection well and a production well.
2. The system of claim 1, further comprising four 3 well-pair modules.
3. The system of claim 1, further comprising two 3 well-pair modules and three 2 well-pair modules.
4. The system of claim 1, wherein the inlet module, the 2 well-pair module and the 3 well-pair module are transportable by truck.
5. The system of claim 1, wherein each plurality of service lines comprises a steam or high pressure water line, a natural gas line, an instrument control line, a production line, a casing gas line and a start-up fluid line.
6. The system of claim 5, wherein the production line includes one of emulsion, water, solution gas and oil.
7. The system of claim 5, wherein the instrument control line includes one of electricity and air.
8. The system of claim 5, wherein the production line, the casing gas line, the natural gas line and the steam or high pressure water line are connected at the one end of the inlet module to the central processing facility and the instrument control line and start-up fluid lines are connected to opposite sides of the inlet module.
9. The system of claim 5, wherein the 2 well-pair module and the 3 well-pair module each comprise another production line and another casing gas line connected at a production side of each respective 2 well-pair module and 3 well-pair module to each respective production well.
10. The system of claim 9, wherein the 2 well-pair module and the 3 well-pair module each comprise another natural gas line and another steam or high pressure water line connected at an injection side and the production side of each respective 2 well-pair module and 3 well-pair module to each respective injection well and each respective production well.
11. The system of claim 10, wherein the 2 well-pair module and the 3 well-pair module each comprise another start-up fluid line connected at the injection side of each respective 2 well-pair module and 3 well-pair module to each respective injection well.
12. The system of claim 6, further comprising an electric submersible pump positioned below each production well.
13. The system of claim 12, wherein the emulsion, water, solution gas and oil are each a single phase liquid product.
14. The system of claim 1, wherein each connection is standardized.
Type: Application
Filed: Feb 10, 2017
Publication Date: Feb 14, 2019
Applicant: Bantrel Co. (Calgary, AB)
Inventors: Paul Hardy (Alberta), Joe Overy (Alberta)
Application Number: 16/077,249