TISSUE CLOSURE DEVICE
Collapsible tube embodiments may be used to promote hemostasis at surgical sites or any other suitable location. In some cases, vascular closure device embodiments may include collapsible tube embodiments in order to promote hemostasis at a surgical site during a vascular closure procedure.
This application claims priority from U.S. Provisional Patent Application Ser. No. 62/587,353, filed on Nov. 16, 2017, by Henrik Nyman et al. titled “Device for Mechanical Approximation of Fascia”, which is incorporated by reference herein in its entirety.
BACKGROUNDIn many percutaneous cardiovascular procedures, a catheter is inserted into an artery, such as the femoral artery, through a percutaneous vascular access. The catheter may be inserted, typically over a guidewire, directly into an artery (a “bareback” procedure), or the catheter may be inserted through a vascular introducer. When the procedure is complete, the physician removes the catheter and then removes the introducer from the vessel (if one was used). The physician then must prevent or limit the amount of blood that leaks through the vascular access. Physicians currently use a number of methods to close the vascular access, such as localized external compression, suture-mediated closure devices, plugs, gels, foams and similar materials.
However, such closure procedures may be time consuming, and may consume a significant portion of the time of the procedure. In addition, existing methods are associated with complications such as hematoma or thromboses. Still further, some of such procedures, particularly suture-mediated closure devices, are known to have high failure rates in the presence of common vascular disease such as atherosclerosis and calcification.
SUMMARYSome embodiments of a vascular closure device may include a housing having an elongate configuration with an axial length greater than a transverse dimension thereof. Such a housing may further include a proximal end, a distal end and a distal section. A plurality of anchor deployers are slidably disposed within the housing adjacent each other at the distal section of the housing and are configured to extend and spread from the distal section of the housing. Each of the anchor deployers may include a deployment rod which is slidably disposed relative to the housing and which includes an elongate resilient configuration. Each deployment rod may also include a distal end that extends distally and radially from the distal section of the housing so as to spread out from other deployment rod distal ends. In some cases, the deployment rods may be configured to extend distally at the same time or simultaneously. Each anchor deployer may also include an anchor which is secured to the distal end of the deployment rod and which is configured to grip tissue such as the tissue of a fascia tissue layer. The vascular closure device embodiment may further include a tissue grip which is deployable from the distal end of the housing.
Some embodiments of a method for vascular closure may include disposing a distal end of the housing of the vascular closure device to a position adjacent the passage in the tissue layer and deploying a plurality of anchor deployers from a distal section of the housing. The anchor deployers may be so deployed by distally advancing deployment rods of the anchor deployers in a distal and radially outward direction from the housing into the tissue layer in positions disposed about the passage in the tissue layer. Respective anchors of the anchor deployers may then be secured to the tissue layer in positions disposed about the passage in the tissue layer. The deployment rods may then be proximally retracted back into the distal section of the housing so as to draw the anchors and respective tissue layer portions secured thereto together adjacent the distal section of the housing to gather the tissue and close the passage in the tissue layer. Thereafter, a tissue grip may be deployed over the anchors and onto the tissue layer portions gathered and secured to the anchors so as to secure the tissue layer portions together with the access hole closed or reduced. The anchors may then be released from the tissue layer portions which are secured together.
Some embodiments of a method for vascular closure may include disposing a distal end of the housing of the vascular closure device to a position adjacent the passage in the tissue layer and deploying a plurality of anchor deployers from a distal section of the housing. The anchor deployers may be so deployed by distally advancing deployment rods of the anchor deployers in a distal and radially outward direction from the housing into the tissue layer in positions disposed about the passage in the tissue layer. Respective anchors of the anchor deployers may then be secured to the tissue layer in positions disposed about the passage in the tissue layer. The deployment rods may then be proximally retracted back into the distal section of the housing so as to draw the anchors and respective tissue layer portions secured thereto together adjacent the distal section of the housing to gather the tissue and close the passage in the tissue layer. Thereafter, a tissue grip may be deployed over the anchors and onto the tissue layer portions gathered and secured to the anchors so as to secure the tissue layer portions together with the access hole closed or reduced. The anchors may then be detached from each of the respective deployment rods secured thereto and left in the patient secured to the tissue layer.
