TIME SYNCHRONIZED ROUTING IN A DISTRIBUTED ANTENNA SYSTEM
A system for routing signals in a Distributed Antenna System includes a plurality of Digital Access Units (DAUs) and a plurality of Digital Remote Units (DRUs). The plurality of DAUs are coupled and operable to route signals between the plurality of DAUs. The plurality of DRUs are coupled to the plurality of DAUs and operable to transport signals between DRUs and DAUs. The system also includes a plurality of Base Transceiver Stations (BTS) and a plurality of Base Transceiver Station sector RF connections coupled to the plurality of DAUs and operable to route signals between the plurality of DAUs and the plurality of Base Transceiver Stations sector RF port connections. The system further includes one or more delay compensation merge units operable to delay signals transmitted from or received by each of the plurality of DRUs
Latest Dali Wireless, Inc. Patents:
- Method and system for soft frequency reuse in a distributed antenna system
- Distributed antenna system
- Remotely reconfigurable distributed antenna system and methods
- Remotely reconfigurable distributed antenna system and methods
- Virtual radio access network using software-defined network of remotes and digital multiplexing switches
This application is a continuation of U.S. patent application Ser. No. 15/251,293, filed Aug. 30, 2016, which is a continuation of U.S. patent application Ser. No. 13/960,346, filed Aug. 6, 2013, now U.S. Pat. No. 9,439,242; which claims priority to U.S. Provisional Patent Application No. 61/682,632, filed on Aug. 13, 2012, entitled “Time Synchronized Routing in a Distributed Antenna System,” the disclosures of which are hereby incorporated by reference in their entirety for all purposes.
BACKGROUND OF THE INVENTIONWireless and mobile network operators face the continuing challenge of building networks that effectively manage high data-traffic growth rates. Mobility and an increased level of multimedia content for end users requires end-to-end network adaptations that support both new services and the increased demand for broadband and flat-rate Internet access. One of the most difficult challenges faced by network operators is maximizing the capacity of their Distributed Antenna System (DAS) networks while ensuring cost-effective DAS deployments and at the same time providing a very high degree of DAS remote unit availability.
Despite the progress made in DAS networks, there is a need in the art for improved methods and systems for DAS networks.
SUMMARY OF THE INVENTIONThe present invention generally relates to wireless communication systems employing Distributed Antenna Systems (DAS) as part of a distributed wireless network. More specifically, the present invention relates to a DAS utilizing software configurable radio (SCR). Wireless and mobile network operators face the continuing challenge of building networks that effectively manage high data-traffic growth rates. Mobility and an increased level of multimedia content for end users typically employs end-to-end network adaptations that support new services and the increased demand for broadband and flat-rate Internet access. The DAS network has a requirement to transmit the wireless signals synchronously out of each Digital Remote Unit (DRU). The network of DAS nodes need to be delay calibrated and compensated to insure that the signals are transmitted and received synchronously from each DRU. The optimum signal to interference plus noise (SINR) performance is achieved when the wireless signals are time synchronized in a DAS network.
According to an embodiment of the present invention, a system for routing signals in a Distributed Antenna System is provided. The system includes a plurality of Digital Access Units (DAUs). The plurality of DAUs are coupled and operable to route signals between the plurality of DAUs. The system also includes a plurality of Digital Remote Units (DRUs) coupled to the plurality of DAUs and operable to transport signals between DRUs and DAUs and a plurality of Base Transceiver Stations (BTS). The system further includes a plurality of Base Transceiver Station sector RF connections coupled to the plurality of DAUs and operable to route signals between the plurality of DAUs and the plurality of Base Transceiver Stations sector RF port connections and one or more delay compensation merge units operable to delay signals transmitted from or received by each of the plurality of DRUs.
