Wireless Tag Apparatus and Related Medication Compliance Monitoring Techniques
A wireless tag apparatus and related medication compliance monitoring techniques are disclosed. In some embodiments, the apparatus may include a motion detector configured to detect at least one of a movement of and an impact to the apparatus. The apparatus also may include a sensing circuit configured to scan, in response to the detection by the motion detector, a sensor array associated with a medication dispenser external to the apparatus to determine whether contents of at least one medication compartment of the medication dispenser have been expelled. The apparatus further may include a transmitter configured to transmit, in response to the detection by the motion detector, a signal including data pertaining to whether the contents of the at least one medication compartment have been expelled, wherein the signal is a radio frequency signal. In some embodiments, the apparatus may be configured for use, for example, in monitoring medication compliance.
This patent application is a Continuation of U.S. patent application Ser. No. 15/813,324, filed on Nov. 15, 2017, and titled “Wireless Tag Apparatus and Related Medication Compliance Monitoring Techniques,” which is a Continuation of U.S. patent application Ser. No. 14/686,916, filed on Apr. 15, 2015, and titled “Wireless Medication Compliance Sensing Device, System, and Related Methods,” which is a Continuation-in-Part of U.S. patent application Ser. No. 14/304,195, filed on Jun. 13, 2014, and titled “Asset Tag Apparatus and Related Methods,” which claims the benefit of each of: (1) U.S. Provisional Application No. 61/974,770, filed on Apr. 3, 2014, and titled “Asset Tag Apparatus and Related Methods”; (2) U.S. Provisional Application No. 61/902,325, filed on Nov. 11, 2013, and titled “Bluetooth Stockbin Indicator Tag”; (3) U.S. Provisional Application No. 61/902,316, filed on Nov. 11, 2013, and titled “Bluetooth Asset Tag Signpost”; and (4) U.S. Provisional Application No. 61/839,561, filed on Jun. 26, 2013, and titled “Bluetooth Asset and Sensor Tag.” Furthermore, this patent application is related to U.S. patent application Ser. No. 15/813,473, filed on Nov. 15, 2017, and titled “Sensor Array, Method of Making Same, and Related Medication Compliance Monitoring Techniques.” Each of these patent applications is herein incorporated by reference in its entirety.
FIELD OF THE DISCLOSUREThe present disclosure is generally related to a sensing, monitoring, and locating device, and more particularly is related to a wireless medication compliance sensing device, system, and related methods.
BACKGROUNDMedications used in health care and treatment are often prescribed by medical professionals with instructions for the patient to take specific doses of the medication at specific times or intervals. To assist with proper dosage, the medications are often packaged in compartments of a blister package (i.e., a plastic material container comprising a number of sealable compartments having an open side intended to accommodate a drug dosage). These compartments are covered with a breakable cover. The blister pack is covered with a single breakable material, such as foil, or individual breakable flaps, in order to obtain a tight closure of the compartments and secure individual packaging. Generally, the compartments are arranged as a matrix configuration including a number of lines and/or columns. Typically, the rows can be times of the day, and the columns can be days of the week or the month.
Ensuring a patient takes the appropriate dose of medication at the instructed time or interval is often a key aspect to successful medical treatment. Some prior art devices provide for monitoring or detection of the blister pack to identify when medication is removed from the blister pack. However, these devices are unable to monitor the blister pack fully (e.g., they're unable to monitor each individual medication compartment, which medication is taken, at what time, etc.) to ensure that the proper medication is taken by the patient. Furthermore, these conventional systems are often cumbersome to use since they require hardwired power supplies or battery-based power supplies which frequently require recharging, and they often require additional hardware for enabling any communication of the monitored condition of the blister pack, among other shortcomings.
Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.