Some embodiments of a method for vascular closure may include disposing a vascular closure device adjacent a passage in a tissue layer which is disposed above and adjacent an access hole in a blood vessel of a patient and deploying a plurality of anchors from a distal section of the vascular closure device in a distal and radially outward direction therefrom. The method may also include engaging the tissue layer in positions disposed about the passage in the tissue layer with the anchors and securing the anchors to the tissue layer in the positions disposed about the passage in the tissue layer. Thereafter, the anchors may be proximally retracted closer together so as to draw the anchors and respective tissue layer portions secured thereto together thereby closing the passage in the tissue layer. A tissue grip may then be deployed onto the tissue layer portions drawn together by the anchors so as to secure the drawn together tissue layer portions thereby closing the passage in the tissue layer and achieving vascular closure of the access hole in the blood vessel.
Certain embodiments are described further in the following description, examples, claims and drawings. These features of embodiments will become more apparent from the following detailed description when taken in conjunction with the accompanying exemplary drawings.
The drawings are intended to illustrate certain exemplary embodiments and are not limiting. For clarity and ease of illustration, the drawings may not be made to scale, and in some instances, various aspects may be shown exaggerated or enlarged to facilitate an understanding of particular embodiments.
DETAILED DESCRIPTIONAfter a minimally invasive vascular procedure, a hole in the form of an access passage or the like may be left in a major vessel at an access site that must be closed. Methods for percutaneous closure of such a hole may include remote suturing of the vessel, plugging the hole, and remote suturing of the fascia adjacent to the vessel. Certain device and method embodiments discussed herein are directed to mechanical closure of an access passage in the fascia tissue layer adjacent to an access hole in a vessel such as an artery or vein of a patient. Some of these embodiments may also be applicable to direct closure of an arterial wall in some instances. Some vascular closure device and method embodiments discussed herein may provide a robust and easy-to-use device for closing a vascular access hole after a minimally invasive procedure. In some cases, vascular closure device embodiments discussed herein may be useful for closing large vascular access holes. In addition, certain vascular closure device and method embodiments are discussed in U.S. patent application Ser. No. 15/277,542, filed Sep. 27, 2016, by Thomas Larzon, et al., entitled VASCULAR CLOSURE DEVICE, which is incorporated by reference in its entirety.
The following discussion of the device and method embodiments of
With further reference to
Referring to
In addition, in some cases, the tissue layer 3 may be disposed sufficiently proximate the outside surface of the blood vessel 5 such that gathering and approximation of the fascia tissue 3 which is disposed about the passage through the tissue 3 so as to close the passage through the tissue/fascia membrane 3 and form a tissue lock is sufficient to tighten and displace the closed gathered tissue/fascia membrane 3 against the outer surface of the artery 5 which is adjacent the passage through the artery 5 as shown in
When the gathered tissue 3 has been displaced and deflected so as to be disposed against the passage of the artery 5 and wall of the artery 5 disposed about the passage in the artery 5, this mechanical approximation will typically be sufficient in order to achieve a clinically sufficient slowing or stoppage of blood leakage from the passage in the artery 5 in order to permit closure of an access site through the patient's skin 1 adjacent the passages. In some instances, an inner surface of the tissue layer 3 disposed proximate to the outer surface of the blood vessel 5 may be separated from the outer surface of the blood vessel in the region of the respective passages therethrough by a distance of up to about 10 mm, more specifically, up to about 5 mm.