According to another embodiment of the present invention, a method for routing signals in a Distributed Antenna System including a plurality of Digital Access Units (DAUs), a plurality of Digital Remote Units (DRUs), a plurality of Base Transceiver Stations (BTS), and a plurality of Base Transceiver Station sector RF connections is provided. The method includes transporting signals between the DRUs and the DAUs, routing the signals between DAUs, and routing the signals between DAUs and the plurality of BTS sector RF port connections. The method also includes providing routing tables, using a first delay compensation merge unit in a first DRU of the DRUs to delay a first signal, and using a second delay compensation merge unit in a second DRU of the DRUs to delay a second signal.
According to a specific embodiment of the present invention, a DAS is provided. The DAS includes a DAU and a set of DRUs coupled to the DAU in a daisy chain configuration. One or more of the set of DRUs includes a delay compensation merge unit.
According to another specific embodiment of the present invention, a DAS is provided. The DAS includes a DAU and a first set of DRUs coupled to the DAU. One or more of the first set of DRUs includes a delay compensation merge unit. The DAS also includes a second set of DRUs coupled to the DAU. One or more of the second set of DRUs includes a delay compensation merge unit.
According to an particular embodiment of the present invention, a method of communicating in a DAS network is provided. The method includes receiving, at a first DRU, a first uplink signal and transmitting the first uplink signal to a second DRU. For example, transmitting the first uplink signal can include transmitting a converted version of the first uplink signal. The method also includes receiving, at a second DRU, a second uplink signal and the first uplink signal and introducing a time delay to the first uplink signal, which can include electronically delaying the first uplink signal. The method further includes summing the second uplink signal and the time delayed first uplink signal to form a summed signal and transmitting the summed signal to a DAU.
The DAS network can include the first DRU daisy chained to the second DRU. In an embodiment, the second uplink signal and the time delayed first uplink signal are time aligned prior to summing.
According to another particular embodiment of the present invention, a method of communicating in a DAS network is provided. The method includes receiving, at a first DRU, a first uplink signal and a signal from a first coupled DRU and introducing a first time delay to the first uplink signal. The method also includes summing the signal from the first coupled DRU and the time delayed first uplink signal to form a first summed signal and transmitting the first summed signal to a DAU. The method further includes receiving, at a second DRU, a second uplink signal and a signal from a second coupled DRU, introducing a second time delay to the second uplink signal, and introducing a third time delay to the signal from the second coupled DRU. The third time delay is associated with a transit time from the DAU to the second DRU. Additionally, the method includes summing the signal from the second coupled DRU and the time delayed second uplink signal to form a second summed signal and transmitting the second summed signal to the DAU.
The first coupled DRU can include a DRU daisy chained to the first DRU. The second coupled DRU can include a DRU daisy chained to the second DRU. In an embodiment, the first time delay is associated with a transit time from the first coupled DRU to the first DRU. In another embodiment, the second time delay is associated with a transit time from the second coupled DRU to the second DRU. Moreover, the second time delay can be a function of the third time delay and a transit time from the second coupled DRU to the second DRU. For example, at least one of the first time delay or the second time delay can be a zero delay.
Numerous benefits are achieved by way of the present invention over conventional techniques. For example, embodiments of the present invention provide a high degree of flexibility to manage, control, enhance and facilitate radio resource efficiency, usage and overall performance of the distributed wireless network. Other embodiments enable specialized applications and enhancements including, but not limited to, flexible simulcast, automatic traffic load-balancing, network and radio resource optimization, network calibration, autonomous/assisted commissioning, carrier pooling, automatic frequency selection, radio frequency carrier placement, traffic monitoring, and/or traffic tagging. These and other embodiments of the invention along with many of its advantages and features are described in more detail in conjunction with the text below and attached figures.
To accommodate variations in wireless subscriber loading at wireless network antenna locations at various times of day and for different days of the week, there are several candidate conventional approaches.
One approach is to deploy many low-power high-capacity base stations throughout the facility. The quantity of base stations is determined based on the coverage of each base station and the total space to be covered. Each of these base stations is provisioned with enough radio resources, i.e., capacity and broadband data throughput to accommodate the maximum subscriber loading which occurs during the course of the workday and work week. Although this approach typically yields a high quality of service for wireless subscribers, the notable disadvantage of this approach is that many of the base stations' capacity is being wasted for a large part of the time. Since a typical indoor wireless network deployment involves capital and operational costs which are assessed on a per-subscriber basis for each base station, the typically high total life cycle cost for a given enterprise facility is far from optimal.
