IR Dongle with Speaker for Electronic Device
The present invention relates to an electronic device, and in particular, to the input and output of data from the electronic device. An object is connected to the electronic device and configured to convert a portion of the audio signal output by the electronic device into an audible output. The object also converts a portion of the audio signal output by the electronic device into an infrared signal that is emitted to a toy vehicle. With the object connected to the electronic device, the electronic device is able to remotely control the toy vehicle while the object outputs sound effects and other audible sounds.
This application is a divisional of U.S. non-provisional application Ser. No. 13/903,568 filed on May 28, 2013, entitled “IR Dongle with Speaker for Electronic Device”, which claims the benefit of U.S. provisional application Ser. No. 61/651,873 filed on May 25, 2012, entitled “IR Dongle with Speaker for Electronic Device”. The disclosures of the above applications are incorporated herein by reference in their entirety.
FIELD OF THE INVENTIONThe present invention relates to an electronic device, and in particular, to the input and output of data from the electronic device. Specifically, the present invention relates to a module that connects to an electronic device that transforms the electronic device into a remote control for a toy vehicle. The module converts an audio signal into a signal, such as an infrared signal, and then broadcasts that signal.
BACKGROUND OF THE INVENTIONVarious electronic devices including a touch screen configured to detect an object (e.g. a stylus) or a user's finger are known. Some electronic devices provide for a virtual environment presented on a display, on which physical objects may be placed on the display and optically detected using a camera. Other devices receive data transmitted from memory provided in an object. Other devices are used solely as a remote control and do not provide any other feature than to control a child's toy vehicle or figure remotely.
Children are becoming more familiar and comfortable with the use of electronic devices, such as mobile phones, tablets, etc. However, conventional children's toys lack the ability to be used with such electronic devices.
SUMMARY OF THE INVENTIONIn one embodiment, an electronic device can be configured to receive information or data. In addition, the electronic device can be configured to output information or data. The output from the electronic device may include an encoded or embedded signal. A module can be used with the electronic device to decode the embedded or encoded signal from the electronic device and transmit it to a remote object, such as a toy. The embedded or encoded signal can be used to drive functionality in the remote object.
In one embodiment, a case can be coupled to the electronic device. The case can include a module having circuitry that can be in communication with the electronic device. The module may be in direct contact with the electronic device, such as a plug in a headphone jack of the electronic device. Alternatively, the module may be spaced apart from the electronic device.
The present invention is directed to a device that connects to an electronic device, enabling the electronic device to control a toy vehicle, including an input capable of being connected to an electronic device and configured to receive signals from the electronic device, a first channel containing an infrared emitter, a second channel containing a speaker configured to output audible sounds, and a control unit that processes the received signal into two individual signals, wherein one signal is sent to the infrared emitter and the other signal is sent to the speaker.
In another embodiment, the device further contains a microphone input with an infrared receiver for receiving infrared signals to be processed by the electronic device. Moreover, the device may contain an on/off switch and at least one LED. Furthermore, the device may contain a casing that houses the first channel, the second channel, and the control unit.
The present invention is also directed to a device that connects to an electronic device, enabling the electronic device to control a toy vehicle, including an input capable of connecting to an electronic device and configured to receive signals from the electronic device, a microphone input containing an infrared receiver for receiving infrared signals to be processed by the electronic device, a first channel containing an infrared emitter, a second channel containing a speaker configured to output audible sounds, and a control unit that processes the received signal into two individual signals, wherein one signal is sent to the infrared emitter and the other signal is sent to the speaker.
In another embodiment, the device may contain an on/off switch and at least one LED. Furthermore, the device may contain a casing that houses the first channel, the second channel, the control unit, and the microphone input.