SUMMARYOne example embodiment provides a wireless tag apparatus. The wireless tag apparatus includes a wireless tag apparatus. The wireless tag apparatus includes a sensing circuit configured to scan a sensor array associated with a medication dispenser external to the wireless tag apparatus to detect a change to an electrical circuitry of the sensor array corresponding to expulsion of contents of at least one medication compartment of the medication dispenser, wherein the change to the electrical circuitry includes a breakage of an electrically resistive element of the sensor array associated with the at least one medication compartment. The wireless tag apparatus further includes a transmitter configured to transmit a first signal including data pertaining to whether the electrical circuitry of the sensor array has so changed, wherein the first signal is a radio frequency (RF) signal. In some cases, the electrically resistive element includes at least one of a carbon resistor and an electrically resistive ink. In some cases, the electrically resistive element is disposed over the at least one medication compartment. In some such instances, the medication dispenser includes a blister pack. In some cases: the sensing circuit is further configured to scan the sensor array to determine whether each individual electrically resistive element of the sensor array is operational; and the first signal further includes data pertaining to whether each individual electrically resistive element is operational. In some cases, the sensing circuit is configured to scan the sensor array at a fixed time interval. In some cases, the sensing circuit is further configured to detect when the wireless tag apparatus is operatively coupled with the sensor array. In some cases, the wireless tag apparatus further includes a timer configured to output a second signal periodically, in response to which the sensing circuit scans the sensor array. In some such instances, the timer is native to a processing element of the wireless tag apparatus. In some cases, the first signal further includes data pertaining to at least one of: an identification of the wireless tag apparatus; whether the wireless tag apparatus is operational; whether the sensor array is operational; whether the wireless tag apparatus and the sensor array are operatively coupled with one another; a size of the sensor array; a power level of a battery of the wireless tag apparatus; and a signal strength of the first signal. In some cases, the first signal is at least one of a Wi-Fi signal and a Bluetooth signal. In some such instances, the first signal is of a frequency in an ISM band of between 2.4-2.485 GHz. In some cases, the transmitter is configured to transmit the first signal at least one of: periodically; after each scan of the sensor array by the sensing circuit; after multiple consecutive scans of the sensor array by the sensing circuit; and after detection of the change to the electrical circuitry of the sensor array by the sensing circuit. In some cases, the wireless tag apparatus further includes a sensor configured to detect at least one of a movement of the wireless tag apparatus and an impact to the wireless tag apparatus. In some such instances, the sensing circuit is configured to scan the sensor array: at a first scan rate when the sensor has detected the at least one of the movement of the wireless tag apparatus and the impact to the wireless tag apparatus; and at a second scan rate that is lower than the first scan rate when the sensor has not detected at least one of the movement of the wireless tag apparatus and the impact to the wireless tag apparatus. In some cases, the wireless tag apparatus is configured to clip onto at least one of the sensor array, the medication dispenser, and the at least one medication compartment. In some cases, the wireless tag apparatus is configured to slide onto at least one of the sensor array, the medication dispenser, and the at least one medication compartment. In some cases, the wireless tag apparatus is configured to operatively interface with a housing of the medication dispenser.
Another example embodiment provides a method of monitoring a medication dispenser. The method includes scanning a sensor array associated with the medication dispenser to detect a change to an electrical circuitry of the sensor array corresponding to expulsion of contents of at least one medication compartment of the medication dispenser, wherein the change to the electrical circuitry includes a breakage of an electrically resistive element of the sensor array associated with the at least one medication compartment. The method further includes transmitting a first signal including data pertaining to whether the electrical circuitry of the sensor array has so changed, wherein the first signal is a radio frequency (RF) signal. In some cases: the method further includes scanning the sensor array to determine whether each individual resistor of a plurality of resistors of the sensor array is operational; and the first signal further includes data pertaining to whether each individual resistor of the plurality of resistors is operational. In some cases, scanning the sensor array occurs at a fixed time interval. In some cases, the first signal is at least one of a Wi-Fi signal and a Bluetooth signal. In some such instances, the first signal is of a frequency in an ISM band of between 2.4-2.485 GHz. In some cases, transmitting the first signal occurs at least one of: periodically; after each scan of the sensor array; after multiple consecutive scans of the sensor array; and after detection of the change to the electrical circuitry of the sensor array. In some cases: the scanning is performed utilizing a sensing circuit of a wireless tag apparatus configured to operatively interface with the medication dispenser; and the transmitting is performed utilizing a transmitter of the wireless tag apparatus.
Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
This system 10 may provide a convenient way to verify when medication is removed from a blister pack or similar medication housing, where the medication is stored in a particular arrangement for patient retrieval. The verification of medication compliance is one aspect of improving the health, care, and treatment of patients who must take a variety of medications periodically. The housing 20 may have a variety of sizes and may include any number of medication compartments 22 in a variety of patterns or arrays. For example, an array of 3×1, 5×1, 3×7, and/or 5×7 medication compartments 22 may be used, among other sizes. The number of medication compartments 22 may be keyed to the scheduled frequency of the patient taking the medication housed therein.