With further reference to
For the vascular closure device embodiments 24 shown in
The arms 26 may then engage the fascia tissue layer 3 at two or more points around the access hole 25. This engagement may be accomplished by an anchor 31 such as a small jaw 34 or the like mounted on the distal end 36 of a deployment rod 38 of each arm 26 and adapted to grab the fascia 3, or a small hook 15, 40 (see
In addition, the retention mechanism, such as a tissue grip mechanism that holds the approximated edges of the gathered fascia tissue 32 in this gathered configuration, such as the ring or clip 27, may then be deployed onto the gathered tissue 32. Thereafter, the arms 26 or anchors 31 disposed thereon may be disengaged from the fascia tissue layer 3 and the vascular closure device 24 withdrawn from the patient. Suitable tissue retention may be accomplished in some cases by use of the elastic resilient coil in the form of a lock ring 27 that is stretched onto the outside of the housing 28 about an outside circumference of the arms 26 or outside of a translation track of the arms 26. The lock ring 27, which may include an elastic and resilient self-contracting lock ring 27, may be pushed off of the housing 28 by a distal end 42 of a larger, concentric outer tube 44 that lies more proximal over an inner tube 46 of the housing 28. In some cases, the outer tube 44 may be actuated to advance distally relative to the inside tube 46 and deploy the lock ring 27 by advancing a lock ring actuator lever 47 which may be operatively coupled to the outer tube 44. Once pushed off the inside tube 46 of the housing 28 and onto the gathered tissue 32, such an elastic coil 27 may self-contract to circumferentially compress the gathered tissue 32 and brought together by the arms 26 in an inner radial direction and retain the gathered tissue 32 in a bunched or gathered configuration, thereby closing or reducing the access hole 25.
Such elastic coil embodiments 27 may be made from high strength resilient materials such as stainless steel, nitinol, or the like. Some elastic coil embodiments 27 may also be made from or include bioresorbable and/or biodegradable materials. In some embodiments, the gathered tissue 32 may be held together by a biocompatible, rapidly curing tissue adhesive, such as cyanoacrylate, dispensed from a distal section 48 of the housing 28. Such a tissue adhesive 30 may be dispensed as the gathered tissue of the fascia tissue layer 3 is coming together, to facilitate the apposition of surfaces containing tissue adhesive 30, or the tissue adhesive 30 may be dispensed onto the gathered tissue 32 once the tissue is bunched together.
Referring to
In some cases, the housing 28 may further include a guidewire lumen 54 extending an axial length thereof and a handle 56 secured to the proximal end 50 of the housing 28. A deployment rod pusher 58 which may optionally be spring loaded with a resilient member such as a spring 60 in either a distally biased or proximally biased direction may be operatively coupled to the deployment rods 38 for actuation thereof. For deployment rod pusher embodiment 58 which are proximally biased this may correspond to a bias with the deployment rods 38 biased towards a retracted position which may be overcome by manual pressure in a distal direction against the deployment rod pusher 58. The spring, such as spring 60 shown in
In some instances, embodiments of a tissue grip mechanism may be disposed on the distal end 52 of the housing 28 around the anchor deployers 26 but generally not in contact with the anchor deployers 26 when in an undeployed state. The tissue grip mechanism may be configured to compress and secure gathered tissue portions 32 relative to each other in some cases. For such embodiments, once the tissue grip is deployed from the distal end 52 of the housing 28 over the anchor deployers 26 and respective anchors 31 thereof and onto the tissue which has been gathered and bunched by the proximally retracted anchor deployers 26, different portions of the gathered tissue are secured in a fixed position relative to each other to form a tissue lock and, in some instances, vascular closure. In some cases, the tissue grip mechanism may include the lock ring 27 disposed about the anchor deployers 26 in the form of a self-retracting coil 27 with a central lumen 62 which may be sized to allow movement of the gathered tissue portions 32 disposed therein while the self-retracting coil 27 is in an expanded state as shown in
In general, the tissue grip embodiments such as lock ring 27 and tissue adhesive 30 may optionally include a tissue engagement feature that is configured to stick to a surface of the gathered tissue 32 such as with the tissue adhesive 30 forming a bond with the gathered tissue 32 or sharp inner edge 64 of the diamond profiled lock ring 27 mechanically impinging the gathered tissue 32 so as to effectively secure the tissue portions together. Such tissue engagement features may further include features which may be mechanically captured within the gathered tissue 32 such as the barbs 76 of the “castle shaped” lock ring 27′ shown in
For some embodiments of vascular closure devices 24 discussed herein, the anchors 31 may include releasable anchors. For example, some releasable anchor embodiments may include the jaw 34 that can be moved between an open state and a closed state, each jaw 34 further including an opposed pair of tissue gripping teeth 68 as shown in the anchor embodiment 31 of
