CONDUCTIVE MAGNETIC BUILDING BLOCKS
A system of conductive magnetic building blocks. Each building block comprising a conductive magnetic framework configured to magnetically and electrically couple each respective building block to an adjacent or stacked building block. A building block may further comprise a power supply or an electrical device configured to be powered by the current conducted through the conductive magnetic framework.
The application claims priority to U.S. Provisional Application Ser. No. 62/546,072, filed Aug. 16, 2017 herein incorporated by reference in its entirety.
BACKGROUND OF THE INVENTIONThe present invention generally relates to the field of building blocks. More particularly, the invention relates to a system of conductive magnetic building blocks.
Many different iterations of building blocks exist in the prior art. Blocks can be classified broadly according to the type of materials used in manufacture and the functionality offered. Ease of use and manipulation are also factors in how appealing and engaging the blocks will be to the end user.
Wooden blocks, for instance, are made of an environmentally safe material and are easy to use and manipulate, but often do not support much additional functionality. For example, wooden blocks can be stacked and aligned, but do not inherently offer structural stability without the use of alignment pins or adhesives. If alignment pins or adhesives are used, the blocks become hard to take apart and rebuild with.
Other building blocks in the prior art include LEGO blocks or LEGO style blocks. LEGO style blocks typically comprise a set of colorful interlocking plastic bricks. LEGO style blocks typically comprise a male and female component that fit together with a compression fit. The LEGO style block may be difficult to manipulate for those lacking in fine motor strength and difficult to pull apart once connected to each other. These drawbacks spurred the development of other block designs such as magnetic blocks.
Magnetic blocks allow the end user to easily combine or stack blocks into complex structures. Typical magnetic blocks such as MAGNATILES or TEGU blocks embed magnets beneath the surface of plastic or wood at the respective edges of each block. A user with even minimal fine motor strength can easily manipulate the blocks to attract to one another and build support structures that are magnetically coupled. The stronger and higher quality magnets used typically offer better user experiences.
Still yet another evolution of the building block has been in the conductive style building block i.e. building blocks that conduct electricity for the purpose of powering an electrical element such as an LED, a speaker, or a motor. This has been accomplished in the prior art by a number of ways such as through the use of a wire being routed through the structure of the block, through metal contact embedded in LEGO style blocks, or even through the use of conductive paint over LEGO style blocks. These solutions have the same coupling shortcomings as LEGO style blocks and other blocks described above, but also in cases, such as the use of conductive paint, the block lacks the ability to separate electrical signals at each terminal and run multiple currents.
The present invention seeks to improve upon the current designs of building blocks, while also addressing some of the more common issues in the field relating to structural integrity, modular assembly, and output functionality. Specifically, the invention provides a platform offering increased stability, connectivity, and ease of use, which allows robust assembly and combinations of conductive magnetic blocks capable of powering electronic circuits.
SUMMARY OF THE INVENTIONIn view of the above, a system of conductive magnetic blocks, capable of conducting an electrical current through magnetic terminals to additional blocks or electrical devices is provided.
The advantage of the present invention is that it allows for the production of complex structures without sacrificing stability or modularity. A user may build a structure with the ease of a typical magnetic block simply by aligning terminals of the building blocks having opposing magnetic polarities. When the terminals are coupled in alignment, an electrical current may be conducted from one block to the next. Each block may be a stand-alone unit configured to conduct current or a particular block may comprise an electrical device to be powered by the current, or a combination of the two.
In a first embodiment, the invention comprises a system of electrically and magnetically conductive building blocks. Each building block comprises a conductive framework disposed within a building block housing. The conductive framework comprises a structural element having magnetic terminals. The conductive framework may be disposed within the block housing such that each magnetic terminal faces a surface of the building block housing. For connectivity sake it is optimal, but not required, for each block to have a magnetic terminal on at least two surfaces and for conductivity sake, it is optimal, but not required, for each block to have at least two isolated conductive framework units configured for opposite electrical polarities.
In some embodiments, each conductive frame unit comprises a bar magnet having opposite magnetic polarities on each end acting as coupling and conduction terminals or a structural element having magnetic ends or magnets with similar or opposite magnetic polarities disposed on each end acting as terminals. Each conductive frame unit may be isolated within the block housing to provide separate current paths, or a plurality of conductive framework units may be coupled to form a single current path that may be conducted through any coupled conductive frame unit.