While
The system 10 uses the sensor array 40 and the wireless tag 50 to monitor when the medication is removed from the medication compartments 22. Specifically, the sensor array 40 includes conductive lines which are positioned spaced around the medication compartments 22 with individual resistors 42 positioned over the openings 24 of the medication compartments 22. The sensor array 40 may be created by various techniques, such as by printing electrically conductive ink directly on to the breakable substrate 30, by forming the conductive lines on another substrate which is positioned abutting or substantially abutting the breakable substrate 30, or with other methods. The end result may be the sensor array 40 formed with the resistors 42 positioned over the openings 24, such that when the breakable substrate 30 is punctured over the openings 24, the resistor 42 corresponding to that opening 24 is severed.
The wireless tag 50 may be connectable to the sensor array 40, often removably connectable such that the wireless tag 50 may be used repeatedly for subsequent blister packs. The wireless tag 50 has a transmitter 52 for transmitting signals externally from the wireless tag 50, an accelerometer 54 for monitoring a movement or motion of the housing 20, such as when it is moved by the user, and a sensing circuit 56 including various circuitry for periodically scanning the sensor array 40. For example, the sensing circuit 56 may scan the sensor array 40 upon activation of the accelerometer 54 (e.g., upon movement of the housing 20) to scan the operational state of each resistor 42 within the sensor array 40, which in turn can be indicative of whether medication has been removed from a medication compartment 22 corresponding to that resistor 42. It may be common for the sensing circuit 56 to only scan the sensor array 40 upon activation of the accelerometer 54 in order to preserve battery life of the wireless tag 50 in comparison to constant or periodic scans of the sensor array 40. In one of many alternatives, the sensing circuit 56 may scan the sensor array 40 at low-frequency spaced intervals (e.g., one scan per 10 seconds) when the accelerometer 54 is not activated and high-frequency spaced intervals (e.g., 10 scans per one second) when the accelerometer 54 is activated.
Initially, the sensing circuit 56 and/or processor 62 may detect when the wireless tag 50 is first connected to the sensor array 40, and it may scan the sensor array 40 to determine if there is a good connection by testing each resistor 42 and the size of the matrix of the sensor array 40. The sensing circuit 56 may sense the number of rows and columns within the sensor array 40 to identify the size of the sensor array 40. As an example, a 3×7 sensor array 40 may require ten contacts between the wireless tag 50 and the sensor array 40.
The scan may result in scanned sensor array data, which may include any data pertinent to the sensor array 40 or the wireless tag 50 itself. For example, the scanned sensor array data may include an identification of the wireless tag 50, a functioning state of the wireless tag 50, a state of each of the plurality of resistors 42 (e.g., whether each resistor 42 is severed or not), a size of the sensor array 40, or a size of the blister pack, or other information. Identification of the wireless tag 50 may also be retrieved using a serial number chip stored on the sensor package. Signals communicated can be used to read the serial number. While transmission of the scanned sensor array data may not be required after each scan, the transmitter 52 may transmit the signal 58 externally from the wireless tag 50 to communicate the scanned sensor array data to another device, such as a mobile electronic device, a server, or other database which stores or processes the scanned sensor array data, as discussed further relative to
The system 10 may include a number of additional features and components. For example, as is shown in
The manufacture of the sensor array 40 on the breakable substrate 30 may vary. For example, when the sensor array 40 is printed on a plastic insulating material which is die-cut, a final layer of material is required on the backside of the plastic insulating material to seal the sensor array 40 therein. This final layer may be a non-conductive layer which ensures successful sensor array 40 operation. In another example, the sensor array 40 may be printed on a paper-based breakable substrate 30 (as shown in
The sensor array 40 with resistor 42 shown in
It is also noted that the system 10 may include a sensor array 40 with additional columns or rows of conductive traces. These additional rows or columns may be considered a control—a control row or control column—for the sensor array 40 and allow the wireless tag 50 to sense the size of the sensor array 40.