Additionally, the present invention is directed to a control unit including an electronic device containing a headphone jack, an electronic toy vehicle containing an infrared signal receiver, and a module containing a headphone plug configured for connecting to the headphone jack of the electronic device and for receiving data signals from the electronic device, an infrared emitter configured for sending infrared signals to the electronic toy vehicle, a speaker configured to output audible sounds, and a control unit that processes the received data signal into two individual signals, wherein one signal is sent to the infrared emitter and the other signal is sent to the speaker.
In another embodiment, the device further contains a microphone input with an infrared receiver for receiving infrared signals to be processed by the electronic device. Moreover, the device may contain an on/off switch and at least one LED. Furthermore, the device may contain a casing that houses the first channel, the second channel, the control unit, and the microphone input. Additionally, the electronic device contains a touch screen and the electronic toy vehicle contains an infrared emitter.
Like reference numerals have been used to identify like elements throughout this disclosure.
DETAILED DESCRIPTION OF THE INVENTIONReferring to
In
Regarding the inputting of data to the device 20, several of the components of device 20 can be used. Some such components include the port or jack 22, the screen 24, the sensor 26, the switch 28, and the microphone 32.
The electronic device 20 may include a housing with a port or jack 22 formed therein. The port or jack 22 can be a headphone jack or a microphone jack. The port or jack 22 is sized to receive a plug that is connected to one or more components. The plug that is inserted into the jack 22 is in electrical contact with the system of the device 20. The plug that is inserted into the jack 22 can include a contact that engages the microphone line in the headphone jack 22. In one embodiment, the port or jack 22 of the electronic device 20 includes a microphone line in communication therewith. Thus, the plug is directly coupled to the line in the jack 22. Data can be transmitted out via the microphone lead in the headphone jack.
Referring to
Referring to
The component 70 can be used to process, distribute, manipulate or otherwise handle a signal from the device 50 that is communicated via the plug 74 to component 70. The component 70 may include a transmitter 76 that can transmit signals externally from the housing 72 to a different object or device via one of several types of communications, including RF, IR, a light such as a bulb or an LED, wired, audio, video, Bluetooth, WiFi, ZigBee, or other wireless communication. The component 70 can be directly coupled to the jack and as a result, the component 70 can be powered by drawing power from the electronic device 50. In one implementation, the component 70 may include a AC/DC converter for this purpose.
The signal from the device 50 may be an audio signal and/or a video signal which includes an encoded or embedded signal therein. The module 70 includes audio decoding circuitry 75 that can decode the encoded or embedded signal to a known or usable signal, which can be processed and assigned a code and subsequently transmitted by the transmitter 76 to a receiver of a different device. The embedded or encoded signal can be used to drive functionality (such as generating an output like an action) in the different device.
The encoding of signals may be accomplished by embedded a tone in an audio or sound file such as a song. A decoder, which is programmed to identify the tone frequency of the song, can be used to filter out the embedded signal which is different than the tone frequency of the song. Alternatively, inaudible tones, either lower or higher than a human's hearing range, can be used with the audio signal. Some electronic devices have an audio range of typically 20-22 kHz at the higher end of the range and as low as 10 Hz at the lower end of the range. In another embodiment, the pulse width of the tones can be used to communicate a signal. The decoder or processor can count the pulse width of the tones. The sinusoidal wave audio file can be chopped or separated into pulses, the frequency of which can be analyzed and the embedded signal identified.
In other embodiments, the encoding or embedding of data or information can be accomplished using monotones, duotones, a sequence of monotones and/or duotones, dual-tone multi-frequency (DTMF) signaling, a mixture of particular tones (such as to form a code using a timed sequence of tones), a frequency change in the tones of a signal, multiple tones at the same time, audible tones, or inaudible tones.
The electronic device may have a record application programming interface (API) to process real time audio as it is coming in to the electronic device. The application functions as a decoder of the audio input as it is received. In one embodiment, the functioning of the electronic device can be changed by clicking on/off the microphone jack, which would allow the detection of the sound, such as a pop, to be used as a signal. Some functionality may be to advance to the next song, to turn the device on, etc. Also, for example, the microphone jack can detect a press and hold on the microphone line as opposed to a single press. Alternatively, by pressing and holding the line, the circuitry of the electronic device may be coupled to an AC/DC circuit.