For some releasable anchor embodiments 31, each of the releasable anchors may have a shaft 70 with an elongate configuration having an axial length greater than an outer transverse dimension of the shaft 70. The releasable anchor 31 may be configured to be actuated between a curved tissue gripping state having the curved distal end 40 as shown in
In some cases, it may be desirable to use detachable anchors at the distal ends 36 of the deployment rods 38 and anchor deployers 26. Referring to
Some embodiments of the vascular closure devices discussed herein may include a lateral surface configured to extend radially from a distal extension of the housing 28 while the lateral surface is disposed within a blood vessel 5 such as the anvil 9 shown in
Referring generally to
In some cases, for such method embodiments, it may be desirable after proximally retracting the anchors 31 and deployment rods 38 and gathering tissue of the tissue layer 3 and prior to deploying the tissue grip, to release the tissue layer 3 from the anchors 31 and re-deploy the anchor deployers 26 by re-extending the deployment rods 38 in a distal and radially outward direction and re-gripping the tissue layer 3 about the access passage 25 to reset the orientation and/or position of the anchors with respect to the access hole 25 before proximally retracting the anchors 31 and deployment rods 38 back into the housing 28. This may be particularly useful when the operator is not satisfied with the initial placement of the anchors 31 about the access hole 25 in the tissue layer 3. Such repositioning of the anchors 31 may be repeated as many times as is practical by the operator of the vascular closure device 24.
In some instances, the anchors 31 may include the jaws 34 that can be moved between an open state and a closed state as shown in
For some embodiments of the vascular closure device 24, the anchors 31 may include the shaft 70 which has the sharpened distal end 72 and which has an elongate configuration with an axial length greater than an outer transverse dimension as shown in
In some instances, deploying the tissue grip mechanism onto the tissue layer portions may include sliding the self-contracting ring 27 in an expanded state from the distal end 52 of the housing 28 and allowing the self-contracting ring 27 to contact to the relaxed state over the tissue layer portions 3 as shown in
Referring again to
Embodiments illustratively described herein suitably may be practiced in the absence of any element(s) not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising,” “consisting essentially of,” and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation and use of such terms and expressions do not exclude any equivalents of the features shown and described or portions thereof, and various modifications are possible. The term “a” or “an” can refer to one of or a plurality of the elements it modifies (e.g., “a reagent” can mean one or more reagents) unless it is contextually clear either one of the elements or more than one of the elements is described. Thus, it should be understood that although embodiments have been specifically disclosed by representative embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and such modifications and variations are considered within the scope of this disclosure.
With regard to the above detailed description, like reference numerals used therein refer to like elements that may have the same or similar dimensions, materials and configurations. While particular forms of embodiments have been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the embodiments of the invention. Accordingly, it is not intended that the invention be limited by the forgoing detailed description.
Claims
1. A vascular closure device, comprising:
- a housing having an elongate configuration with an axial length greater than a transverse dimension thereof, a proximal end, a distal end and a distal section;
- a plurality of anchor deployers which are slidably disposed within the housing adjacent each other at the distal section of the housing and which are configured to extend and spread from the distal section of the housing, each anchor deployer comprising: an deployment rod which is slidably disposed relative to the housing and which includes an elongate resilient configuration and a distal end that extends distally and radially from the distal section of the housing, and an anchor which is secured to the distal end of the deployment rod and which is configured to grip tissue; and
- a tissue grip which is deployable from the distal end of the housing.
2. The vascular closure device of claim 1 wherein the housing further comprises a guidewire lumen extending an axial length thereof.
3. The vascular closure device of claim 1 further comprising a handle secured to the proximal end of the housing.
4. The vascular closure device of claim 1 further comprising a deployment rod pusher which is spring loaded and biased towards a retracted position and which is operatively coupled to the deployment rods.
5. The vascular closure device of claim 4 wherein the deployment rod pusher is operatively coupled to a proximal end of the deployment rods and configured to extend the deployment rods in a distal direction upon actuation.
6. The vascular closure device of claim 5 wherein the deployment rods are configured to extend and retract simultaneously.