A second candidate approach involves deployment of a DAS along with a centralized group of base stations dedicated to the DAS. A conventional DAS deployment falls into one of two categories. The first type of DAS is “fixed”, where the system configuration doesn't change based on time of day or other information about usage. The remote units associated with the DAS are set up during the design process so that a particular block of base station radio resources is thought to be enough to serve each small group of DAS remote units. A notable disadvantage of this approach is that most enterprises seem to undergo frequent re-arrangements and re-organizations of various staff groups within the enterprise. Therefore, it's highly likely that the initial DAS setup will need to be changed from time to time, requiring deployment of additional direct staff and contract resources with appropriate levels of expertise regarding wireless networks.
The second type of DAS is equipped with a type of network switch which allows the location and quantity of DAS remote units associated with any particular centralized base station to be changed manually. Although this approach would appear to support dynamic DAS reconfiguration based on the needs of the enterprise or based on time of day, it frequently implies that additional staff resources would need to be assigned to provide real-time management of the network. Another issue is that it's not always correct or best to make the same DAS remote unit configuration changes back and forth on each day of the week at the same times of day. Frequently it is difficult or impractical for an enterprise IT manager to monitor the subscriber loading on each base station. And it is almost certain that the enterprise IT manager has no practical way to determine the loading at a given time of day for each DAS remote unit; they can only guess the percentage loading.
Another major limitation of conventional DAS deployments is related to their installation, commissioning and optimization process. Some challenging issues which must be overcome include selecting remote unit antenna locations to ensure proper coverage while minimizing downlink interference from outdoor macro cell sites, minimizing uplink interference to outdoor macro cell sites, and ensuring proper intra-system handovers while indoors and while moving from outdoors to indoors (and vice-versa). The process of performing such deployment optimization is frequently characterized as trial-and-error. Therefore, the results may not be consistent with a high quality of service.
Based on the conventional approaches described herein, it is apparent that a highly efficient, easily deployed and dynamically reconfigurable wireless network is not achievable with conventional systems and capabilities. Embodiments of the present invention substantially overcome the limitations of the conventional approach discussed above. The advanced system architecture provided by embodiments of the present invention provides a high degree of flexibility to manage, control, enhance and facilitate radio resource efficiency, usage and overall performance of the distributed wireless network. This advanced system architecture enables specialized applications and enhancements including, but not limited to, flexible simulcast, automatic traffic load-balancing, network and radio resource optimization, network calibration, autonomous/assisted commissioning, carrier pooling, automatic frequency selection, radio frequency carrier placement, traffic monitoring, and/or traffic tagging. Embodiments of the present invention can also serve multiple operators, multi-mode radios (modulation-independent) and multiple frequency bands per operator to increase the efficiency and traffic capacity of the operators' wireless networks.
Accordingly, embodiments of this DAS network provide a capability for Flexible Simulcast. With Flexible Simulcast, the amount of radio resources (such as RF carriers, LTE Resource Blocks, CDMA codes or TDMA time slots) assigned to a particular DRU or group of DRUs can be set via software control to meet desired capacity and throughput objectives or wireless subscriber needs. Applications of the present invention are suitable to be employed with distributed base stations, distributed antenna systems, distributed repeaters, mobile equipment and wireless terminals, portable wireless devices, and other wireless communication systems such as microwave and satellite communications.