As shown in
Referring back to
Referring to
In one embodiment, the signal encoder 610 can be part of the electronic device 620. In another embodiment, the signal encoder 610 can be separate from the electronic device 620 and can be connected, either in a wired manner or a wireless manner, to the electronic device 620.
The system 600 includes a sound converter 630 that receives the signal output by the electronic device 620. The sound converter 630 is external to the electronic device 620. In one embodiment, the sound converter 630 can include a plug that is inserted into a 3.5 mm stereo headphone jack of the electronic device 620. As described below, in that embodiment, the sound converter 630 can transmit one or more signals to a separate electronic device. In another embodiment, the sound converter 630 is part of another electronic device.
The system 600 includes an audio player 640 that is separate from the electronic device 620. The audio player 640 receives the audio signal from the sound converter 630 and can reproduce an audio signal 642 for a listener to hear. A signal decoder 650 receives the data input 614 portion of the signal from the converter 630 and can decode the additional information from the data input 614. The decoded information is in the form of an additional data output 660 that can be used by an electronic device to perform one or more actions, movements, etc. For example, the additional data output 660 can be one of an infrared (IR) control, motor movement, a light trigger, a sound trigger, or the like.
In alternative embodiments, the electronic device 620 can be running an application other than an audio generating program. For example, in one embodiment, the signal 612 can be a video signal and the data input 614 is embedded in the video signal 612. In another embodiment, the signal 612 can be one or more picture files and the data input 614 is embedded in the picture files. The embedded information can be visible or invisible in the signals 612.
Similarly, electronic devices can generate outputs that include an embedded signal and a toy can “listen” for a particular electronic device by detecting and processing embedded information or data signals and then causing the toy to perform some action when the signal for which the toy is looking is identified. In these examples, either or both of an electronic device and a toy can emit watermarking signals that can be used to identify the particular item. In one implementation, a child can pretend to call a character, such as Barbie, on a phone with another character, such as Ken. When the phone and the toy figures, Barbie and Ken, have emitted encoded watermarking signals, the phone and the toys have confirmed that proper electronic devices (including the toy figures) have been identified, the child and the toy figures can pretend to have a three way conference call. In a different embodiment, speech recognition can be used to identify particular toy figures that are “speaking.”
Similarly, in another embodiment, the software of a game can listen for a particular electronic device, such as a phone, and the phone can listen for a particular game. In another embodiment, the electronic device, such as an iPhone mobile digital device, could be running an application that continually searches for a particular toy or device. When the signal for which the electronic device is searching is identified, then the electronic device can join the new device as an additional player in a game or as an additional “caller” to an exiting “conference call.”
Referring to
Referring to
Each one of the Forward, Reverse, Right, Left, and Stop functions generates an audio tone, which is output from the audio jack 930 of the device 910 to the circuit of electronic component 950. The electronic component 950 converts the received audio signal into an IR control signal that can be transmitted to the toy vehicle 970 to control the movement thereof.
Referring to
Referring to
An exemplary electrical schematic diagram of the audio remote 900 is illustrated in
The output command signals of the IR LED 1020 are detectable by the IR receiver 974 of the remote object or end device 970. The remote object 970 includes a microprocessor 976 that provides the resulting instructions from the received commands to one or more end devices 972, which can include one or more drive mechanisms in the remote object 970. For example, the remote object 970, such as a toy vehicle, may have two drive mechanisms in a “tank steering” configuration. In one implementation, the instructions can be to activate a motor or drive mechanism to cause one or more wheels or to be driven to move the toy vehicle forward or backward or to turn the toy vehicle in a different direction by operating wheels on different sides of the vehicle at different rates or in opposing directions.