Using the process described relative to
The transmitter 52 may include a short-wavelength ultra-high frequency (UHF) radio wave wireless transmitter which transmits a plurality of signals in an ISM band of between 2.4 GHz to 2.485 GHz. Specifically, the wireless transmitter 52 may be a 2.4 GHz Digital Radio transceiver in communication with a printed circuit board (PCB) antenna 76. The processor 62 may be coupled to transmitter 52. The processor 62 may include a micro-controller unit (MCU) with Bluetooth® protocol enabled. One of the benefits is the use of the Bluetooth®-Low Energy protocol which uses a Bluetooth® beacon payload to periodically transmit the scanned sensor array data as well as other data, such as the device ID. This periodic transmission uses less battery power than other wireless protocols, which allows the wireless tag 50 to function for long periods of time. The periodic beacon can also send out battery status information as well as signal strength with the scanned sensor array data to a Bluetooth® receiver within an external device. Thus, upon receipt of the beacon, the external device can detect that the wireless tag 50 is operational and properly connected to the sensor array 40. Other wireless protocols, such as WiFi®, can also be used in some instances.
The accelerometer 54 may be in communication with the processor 62, wherein the accelerometer 54 uses less than 10 μAh of power. The accelerometer 54 may include a micro-electro-mechanical systems (MEMS) accelerometer in two-way communication with the processor 62. A battery 71 may be positioned within the housing 60 and provide a quantity of power to the processor 62 and the accelerometer 54. The housing 60 may also include an indicator 70, a timer 72, and a sensor array input 90 which is connected to the processor 62, which facilitates connection of the sensor array 40 (
The MCU may execute the Bluetooth® protocol from stored program code. The MCU may have permanent storage for a quantity of computer programs and can permanently store configuration and operating parameters of the Bluetooth® protocol. To save power, the MCU is normally in a sleep state where it is not running any code. The MCU is woken up to run code either from an interrupt from one of the devices on the board or by an internal timer. The MEMS accelerometer 54 is configured to detect various events: motion, double-tap, or orientation change. The MEMS accelerometer 54 may wake up the processor 62 by means of an interrupt request (IRQ) or interrupt signal, and the MCU may send control parameters and read data from the accelerometer 54. Thus, upon detection of the event, the MEMS accelerometer 54 generates an interrupt signal to the MCU which causes the MCU to wake up from a sleep state and process the event.
The MCU may also wake up based on an internal timer 72. An antenna 76 may be included for the MCU to transmit and receive radio frequency (RF) energy. The MCU may utilize power management to go to a low-power sleep state. The wireless tag 50 may not perform a Bluetooth® connection protocol to transfer the sensor information, as it is normally transmitting only using the beacon format. Thus, the client receiver does not have to be associated to the wireless tag 50 to receive the information.
The use of a single or double tap detected by the accelerometer 54 may be used to signal an initial device configuration, may associate the wireless tag 50 with an asset by sending special signal code for identification, and may allow a connection between Bluetooth® client and host. The orientation of the wireless tag 50 when it is tapped is used to either turn it on or off, and a different orientation used to turn it off or on, respectively. When it is turned off, it is no longer transmitting RF packets. The turn-off function can be disabled when the device is configured. The configuration can optionally be locked and never changed. A secure key code can be permanently stored; only clients that have the key code can connect and change the operating parameters. The Bluetooth® beacon repetition rate is changed to a higher rate upon a double-tap for a period of time, and a code is sent as part of the beacon to signal the double-tap. The double-tap connection to the client can be disabled with a configuration parameter. This prevents unauthorized changes to the device setup.
When the accelerometer 54 generates a motion detection interrupt, motion detection can be enabled or disabled, motion sensitivity and axis of acceleration can be configured, and an indicator 70 LED flashes to show the motion has been detected. The Bluetooth® beacon repetition rate is changed to a higher rate upon motion detection for a period of time, and a code is sent as part of the beacon to signal the motion detection. The maximum amount of time in the motion detected state can be configured. This prevents the wireless tag 50 from using up the battery 71 when it is in motion for a long period of time, as in truck transport. Minimum motion off time may be provided before re-enabling motion detection, such as, for example, to prevent the motion state being entered every time a truck carrying the asset tag 50 stops at a traffic light. When the accelerometer 54 generates an interrupt due to a change in orientation, orientation changes can be configured and enabled, and orientation can change time delay configuration. The wireless tag 50 may include a “panic” button input used to generate an interrupt to the MCU.