In additional embodiments, providing additional structural stability within the building block housing, a first conductive framework unit comprising two elongated members having magnets disposed on each terminal end of the elongated members (or two bar magnets) coupled by a conductive corner coupling member and a second conductive framework unit may comprising two elongated members having magnets disposed on each terminal end of the elongated members (or two bar magnets) coupled by a conductive corner coupling member, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to opposite non-adjacent corners of the housing and that the elongated members of the second conductive framework unit align to separate opposite non-adjacent corners. In this embodiment the corner coupling members of the first conductive framework unit and the second conductive framework unit are disposed at different vertical heights of the elongated members such that the first conductive framework unit and the second conductive framework unit remain electrically isolated.
In yet another embodiment, a first conductive framework unit comprising three elongated members having magnets disposed on each terminal end of the elongated members (or three bar magnets) coupled by two conductive corner coupling members in a corner-side-corner configuration and a second conductive framework unit may comprising three elongated members having magnets disposed on each terminal end of the elongated members (or three bar magnets) coupled by two conductive corner coupling members in a corner-side-corner configuration, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to a first corner, an opposite non-adjacent side, and an adjacent corner of the housing and that the elongated members of the second conductive framework unit align to separate second corner, a separate opposite non-adjacent wall, and a separate adjacent corner. In this embodiment the corner coupling members of the first conductive framework unit and the second conductive framework unit are disposed at different vertical heights of the elongated members such that the first conductive framework unit and the second conductive framework unit remain electrically isolated.
In yet another embodiment, a first conductive framework unit comprising at least four elongated members having magnets disposed on each terminal end of the elongated members (or four bar magnets) coupled by two conductive corner coupling members and at least one conductive side coupling member in a corner-side-(side+n)-corner configuration and a second conductive framework unit comprising at least four elongated members having magnets disposed on each terminal end of the elongated members (or four bar magnets) coupled by two conductive corner coupling members and a conductive side coupling member in a corner-side-(side+n)-corner configuration, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to a first corner, an opposite non-adjacent side, and an adjacent corner of the housing and that the elongated members of the second conductive framework unit align to a separate second corner, a separate opposite non-adjacent wall, and a separate adjacent corner. In this embodiment the corner coupling members of the first conductive framework unit and the second conductive framework unit are disposed at different vertical heights of the elongated members such that the first conductive framework unit and the second conductive framework unit remain electrically isolated.
In another aspect of the invention, each elongated unit in any of the embodiments described above may comprise top and bottom terminal magnets configured to be conductive on the top and bottom surfaces of the building block housing, and side terminals disposed between the top and bottom terminals configured to be conductive on the side surfaces of the building block housing.
In yet another aspect of the invention, an electrical component may be coupled to the first conductive framework unit and the second conductive framework unit bridging the circuit and powering the electrical component. The electrical component includes by way of non-limiting example LEDs, speakers, displays, RF radios, motors, switches, resistors, capacitors, diodes, inductors, or integrated circuit chips. In any of the embodiments discussed above, the system's output will be dictated by the number, type(s), and shape(s) of the functional components that are electrically activated and coupled to the block's terminal elements. The function of these components can include alternate functionality, including circuit isolation, or non-functionality.
In one aspect of the invention, the conductive framework units are insert-molded into plastic building block housing.
In another aspect of the invention, the conductive framework units are pressed and held via a compression fit or adhesive into an already shaped plastic, wood, or other suitable non-conductive housing material building block housing.
In yet another aspect of the invention, the terminals may be exposed through the housing such that each building block unit connects directly to each stacked building block through a direct terminal connection.
In yet another aspect of the invention, the terminals may be covered housing such that each building block unit connects through induction indirectly to each stacked building block.
The methods, systems, apparatuses are set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by practice of the methods, apparatuses, and systems. The advantages of the methods, apparatuses, and systems will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the methods, apparatuses, and systems, as claimed.
In the accompanying figures, like elements are identified by like reference numerals among the several preferred embodiments of the present invention.
Other aspects and advantages of the present invention will become apparent upon consideration of the following detailed description, wherein similar structures have similar reference numerals.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTSThe foregoing and other features and advantages of the invention will become more apparent from the following detailed description of exemplary embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof.