A distributed antenna system (DAS) provides an efficient means of utilization of base station resources. The base station or base stations associated with a DAS can be located in a central location and/or facility commonly known as a base station hotel. The DAS network comprises one or more digital access units (DAUs) that function as the interface between the base stations and the digital remote units (DRUs). The DAUs can be collocated with the base stations. The DRUs can be daisy chained together and/or placed in a star configuration and provide coverage for a given geographical area. The DRUs are typically connected with the DAUs by employing a high-speed optical fiber link. This approach facilitates transport of the RF signals from the base stations to a remote location or area served by the DRUs. A typical base station comprises 3 independent radio resources, commonly known as sectors. These 3 sectors are typically used to cover 3 separate geographical areas without creating co-channel interference between users in the 3 distinct sectors.
An embodiment shown in
One feature of embodiments of the present invention is the ability to route Base Station radio resources among the DRUs or group(s) of DRUs. In order to route radio resources available from one or more Base Stations, it is desirable to configure the individual router tables of the DAUs and DRUs in the DAS network. This functionality is provided by embodiments of the present invention.
The DAUs are networked together to facilitate the routing of DRU signals among multiple DAUs. The DAUs support the transport of the RF downlink and RF uplink signals between the Base Station and the DRUs. This architecture enables the various Base Station signals to be transported simultaneously to and from multiple DRUs. PEER ports are used for interconnecting DAUs and interconnecting DRUs.
The DAUs have the capability to control the gain (in small increments over a wide range) of the downlink and uplink signals that are transported between the DAU and the base station (or base stations) connected to that DAU. This capability provides flexibility to simultaneously control the uplink and downlink connectivity of the path between a particular DRU (or a group of DRUs via the associated DAU or DAUs) and a particular base station sector.
Embodiments of the present invention use router tables to configure the networked DAUs. The local router tables establish the mapping of the inputs to the various outputs. Internal Merge blocks are utilized for the Downlink Tables when the inputs from an External Port and a PEER Port need to merge into the same data stream. Similarly, Merge blocks are used in the Uplink Tables when the inputs from the LAN Ports and PEER Ports need to merge into the same data stream.
The remote router tables establish the mapping of the inputs to the various outputs. Internal Merge blocks are utilized for the Downlink Tables when the inputs from a LAN Port and a PEER Port need to merge into the same data stream. Similarly, Merge blocks are used in the Uplink Tables when the inputs from the External Ports and PEER Ports need to merge into the same data stream.
As shown in
The DAUs control the routing of data between the base station and the DRUs. Each individual data packet is provided with a header that uniquely identifies which DRU it is associated with. The DAUs are interconnected to allow transport of data among multiple DAUs. This feature provides the unique flexibility in the DAS network to route signals between the sectors and the individual DRUs. A server is utilized to control the switching function provided in the DAS network. Referring to
In order to efficiently utilize the limited base station resources, the network of DRUs should have the capability of re-directing their individual uplink and downlink signals to and from any of the BTS sectors. Because the DRUs data traffic has unique streams, the DAU Router has the mechanism to route the signal to different sectors.
In one embodiment, the LAN and PEER ports are connected via an optical fiber to a network of DAUs and DRUs. The interface between the LAN and PEER ports and the optical fiber can comprise a Framer/Deframer, Serializer/Deserializer and an Optical Transmitter/Receiver. The network connection can also use copper interconnections such as CAT 5 or 6 cabling, or other suitable interconnection equipment. The DAU is also connected to the internet network using IP (406). An Ethernet connection (408) is also used to communicate between the Host Unit and the DAU. The DRU can also connect directly to the Remote Operational Control center (407) via the Ethernet port.
In table 1, the downlink data input S1 at External Port 1D of Local Router A is routed to the External Port 1D of Remote router M. LAN Port 1 is used to stream the data between the Local router A and the Remote router M.
In table 2, the downlink data input S2 at External Port 2D of Local Router A is routed to the External Port 2D of Remote router P. PEER Port M of Local router A is used to stream the downlink signal S2 to PEER port 1 of Local router B. LAN Port 3, stream BB is used to communicate with LAN port 1 of Remote router P. The input of LAN Port 1 stream BB is routed to External Port 2D in Remote router P.