The rules and protocols that are used to operate the wireless tag 50 can be configured to control the beacon transmission rate. These rules are based on time and sensor inputs to provide an immediate alert status and then to reduce the beacon repetition rate to lower battery 71 usage. When the wireless tag 50 is set to airplane mode of operation, it is not transmitting beacons in normal operation; it is waiting for a signal from another device to start transmitting. After the beacons are sent for a programmable period of time, the wireless tag 50 then goes back to a receive-only mode.
Depending on the battery 71 selected, the wireless tag 50 may operate over 5 years. In order to save power, the MCU must be in a sleep mode most of the time. The MCU may wake up from one of several sources: internal timer 72, interrupt from another device in the system, or from a sensor. The internal timer 72 is used to periodically transmit a signal or to monitor sensors or voltages. One of the possible sources for the external interrupt wake-up is from a MEMS accelerometer 54. The internal timer 72 may be used for the MCU to wake up periodically and monitor the sensor array 40 (
The computerized device 12 may include any type of computer, computer system, or other device utilizing a computer processor. For example, the computerized device 12 may include a personal computer (PC), a laptop computer, a notebook computer, a computerized smart phone, cellular phone, a PDA, a computerized tablet device, or another device. Commonly, the computerized device 12 may be a smart phone, such as an iPhone®, an Android™ phone, or any other cellular phone. Similarly, the computerized device 12 may include an interface device, such as a gaming system or a home automation device (e.g., a WINK® device), or any other computerized device capable of receiving a signal 58. The computerized device 12 may include a variety of hardware and software components, including one or more processors, memory units, databases, and/or programs or software applications, all of which are considered within the scope of the present disclosure. For example, the computerized device 12 may have a computerized program installed within a memory device therein. The computerized program may be any application software, which may be referred to in the industry as an application, or simply an “app.” Current examples of these apps are commonly referred to by the entity that creates, markets, or sells the app, such as Apps for iPhone® sold at an app store, or Google® apps. The app may include software code for performing a single action or multiple, related actions or tasks. The app may be compatible with, or used in conjunction with, any other type of system software, middle ware, or program.
The system 10 may be enabled with conventional hardware components and software programs as well as specific apps installed within the computerized device 12 to receive the signal 58 transmitted from the wireless tag 50. For example, the signal 58 may be received on a wireless receiver within the computerized device 12, such as a Bluetooth® receiver, capable of receiving short-wavelength UHF radio waves in an ISM band of between 2.4 GHz and 2.485 GHz. The functioning of the various components of the system 10 and the computerized device 12 may utilize a combination of existing software within the computerized device 12 for transmitting and receiving the wireless signals 58. For example, conventional software may include software associated with the functioning of Bluetooth® communication within the computerized device 12.
The computerized device 12, through the software operating thereon, may provide a graphical user interface (GUI) 16 or display that is capable of displaying information about the wireless tag 50. The GUI 16 of the computerized device 12 may include a listing or indexing of wireless tags 50 that have been detected. Each of the wireless tags 50 may correspond to an item within the list displayed on the GUI 16, and each item displayed may have information indicative of the corresponding system 10. For example, each item displayed may have an identification number of the wireless tag 50 and an indication of activation of the wireless tag 50, among other information. The indication of activation of the wireless tag 50 may be a color-coded system, whereby wireless tags 50 that are currently activated (i.e., wireless tags 50 that have accelerometers 54 that are experiencing an activation) are identified in one color, whereas inactive wireless tags 50 are identified in a different color. The GUI 16 may further include other information about the wireless tags 50, including a listing of the total number of wireless tags 50 detected.
Although not required, there are system configurations where the wireless tag 50 can be monitored on a server 13 using a data bridge, where the server 13 receives information from the computerized device 12. In this case, the data is forwarded to the server 13 over the data bridge (e.g., standard network lines or wireless channels). The database in the server 13 may be viewable using a standard web interface from any computer network, such as from a remotely positioned computer 14 which has a web browser for viewing the data. This data bridge may transfer the short-range signal 58 from the wireless tag 50 to the Internet where the data, including a data packet with ID, can be stored in a server 13 database. The database may be viewed from any Internet-connected device using a web browser when logged in to the server 13. At the server 13 level, a timestamp of the receipt of the signal having the scanned data may be logged or recorded. Performing this log at the server 13 level may allow the wireless tags 50 to be free from having to record timing, which may eliminate setup of the wireless tag 50 altogether. The wireless tag 50 may transmit a beacon which contains the ID of the package plus additional sensor information. Alternatively, the smartphone or bridge may add a timestamp to the data when it is forwarded to the server 13. In one example, the beacon may be transmitted every 10 seconds, repeating the same data each time. The smartphone or bridge may determine if there is a change in the data packet and only send updates to the server 13 indicating a change in the number of medication usage.