As shown in
The first embodiment shown in
In one aspect of the invention, the conductive framework units 30 may be insert-molded into plastic building block housings 40. In another aspect of the invention, the conductive framework units 30 are pressed into an already shaped plastic, wood, or other suitable non-conductive housing material building block housing 40. In yet another aspect of the invention the conductive framework 30 is placed within an open block housing 40 and the open block housing is sealed thereafter.
In some embodiments of the conductive framework units 30, the structural element 32 comprises a bar magnet having opposite magnetic polarities on each end acting as terminals 34A-B. It should be recognized by one of skill in the art that the term “bar magnet” may define a bar-shaped or cylindrical shaped magnet. In other embodiments of the conductive framework units 30 the structural element comprises an elongated conductive material having magnets 34A-B with similar or opposite magnetic polarities disposed on each end acting as conduction terminals 34A-B.
Each conductive framework unit 30 may be electrically isolated within the block housing 40 to provide separate current paths, or as shown in
As shown in
In yet another embodiment 320, as shown in
In yet another embodiment 420, as shown in
In another aspect of the invention, as shown in
It is to be understood by one of skill in the art that the rectangular prismatic shapes described above and shown in the figures are merely example housing shapes for the conductive framework elements described. Other prismatic shapes include but are not limited to triangular, pentagonal, hexagonal, irregular polygonal, circular, or elliptical. In these other embodiments, the term “corner” may be defined as the intersection of three walls. In these other embodiments, corner coupling members may be used to traverse an angled space while side coupling members may be used to traverse a flat wall. The length of the corner coupling members and side coupling may vary to create a conductive framework unit borders the perimeter of the building block housing or is centered within the building block housing.
In yet another aspect of the invention, as further displayed in
Another aspect of the invention as shown in
The conductive framework of any of the embodiments described above may be made of any conducting material including but not limited to an alloy steel, copper, or aluminum. The exact composition of any alloys may change depending on cost; it is only necessary to meet conductivity, anticorrosive, and volumetric mass density requirements. In some embodiments, the conductive framework may be a non-conductive material coated with a conductive paint or vacuum deposited conductive film.
The magnets described in any of the embodiments above may include but are not limited to 1 nickel-plated sintered Neodymium Iron Boron (NdFeB) having a Min/Max remanence (magnetic strength) of 1.0 T-1.4 T and a Min/Max grade of N42-N52, bonded Neodymium Iron Boron (NdFeB) having a Min/Max remanence (magnetic strength) of 0.7 T-0.9 T a Min/Max grade of BDM-6 to BDM-10, Samarium Cobalt (SmCo) having a Min/Max remanence (magnetic strength) of 0.8 T-1.1 T and a Min/Max grade of YX24 to YXG28, and Aluminum Nickel Cobalt (AlNiCo) having a Min/Max remanence (magnetic strength) of 0.6T-1.4 T and a Min/Max grade of LNG13 to LNG44. In some embodiments, the magnets may have an electrical resistivity at a maximum of 0.000250 Ω·cm and meet minimum curie point (Tc) requirements.
Another aspect of the invention includes a method of using the system of conductive magnetic building blocks comprising the steps of electrically coupling a first conductive magnetic building block to a power supply and building an electrical circuit. Additional steps comprise electrically and magnetically coupling additional building blocks as described above to complete, extend, or isolate the circuit.
In an additional embodiment of the invention, the building block units are devoid of a building block housing in this embodiment, the conductive framework units can be freely stacked and combined with additional conductive framework units or electrical components and power supplies as described above. In this embodiment, the conductive framework may optionally comprise a non-conductive safety coating insulating and isolating the outer surface of the frame everywhere but the terminals.
The methods, systems, apparatuses are set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by the practice of the methods, apparatuses, and systems. The advantages of the methods, apparatuses, and systems will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the methods, apparatuses, and systems, as claimed.
Claims
1. A conductive magnetic building block comprising:
- a building block housing;
- at least one conductive framework unit configured to be electrically conductive disposed within the building block housing;
- the conductive framework unit having at least one elongated structural member having a first magnetic terminal end and a second magnetic terminal end; and
- wherein the first terminal end and the second terminal end align with and are normal to separate surfaces of the building block housing.