7. The vascular closure device of claim 1 wherein the tissue grip is disposed on the distal end of the housing around the anchor deployers and which is configured to compress and secure tissue portions relative to each other once deployed from the distal end of the housing.
8. The vascular closure device of claim 7 wherein the tissue grip comprises a lock ring disposed about the anchor deployers which includes a self-retracting coil with a central lumen which is sized to allow movement of the tissue portions while the self-retracting coil is in an expanded state and which has an interior surface of the central lumen that is configured to compress and secure the tissue portions relative to each other when in a retracted state.
9. The vascular closure device of claim 1 wherein the tissue grip comprises a tissue adhesive that may be dispensed from an outlet port in the distal end of the housing.
10. The vascular closure device of claim 9 wherein the tissue adhesive comprises cyanoacrylate.
11. The vascular closure device of claim 1 wherein the anchors comprise releasable anchors.
12. The vascular closure device of claim 11 wherein each of the releasable anchors comprises a jaw that can be moved between an open state and a closed state, each jaw further including an opposed pair of tissue gripping teeth.
13. The vascular closure device of claim 11 wherein each of the releasable anchors comprises a shaft having an elongate configuration with an axial length greater than an outer transverse dimension that is configured to be actuated between a curved tissue gripping state and a straightened state, the shaft further including a sharpened distal end.
14. The vascular closure device of claim 13 wherein the shaft comprises a shape memory metal that can be actuated between the curved tissue gripping state and the straightened state.
15. The vascular closure device of claim 14 wherein the shape memory metal of the shaft comprises nickel titanium alloy.
16. The vascular closure device of claim 13 wherein the shaft comprises a bi-metal structure that can be actuated between the curved tissue gripping state and the straightened state.
17. The vascular closure device of claim 1 wherein the anchors comprise detachable anchors and the anchor deployers comprise releasable junctions disposed between each detachable anchor and deployment rod secured thereto.
18. The vascular closure device of claim 17 wherein each of the detachable anchors comprises a proximally oriented barb.
19. The vascular closure device of claim 18 wherein the detachable anchors comprise a plurality of proximally oriented barbs.
20. The vascular closure device of claim 17 wherein the releasable junctions comprise a junction released by thermal detachment.
21. The vascular closure device of claim 17 wherein the releasable junctions comprise a junction released by mechanical detachment.
22. The vascular closure device of claim 1 further comprising a lateral surface configured to extend radially from a distal extension of the housing while the lateral surface is disposed within a blood vessel to provide a reference point between axial relative positions of the wall of the blood vessel and the anchors prior to deployment of the anchors.
23. The vascular closure device of claim 22 wherein the anchors can be deployed a predetermined axial distance from the wall of the blood vessel as measured from the lateral surface which is disposed against the wall of the blood vessel.
24. A method for vascular closure, comprising:
- disposing a distal end of a housing of a vascular closure device to a position adjacent a passage in a tissue layer;
- deploying a plurality of anchor deployers from a distal section of the housing by distally advancing deployment rods of the anchor deployers in a distal and radially outward direction from the housing into the tissue layer in positions disposed about the passage in the tissue layer;
- securing respective anchors of the anchor deployers to the tissue layer in positions disposed about the passage in the tissue layer;
- proximally retracting the deployment rods back into the distal section of the housing so as to draw the anchors and respective tissue layer portions secured thereto together adjacent the distal section of the housing;
- deploying a tissue grip over the anchors and onto the tissue layer portions secured to the anchors so as to secure the tissue layer portions together; and
- releasing the anchors from the tissue layer portions.
25. The method of claim 24 further comprising releasing the anchors from the tissue layer portions prior to deploying the tissue grip and re-deploying the plurality of anchor deployers from a distal section of the housing by distally advancing deployment rods of the anchor deployers in a distal and radially outward direction from the housing into the tissue layer in positions disposed about the passage in the tissue layer, re-securing respective anchors of the anchor deployers to the tissue layer in positions disposed about the passage in the tissue layer; and proximally retracting the deployment rods back into the distal section of the housing a second time so as to draw the anchors and respective tissue layer portions secured thereto together adjacent the distal section of the housing.