The data received at the server 13 level can be reviewed, verified, or otherwise analyzed by various parties, including the medical professional issuing the medication to the patient, to confirm that the medication was taken by the patient or not. If the data is indicative of the medication being used (or not used) in a way different from what was prescribed by the medical professional, the system 10 can be configured to send out alerts for non-compliance.
There are several other designs which may be used for attaching the wireless tag 50 to the sensor array 40. For example, a preferred method may be to have the wireless tag 50 slide on to the sensor array 40 with guides which align the contact on the wireless tag 50 to the printed contacts on the senor array 40. A clam-shell like opening on the side of the wireless tag 50 may allow the user to slide it into place without any resistance. Snapping the wireless tag 50 closed may lock it onto the sensor array 40. A simple snap release may allow the wireless tag 50 to be opened and removed from the sensor array 40 for reuse.
The wireless tag 50 may also utilize an alignment guide 66 for aligning the wireless tag 50 to the sensor array 40. The alignment guide 66 may include a guiding structure on the wireless tag 50 which aligns with predetermined alignment holes 68 on the sensor array 40. To properly align the sensor array 40 to the wireless tag 50, the user may engage the alignment holes 68 with posts of the alignment guide 66. This alignment may properly position conductive traces of the sensor array 40 with the proper electrical contacts of the wireless tag 50.
As is shown in
The method may include any number of additional steps, processes, or functions, including all disclosed within this disclosure. For example, the signal may be externally transmitted from the housing using the wireless transmitter transmitting the signal using short-wavelength UHF radio waves in an ISM band of between 2.4 GHz and 2.485 GHz. A quantity of power may be provided to at least the processor and the accelerometer, wherein the accelerometer uses less than 10 μAh of the quantity of power. Scanning the sensor array with the sensing circuit upon activation of the accelerometer may include sensing a break in the breakable substrate and one of the plurality of resistors over the opening to one of the plurality of medication compartments with a wireless tag connectable to the sensor array. Scanning may also include using at least one of a control row and a control column to sense a size of the sensor array. Scanning the sensor array with the sensing circuit upon activation of the accelerometer may also include scanning the sensor array to sense an operation of each of the plurality of resistors individually.
After the signal with the scanned sensor array data is transmitted externally from the wireless tag with the transmitter, the method may optionally include a number of other steps. For example, the scanned sensor array data may be forwarded from the data bridge to a server for processing or analysis of the scanned sensor array data. In one example, a medication compliance application may be used to analyze the scanned sensor array data relative to a predefined medication regiment to determine whether the scanned sensor array data indicates compliance or non-compliance between the patient's usage of the medication and the specified regiment. The system may communicate various notifications to the patient, to the prescribing medical professional, or to another party, such as a caregiver, to indicate compliance with the medication regiment or to indicate that further action is needed. The system can also be used to send reminders to patients using automated electronic communications (text messages, e-mails, phone calls, etc.).
It should be emphasized that the above-described embodiments of the present disclosure, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.
Claims
1. A wireless tag apparatus comprising:
- a sensing circuit configured to scan a sensor array associated with a medication dispenser external to the wireless tag apparatus to detect a change to an electrical circuitry of the sensor array corresponding to expulsion of contents of at least one medication compartment of the medication dispenser, wherein the change to the electrical circuitry comprises a breakage of an electrically resistive element of the sensor array associated with the at least one medication compartment; and
- a transmitter configured to transmit a first signal including data pertaining to whether the electrical circuitry of the sensor array has so changed, wherein the first signal is a radio frequency (RF) signal.
2. The wireless tag apparatus of claim 1, wherein the electrically resistive element comprises at least one of a carbon resistor and an electrically resistive ink.
3. The wireless tag apparatus of claim 1, wherein the electrically resistive element is disposed over the at least one medication compartment.
4. The wireless tag apparatus of claim 3, wherein the medication dispenser comprises a blister pack.
5. The wireless tag apparatus of claim 1, wherein:
- the sensing circuit is further configured to scan the sensor array to determine whether each individual electrically resistive element of the sensor array is operational; and
- the first signal further includes data pertaining to whether each individual electrically resistive element is operational.