2. The conductive magnetic building block of claim 1 wherein the elongated structural member is a bar magnet.
3. The conductive magnetic building block of claim 1 wherein the elongated structural member has a first magnet, magnetic surface, or ferrous surface coupled to or integrated within the first terminal end, a second magnet, magnetic surface, or ferrous surface coupled to or integrated within the second terminal end and wherein the first magnet and second magnet are opposite polarities or similar polarities.
4. The conductive magnetic building block of claim 1 comprising:
- a first conductive framework unit disposed within the building block housing;
- a second conductive framework unit disposed within the building block housing; and
- wherein the first conductive framework unit and the second conductive framework unit are electrically insulated or isolated from each other.
5. The conductive magnetic building block of claim 4 wherein an electrical component is electrically coupled to the first conductive framework unit and the second conductive framework unit.
6. The conductive magnetic building block of claim 5 wherein the electrical component comprises a component selected from a group of LEDs, speakers, displays, RF radios, motors, switches, resistors, capacitors, diodes, transducers, transistors, inductors, integrated circuit chips, and batteries.
7. The conductive magnetic building block of claim 5 wherein the first conductive framework and the second conductive framework are coupled to a power supply completing or expanding an electrical circuit.
8. The conductive magnetic building block of claim 4 further comprising at least one conductive magnetic terminal coupled to the first conductive framework unit or second conductive framework unit disposed between the first terminal end and second terminal end of the first or second conductive framework unit, wherein the at least one conductive magnet terminal is normal to a surface of the building block adjacent the first terminal end and second terminal end of the first or second conductive framework units.
9. The conductive magnetic building block of claim 4 wherein the magnetic terminals are exposed through the building block housing.
10. The conductive magnetic building block of claim 4 wherein the magnetic terminals are covered by the building block housing and the magnetic terminals are configured with a sufficient strength to magnetically and electrically couple through the building block housing to a second conductive magnetic building block.
11. The conductive magnetic building block of claim 4 wherein:
- the first conductive framework unit comprises at least two elongated structural members coupled by at least one first side coupling member or at least one first corner coupling member; and
- the second conductive framework unit comprises at least two elongated structural members coupled by at least one second conductive side coupling member or at least one second corner coupling member.
12. The conductive magnetic building block of claim 11 wherein:
- the first conductive framework unit comprises at least two elongated structural members coupled by at least one first side coupling member or at least one first corner coupling member and the first conductive framework unit is disposed within the building block housing such that the first conductive framework unit aligns to a perimeter of the building block housing; and
- the second conductive framework unit comprises at least two elongated structural members coupled by at least one second conductive side coupling member or at least one second corner coupling member and the second conductive framework unit the second conductive framework unit is disposed within the building block housing such that the second conductive framework unit aligns to the perimeter of the building block housing.
13. The conductive magnetic building block of claim 4 wherein:
- the first conductive framework unit comprises at least two elongated structural members coupled by at least one first side coupling member and the first conductive framework unit is disposed within the building block housing such that the at least two elongated structural members align with opposite adjacent corners of the building block housing; and
- the second conductive framework unit comprises at least two elongated structural members coupled by at least one second conductive side coupling member and the second conductive framework unit is disposed within the building block housing such that the at least two elongated structural members align with separate opposite adjacent corners than the first conductive framework unit of the building block housing.
14. The conductive magnetic building block of claim 4 wherein:
- the first conductive framework unit comprises at least two elongated structural members coupled by a first conductive corner coupling member and the first conductive framework unit is disposed within the building block housing such that the at least two elongated structural members align with opposite non-adjacent corners of the building block housing;
- the second conductive framework unit comprises at least two elongated structural members coupled by a second conductive corner coupling member and the second conductive framework unit is disposed within the building block housing such that the at least two elongated structural members align with separate opposite non-adjacent corners than the first conductive framework unit of the building block housing;
- wherein the first conductive corner coupling member is coupled between elongated structural members at proximal either the first terminal end of the elongated members or the second terminal end of the elongated members; and
- wherein the second conductive corner coupling member is coupled between elongated structural members at proximal either the first terminal end of the elongated members or the second terminal end of the elongated members and opposite the terminal end of the coupling of the first conductive corner coupling member.