In table 3, the downlink data input S1 at External Port 1D of Local Router A is routed to the PEER Port M stream AA. The output from PEER Port M, stream AA of Local Router A is input to PEER Port 1 of Local Router B. PEER Port 1, stream AA of Local Router B is sent to input 1 of Merge block α. The downlink data input S3 at External Port 1D of Local Router B is routed to input 2 of Merge block α. The output of Merge block α is routed to LAN Port 2, stream AA of Local router B. LAN Port 2, of Local Router B transports data to LAN Port 1 of Remote Router O. The input data from LAN Port 2, of Remote Router O is routed to External Port 1D.
In table 1, the Uplink data input S3 at External Port 1U of Remote Router O is routed to LAN Port 1. LAN Port 1, stream AA of Remote Router O is used to stream the data between LAN Port 1, stream AA of Remote router O and LAN Port 2, Stream AA of Local router B. The input to LAN Port 2, stream AA of Local router B is routed to external Port 1U.
In table 2, the uplink data input S4 at External Port 2U of Remote Router P is routed to LAN Port 1, stream BB of Remote router P. LAN Port 1, stream BB of Remote router P is used to stream the uplink signal S4 to LAN port 3, stream BB of Local router B. LAN Port 3, stream BB is routed to PEER port 1, stream BB of Local router B. PEER Port 1, stream BB of Local router B transports data to LAN Port M, stream BB of Local router A. The input of PEER Port 1 stream BB is routed to External Port 2U in Local router A.
In table 3, the uplink data input S2 at External Port 1U of Remote Router N is routed to the PEER Port 1, stream AA of Remote router N. The output from PEER Port 1, stream AA of Remote Router N is input to PEER Port M of Remote Router M. PEER Port M, stream AA of Remote Router M is sent to input 1 of Merge block α. The uplink data input S1 at External Port 1U of Remote Router M is routed to input 2 of Merge block α. The output of Merge block α is routed to LAN Port 1, stream AA of Remote router M. LAN Port 1, of Remote Router M transports data to LAN Port 1 of Local Router A. The input data from LAN Port 1, of Local Router A is routed to External Port 1U of Local router A.
As illustrated in
Referring to
As an example, a DAU-DRU daisy chain could include DRU1 connected to the DAU, with DRU2 daisy chained to DRU1. For DRU1 as the first DRU in the daisy chain, signal 1 1505 represents the signal from the DAU (e.g., an optical fiber from the DAU to the DRU1). Signal 2 represents the signal from the second DRU in the daisy chain (e.g., an optical fiber from DRU2 to DRU1). The delay from the second DRU is incorporated through the use of delay block Δ2 1514 before the signals are summed by summer 1524. For each frequency band (e.g., 700 MHz), the signal on the uplink for the first DRU (i.e., received signal on DRU1), is received at signal 1, delayed by Δ1, and passed to summer 1524. For this frequency band (e.g., 700 MHz), the signal on the uplink for the second DRU (i.e., received signal on DRU2), is received at signal 2, delayed by Δ2, and passed to summer 1524. Thus, a combined uplink signal for the frequency band (e.g., 700 MHz) is formed, using remote router merge unit 1504, which is implemented as a component of DRU1. Referring to
For a set of daisy chained DRUs, delay adjustment is performed at one or more of the DRUs as the signal traverses up the daisy chain toward the DAU. For implementations in which multiple DRUs are connected to a DAU in a star configuration as illustrated in
The signal from DRU7 is then transmitted to DRU6, which receives the signal from DRU7 (e.g., in the 700 MHz band) and combines the receives signal with its own received uplink signal (e.g., 700 megahertz RF signal) that it receives over the air from a mobile device in the coverage area associated with DRU6. The combination is implemented by delaying the signal from DRU7 so that it is synchronized with the uplink signal from DRU6, which is characterized by a reduced delay with respect to the DAU. Then, the combined signal is transmitted to DRU5, where it is combined with a delayed version of the uplink signal received at DRU5. This process is repeated at the DRUs as the signal moves up the daisy chain toward the DAU. At DRU1, after delaying the uplink signal received at DRU1, the combined signal provides alignment for all the uplink signals from the daisy chained DRUs.