6. The wireless tag apparatus of claim 1, wherein the sensing circuit is configured to scan the sensor array at a fixed time interval.
7. The wireless tag apparatus of claim 1, wherein the sensing circuit is further configured to detect when the wireless tag apparatus is operatively coupled with the sensor array.
8. The wireless tag apparatus of claim 1, further comprising a timer configured to output a second signal periodically, in response to which the sensing circuit scans the sensor array.
9. The wireless tag apparatus of claim 8, wherein the timer is native to a processing element of the wireless tag apparatus.
10. The wireless tag apparatus of claim 1, wherein the first signal further includes data pertaining to at least one of:
- an identification of the wireless tag apparatus;
- whether the wireless tag apparatus is operational;
- whether the sensor array is operational;
- whether the wireless tag apparatus and the sensor array are operatively coupled with one another;
- a size of the sensor array;
- a power level of a battery of the wireless tag apparatus; and
- a signal strength of the first signal.
11. The wireless tag apparatus of claim 1, wherein the first signal is at least one of a Wi-Fi signal and a Bluetooth signal.
12. The wireless tag apparatus of claim 11, wherein the first signal is of a frequency in an ISM band of between 2.4-2.485 GHz.
13. The wireless tag apparatus of claim 1, wherein the transmitter is configured to transmit the first signal at least one of:
- periodically;
- after each scan of the sensor array by the sensing circuit;
- after multiple consecutive scans of the sensor array by the sensing circuit; and
- after detection of the change to the electrical circuitry of the sensor array by the sensing circuit.
14. The wireless tag apparatus of claim 1, further comprising a sensor configured to detect at least one of a movement of the wireless tag apparatus and an impact to the wireless tag apparatus.
15. The wireless tag apparatus of claim 14, wherein the sensing circuit is configured to scan the sensor array:
- at a first scan rate when the sensor has detected the at least one of the movement of the wireless tag apparatus and the impact to the wireless tag apparatus; and
- at a second scan rate that is lower than the first scan rate when the sensor has not detected at least one of the movement of the wireless tag apparatus and the impact to the wireless tag apparatus.
16. The wireless tag apparatus of claim 1, wherein the wireless tag apparatus is configured to clip onto at least one of the sensor array, the medication dispenser, and the at least one medication compartment.
17. The wireless tag apparatus of claim 1, wherein the wireless tag apparatus is configured to slide onto at least one of the sensor array, the medication dispenser, and the at least one medication compartment.
18. The wireless tag apparatus of claim 1, wherein the wireless tag apparatus is configured to operatively interface with a housing of the medication dispenser.
19. A method of monitoring a medication dispenser, the method comprising:
- scanning a sensor array associated with the medication dispenser to detect a change to an electrical circuitry of the sensor array corresponding to expulsion of contents of at least one medication compartment of the medication dispenser, wherein the change to the electrical circuitry comprises a breakage of an electrically resistive element of the sensor array associated with the at least one medication compartment; and
- transmitting a first signal including data pertaining to whether the electrical circuitry of the sensor array has so changed, wherein the first signal is a radio frequency (RF) signal.
20. The method of claim 19, wherein:
- the method further comprises scanning the sensor array to determine whether each individual resistor of a plurality of resistors of the sensor array is operational; and
- the first signal further includes data pertaining to whether each individual resistor of the plurality of resistors is operational.
21. The method of claim 19, wherein scanning the sensor array occurs at a fixed time interval.
22. The method of claim 19, wherein the first signal is at least one of a Wi-Fi signal and a Bluetooth signal.
23. The method of claim 22, wherein the first signal is of a frequency in an ISM band of between 2.4-2.485 GHz.
24. The method of claim 19, wherein transmitting the first signal occurs at least one of:
- periodically;
- after each scan of the sensor array;
- after multiple consecutive scans of the sensor array; and
- after detection of the change to the electrical circuitry of the sensor array.
25. The method of claim 19, wherein:
- the scanning is performed utilizing a sensing circuit of a wireless tag apparatus configured to operatively interface with the medication dispenser; and
- the transmitting is performed utilizing a transmitter of the wireless tag apparatus.
Type: Application
Filed: Oct 23, 2018
Publication Date: Feb 21, 2019
Inventor: Robert W. Sengstaken, JR. (Hollis, NH)
Application Number: 16/168,218