In different embodiments, the user interface may include graphic objects and functionalities in addition to the driving functions described above. For example, a toy vehicle may have one or more movable parts, such as a turret, a crane, an arm, or other movable structure that can be moved by a drive mechanism on the toy vehicle. The parts can be moved in any number of directions relative to the body of the toy vehicle.
Referring to
As shown in
Referring to
Referring to
In this embodiment, the audio remote 1200 includes a circuit 1205 that receives an audio signal 1220 and generates an output of an IR transmission signal via an output LED 1210. The IR signal is not merged with a carrier signal. A remote object 1250 has its own circuit 1255 with a photodiode 1260 configured to receive the transmitted IR signal from the LED 1210 at baseband frequencies. The remote object 1250 can be controlled by the audio remote 1200 in this arrangement as well.
In an alternative embodiment, in a stereo system, one channel could be used for command transmission and the other channel could be used for an audible signal, such as music and/or speech. That arrangement can be used for controlling an animated toy object with the possibility to change or pre-record different animation sequences and sounds.
The communications between electronic devices described above can be accomplished between different types of electronic devices. In other words, one type of electronic device can communicate with a different type of electronic device.
In different embodiments, the types of devices that can be used to receive signals from an electronic device can include, but are not limited to, vehicles such as tanks, cars, flying craft, or water craft, and other toys such as toy figures, game boards or sets, and action figures. The movement of the toys can be controlled by the signal from the electronic device. In one example, an electronic device, such as a phone, can be used as a controller and send a signal to a toy figure or doll. The electronic device and the toy figure can have simulated conversations with the electronic device functioning as a phone. Alternatively, the toy figure may have one or more mechanical movements that are activated by signals from the electronic device.
As an alternative to external devices that can be controlled, the signals can be used to control accessories that are attached to an electronic device, such as a hybrid phone and device system. In addition, the signals can be used to control game states on a network.
In different embodiments, the external device or object may include any one of the following indicators that can include, but are not limited, an LED-illuminated device that changes color or intensity, a bobble-head doll that vibrates, a motorized element that moves to a different position, a push-puppet that sags or straightens up, a screen (such as an LCD, e-paper, etc.) that changes an image or text, an audio enunciator device that announces, an analog meter that changes position.
In some embodiments, a signal coming in from the headphone jack can be converted to an IR signal. In other embodiments, a signal coming in from the headphone jack can be converted to an RF signal. In other embodiments, a signal coming in from a dongle or wireless adapter, can be sent to an electronic device.
Referring to
Furthermore, according to the schematic diagram in
Referring to
As set forth above, there are several ways to provide input to an operating system of an electronic device. One method of input is to simulate touch events to transfer data into the operating system. A series of touch events can be mechanically or electrically generated at a single point. Alternatively, a pattern of touch events (either multiple simultaneous) can be mechanically or electrically generated at different locations on a touch screen.
As set forth above, the different types of output from an electronic device can vary. In one embodiment, an audio output may contain watermarking to communicate to other devices, such as toys, and to children simultaneously. In another embodiment, an audio output may contain data tones to communicate directly to toys. In another embodiment, a customized accessory or module can be used with an audio jack output for remote control of a separate device and/or for control of a device which is part of the system including the originating electronic device and another device. In another embodiment, the output may be a WiFi signal to another device or to a router or hub. In another embodiment, the output may be a Bluetooth signal to another device or a custom accessory. In another embodiment, the output may be via a cellular network which relays data from toys to the Internet. In another embodiment, the output may be a screen blinking data pattern, such as in one portion of the screen, which is used to communicate with a toy. In another embodiment, the output can be vibration which can be a direct feedback to a user and/or a communication to an external device.
It is to be understood that terms such as “left,” “right,” “top,” “bottom,” “front,” “rear,” “side,” “height,” “length,” “width,” “upper,” “lower,” “interior,” “exterior,” “inner,” “outer” and the like as may be used herein, merely describe points or portions of reference and do not limit the present invention to any particular orientation or configuration. Further, terms such as “first,” “second,” “third,” etc., merely identify one of a number of portions, components and/or points of reference as disclosed herein, and do not limit the present invention to any particular configuration or orientation.