Referring to
It should be noted that the time delay can be introduced, for example, for the uplink, by the DRUs as the signals are transmitted to the DAU. Additionally, in combination with, or in place of the delay introduction at the DRU closest to the DAU, the delay can be introduced at the DAU to compensate for the differing delays associated with optical fiber 203 and optical fiber 209. Thus, delay compensation can be implemented in the DRUs, in the DAUs, or by both components. As an example, the downlink signals could be transmitted simultaneously from DAU1, arriving at different times at DRU2 and DRU23. The delay can be compensated for at the DRUs, enabling simultaneous transmission from the DRUs. Alternatively, the signal transmitted using optical fiber 203 could be delayed at DAU1 so that the signals arrived simultaneously at DRU2 and DRU23. Time delay for the DRUs in the daisy chain would then be implemented in the DRUs as the signal moves down the daisy chain away from DAU1. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
Appendix I is a glossary of terms used herein, including acronyms.
Claims
1. (canceled)
2. A system for transporting wireless communications, comprising:
- a base transceiver station (BTS) hotel including a plurality of multiple-sector base transceiver stations (BTSs);
- at least one Digital Access Unit (DAU) including: a plurality of radio frequency (RF) signal source interfaces; and at least one remote interface, wherein each of the plurality of RF signal source interfaces are operable to communicatively couple the at least one DAU to a sector of one of the multiple-sector BTSs, and wherein the at least one remote interface is operable to communicatively couple the at least one DAU to one of a plurality of remote units;
- the plurality of remote units, each of the plurality of remote units including: an optical port operable to communicatively couple the each of the plurality of remote units to the at least one DAU; at least one PEER port operable to communicatively couple the each of the plurality of remote units to another of the plurality of remote units via the at least one PEER port of each of the plurality of remote units; and an antenna operable to receive and transmit RF signals; and
- one or more delay compensation merge units operable to delay signals transmitted from or received by each of the plurality of remote units.
3. The system of claim 2, wherein each of the one or more delay compensation merge units are integrated as components of each of the plurality of remote units.
4. The system of claim 2, wherein at least one of the one or more delay compensation merge units is integrated as a component of the at least one DAU.
5. The system of claim 2, wherein the at least one DAU comprises a plurality of DAUs, and the plurality of DAUs are coupled via at least one of Ethernet cable, Optical Fiber, Microwave Line of Sight Link, Wireless Link, or Satellite Link.
6. The system of claim 2, wherein the at least one DAU is coupled to the plurality of remote units via at least one of Ethernet cable, Optical Fiber, Microwave Line of Sight Link, Wireless Link, or Satellite Link.
7. The system of claim 2, wherein the plurality of remote units are connected to the at least one DAU in a daisy chain configuration.
8. The system of claim 2, wherein the at least one DAU creates a digital representation for signals received from each of the multiple-sector BTSs.
9. The system of claim 8, wherein the at least one DAU is capable of packetizing the digital representation for signals received from each of the multiple-sector BTSs.
10. The system of claim 8, wherein the at least one DAU is capable of packetizing the digital representation for each of the received signals in compliance with the Common Public Interface Standard (CPRI) standard.
11. The system of claim 2, wherein each remote unit of the plurality of remote units creates a digital representation for each of signals received from the at least one DAUs.
12. The system of claim 11, wherein each remote unit of the plurality of remote units is capable of packetizing the digital representation for each of the signals received from the at least one DAUs.
13. The system of claim 11, wherein each remote unit of the plurality of remote units is capable of packetizing the digital representation for signals received from the at least one DAUs in compliance with the Common Public Interface Standard (CPRI) standard.
Type: Application
Filed: Jul 18, 2018
Publication Date: Mar 14, 2019
Applicant: Dali Wireless, Inc. (Menlo Park, CA)
Inventors: Shawn Patrick Stapleton (Vancouver), Qianqi Zhuang (Richmond)
Application Number: 16/038,613