26. The method of claim 24 wherein the anchors comprise jaws that can be moved between an open state and a closed state, wherein securing respective anchors to the tissue layer comprises inserting tissue of the tissue layer into the jaws while in an open state and then closing the jaws to the closed state to grip the tissue layer.
27. The method of claim 26 wherein releasing the anchors from the tissue layer portions comprises moving the jaws from the closed state to the open state.
28. The method of claim 24 wherein the anchors comprise a shaft including a sharpened distal end and having an elongate configuration with an axial length greater than an outer transverse dimension, the shaft being configured to be actuated between a curved tissue gripping state and a straightened state, and wherein securing respective anchors to the tissue layer comprises inserting the sharpened distal ends of the shaft into the tissue layer with the shaft in a straightened state and actuating the shaft to move the shaft into a curved tissue gripping state.
29. The method of claim 28 wherein releasing the anchors from the tissue layer portions comprises actuating the shafts from the curved tissue gripping state to the straightened state and proximally retracting the shafts from the tissue layer portions.
30. The method of claim 24 further comprising proximally withdrawing deployment rods and anchors of each of the plurality of anchor deployers from respective anchors and into the distal section of the housing.
31. The method of claim 24 wherein deploying the tissue grip onto the tissue layer portions comprises sliding a self-contracting ring in an expanded state from a distal end of the housing and allowing the self-contracting ring to contact to a relaxed state over the tissue layer portions.
32. The method of claim 24 wherein deploying the tissue grip onto the tissue layer portions comprises applying a tissue adhesive to the tissue layer portions.
33. The method of claim 32 wherein applying a tissue adhesive to the tissue layer portions comprises applying cyanoacrylate adhesive to the tissue layer portions.
34. A method for vascular closure, comprising:
- disposing a distal end of a housing of a vascular closure device to a position adjacent a passage in a tissue layer;
- deploying a plurality of anchor deployers from a distal section of the housing by distally advancing deployment rods of the anchor deployers in a distal and radially outward direction from the housing into the tissue layer in positions disposed about the passage in the tissue layer;
- securing respective anchors of the anchor deployers to the tissue layer in positions disposed about the passage in the tissue layer;
- proximally retracting the deployment rods back into the distal section of the housing so as to draw the anchors and respective tissue layer portions secured thereto together adjacent the distal section of the housing;
- deploying a tissue grip over the anchors and onto the tissue layer portions secured to the anchors so as to secure the tissue layer portions together; and
- detaching each anchor from the respective deployment rod secured thereto.
35. The method of claim 34 wherein the anchor deployers comprise releasable junctions disposed between each respective deployment rod and anchor thereof, and wherein detaching each anchor from the respective deployment rod secured thereto comprises heating a tether of the releasable junction until it melts.
36. A method for vascular closure, comprising:
- disposing a vascular closure device adjacent a passage in a tissue layer which is disposed above and adjacent an access hole in a blood vessel of a patient;
- deploying a plurality of anchors from a distal section of the vascular closure device in a distal and radially outward direction therefrom and engaging the tissue layer in positions disposed about the passage in the tissue layer with the anchors;
- securing the anchors to the tissue layer in the positions disposed about the passage in the tissue layer;
- proximally retracting the anchors closer together so as to draw the anchors and respective tissue layer portions secured thereto together thereby closing the passage in the tissue layer; and
- deploying a tissue grip onto the tissue layer portions drawn together by the anchors so as to secure the drawn together tissue layer portions thereby closing the passage in the tissue layer and achieving vascular closure of the access hole in the blood vessel.
37. The method of claim 36 wherein deploying the tissue grip onto the tissue layer portions drawn together by the anchors comprises deploying a lock ring onto the drawn together tissue layer portions.
38. The method of claim 36 wherein deploying the tissue grip onto the tissue layer portions drawn together by the anchors comprises deploying a tissue adhesive onto the drawn together tissue layer portions.
Type: Application
Filed: Nov 14, 2018
Publication Date: May 16, 2019
Inventors: Henrik NYMAN (Olofstorp), Robert G. WHIRLEY (Santa Rosa, CA), Cecilia LARZON (Göteborg), Joseph W. HUMPHREY (Santa Rosa, CA)
Application Number: 16/190,694