15. The conductive magnetic building block of claim 14 wherein:
- the first conductive framework unit comprises at least three elongated structural members wherein a first elongated structural member is coupled to a second elongated structural member by the first conductive corner coupling member and the second elongated structural members is coupled by a third conductive corner coupling member to a third elongated structural member and the first conductive framework unit is disposed within the building block housing such that the first elongated structural member and the third elongated structural member align to opposite adjacent corners of the building block housing and the second elongated structural member aligns to an opposite non-adjacent side of the building block housing; and
- the second conductive framework unit comprises at least three elongated structural members wherein a first elongated structural member is coupled to a second elongated structural member by the first conductive corner coupling member and the second elongated structural members is coupled by a third conductive corner coupling member to a third elongated structural member and the second conductive framework unit is disposed within the building block housing such that the first elongated structural member and the third elongated structural member align to opposite adjacent corners of the building block housing and the second elongated structural member aligns to an opposite non-adjacent side of the building block housing such that at least two elongated structural members align with separate opposite adjacent corners than the first conductive framework unit of the building block housing.
16. The conductive magnetic building block of claim 15 wherein:
- the first conductive framework unit comprises at least four elongated structural members wherein a first elongated structural member is coupled to a second elongated structural member by the first conductive corner coupling member and the second elongated structural members is coupled by a conductive side coupling member to a third elongated structural member and the third elongated structural member is coupled to a fourth elongated structural member through the third conductive corner coupling member and the first conductive framework unit is disposed within the building block housing such that the first elongated structural member and the fourth elongated structural member align to opposite adjacent corners of the building block housing and the second elongated structural member and third elongated structural member align to an opposite non-adjacent side of the building block housing; and
- the second conductive framework unit comprises at least four elongated structural members wherein a first elongated structural member is coupled to a second elongated structural member by the first conductive corner coupling member and the second elongated structural members is coupled by a conductive side coupling member to a third elongated structural member and the third elongated structural member is coupled to a fourth elongated structural member through the third conductive corner coupling member and the second conductive framework unit is disposed within the building block housing such that the first elongated structural member and the fourth elongated structural member align to opposite adjacent corners of the building block housing and the second elongated structural member and third elongated structural member align to an opposite non-adjacent side of the building block housing such that at least two elongated structural members align with separate opposite adjacent corners than the first conductive framework unit of the building block housing.
17. The conductive magnetic building block of claim 16 wherein the first conductive framework unit comprises N number of elongated structural members aligned to a side surface of the building block housing and N−1 number of conductive side coupling members coupling each elongated structural member in series and wherein the second conductive framework unit comprises N number of elongated structural members aligned to a side surface of the building block housing opposite the first conductive framework and N−1 number of conductive side coupling members coupling each elongated structural member in series.
18. A system of conductive magnetic building blocks comprising:
- a power supply;
- at least one conductive magnetic building block having a building block housing, at least one conductive framework unit configured to be electrically conductive disposed within the building block housing, the conductive framework unit having at least one elongated structural member having a first magnetic terminal end and a second magnetic terminal end wherein the first terminal end and the second terminal end align with and are normal to separate surfaces of the building block housing;
- the conductive magnetic building block configured to electrically and magnetically couple to at least a second conductive magnetic building block;
- wherein the conductive magnetic block is electrically coupled to the power supply and configured to electrically conduct a current from the power supply to the at least second conductive magnetic building block; and
- further wherein an electrical polarity of a conductive magnetic block may be changed by altering the physical orientation of the conductive magnetic block.
19. The system of claim 18 wherein the conductive magnetic building block or at least second conductive magnetic building block further comprise an electrical component is electrically coupled to the conductive framework unit of the conductive magnetic building block or the at least second conductive magnetic building block, and the electrical component is powered through a circuit formed upon activating the coupled power supply.
20. The system of claim 18 wherein the power supply is a battery or supplied through an AC to DC adaptor.
21. The system of claim 18 wherein the power supply is coupled to platform comprising an array of electrically and magnetically conductive positive and negative terminals.
22. The system of claim 18 wherein the power supply is disposed within a power block comprising a battery or AC/DC adaptor and at least one pair of electrically and magnetically conductive positive and negative terminals.
Type: Application
Filed: Aug 16, 2018
Publication Date: Feb 21, 2019
Inventors: Matthew A. Cranias (Sanford, FL), Wally Dean Spangler (Mt. Vernon, IL)
Application Number: 16/103,991