Therefore, although the disclosed inventions are illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the scope of the inventions. Further, various features from one of the embodiments may be incorporated into another of the embodiments. Accordingly, it is appropriate that the invention be construed broadly and in a manner consistent with the scope of the disclosure.
Claims
1. A system for controlling a remote object, the system comprising:
- an electronic device having a headphone jack;
- an electronic toy vehicle including an infrared signal receiver; and
- a module comprising: a plug configured to connect to the headphone jack of the electronic device and to receive data signals from the electronic device, an infrared emitter configured to send infrared signals to the electronic toy vehicle, a speaker configured to output audible sounds, and a control unit that processes the received data signal into two individual signals, wherein the control unit sends an emitter control signal to the infrared emitter and sends a speaker control signal to the speaker.
2. The system of claim 1, wherein the module further comprises a microphone input path.
3. The system of claim 2, wherein the microphone input path further comprises an infrared receiver for receiving infrared signals to be processed by the electronic device.
4. The system of claim 1, wherein the infrared emitter includes a light-emitting diode for transmission of an infrared signal to the remote object.
5. The system of claim 2, wherein the module further comprises a casing for housing the infrared emitter, the speaker, the control unit, and the microphone input path.
6. The system of claim 1, wherein the electronic device further comprises a touch screen.
7. The system of claim 1, wherein the electronic toy vehicle further comprises an infrared emitter.
8. The system of claim 1, wherein the module further comprises a switch configured to turn the module on and off.
9. A system for controlling a remote object, the system comprising:
- a first electronic device having a port;
- a second electronic device including an infrared signal receiver; and
- a module operably coupled to the first electronic device via the port, the module comprising: a control unit configured to process a signal received from the first electronic device, an infrared emitter connected to the control unit and configured to send control signals to the infrared signal receiver of the second electronic device, and an output device connected to the control unit and configured to generate audible outputs.
10. The system of claim 9, wherein the signal received from the electronic device is a stereo audio signal having a first data signal and a second data signal.
11. The system of claim 10, wherein the first data signal is converted by the control unit into infrared control signals and transmitted to the infrared emitter via a first audio channel, and wherein the second data signal is a mono sound audio signal that is transmitted to the output device via a second audio channel.
12. The system of claim 9, wherein the infrared emitter is a light-emitting diode.
13. The system of claim 9, wherein the module is powered by drawing power from the first electronic device.
14. The system of claim 9, wherein the second electronic device is an electronic toy vehicle.
15. A system for controlling a remote object, the system comprising:
- a first electronic device having a port;
- a second electronic device including an infrared signal transceiver; and
- a module operably coupled to the first electronic device via the port, the module comprising: a control unit configured to process a signal received from the electronic device, an infrared receiver connected to the control unit and configured to receive infrared signals from the second electronic device, an infrared emitter connected to the control unit and configured to send control signals to the infrared signal receiver of the second electronic device, and an output device connected to the control unit and configured to generate audible outputs.
16. The system of claim 15, wherein the signal received from the electronic device is a stereo audio signal having a first data signal and a second data signal, the control unit transmitting the first data signal to the infrared emitter via a first audio channel and a transmitting the second data signal to the output device via a second audio channel.
17. The system of claim 16, wherein the module further includes a microphone input path connecting the infrared receiver to the control unit.
18. The system of claim 16, wherein the module further includes a microphone input path connected to the first audio channel.
19. The system of claim 15, wherein the first electronic device include a touch screen displaying a user interface configured to receive user inputs, the first electronic device converting the received user inputs into the signal transmitted to the module.
20. The system of claim 15, wherein the module includes a secondary port.
Type: Application
Filed: Sep 25, 2018
Publication Date: Mar 14, 2019
Inventor: Nicholas AMIREH (Los Angeles, CA)
Application Number: 16/140,888