MODULAR BATTERY ASSEMBLY
A modular battery assembly includes at least a first battery pack and a second battery pack. Each battery pack includes a container at least partially enclosing a first plurality of electrical storage devices, an attachment mechanism configured to removably attach the first container to a chassis of a vehicle, a mechanical connector, and an electrical connector configured to connect the plurality of electrical storage devices to a control section of the vehicle. The battery pack containers are configured to be removably attached to each other by connection of the mechanical connectors.
This application is a divisional of and claims priority to U.S. patent application Ser. No. 15/224,661, filed on Jul. 31, 2016, which claims priority, under 35 U.S.C. § 119, to U.S. Provisional Application Ser. No. 62/293,220, filed on Feb. 9, 2016, and U.S. Provisional Application Ser. No. 62/300,467, filed on Feb. 26, 2016, all of which are expressly incorporated by reference herein in their entirety.
FIELD OF INVENTIONThe present invention relates to a modular battery assembly, and, more particularly, to a modular battery assembly for an electric vehicle.
BACKGROUNDElectric vehicles have proven to be a viable alternative to gasoline-powered cars. The increasing demand for electric vehicles has placed importance on the development of the associated technology and the planning of an infrastructure that will support the many electric vehicles that will be on the roads in the future.
Most of the electric vehicles currently on the market were designed and manufactured according to a recharging-model, in which a vehicle uses the same, periodically-recharged battery pack over a long period of time. This model suffers from some drawbacks, however, because it requires car owners to allot an amount of time for recharging in which the car cannot be used. Further, planning must be made to ensure that the vehicle is near a charging station when the battery needs to be recharged. This limits the use of the vehicle to certain routes, ranges, and locations.
Vehicles designed and manufactured according to a battery replacement-model, on the other hand, allow a drained battery to be replaced with a charged battery, instead of recharged. These vehicles may overcome many of the problems associated with the recharging-model if an associated battery replacement process is otherwise faster than and more readily-available than the alternative recharging process. Moreover, a replacement-battery infrastructure may be more feasible and applicable for at least some implementation areas than it's recharging-model counterpart. In order to achieve these goals a viable design would include features that address issues such as standardization, safety, ease-of-use, and logistics. However, current battery replacement-model electric vehicles have yet to find solutions for many of the problems that arise in these areas.
When considering a large-scale implementation of a replacement battery-model, particular problems arise in determining how to render the system and infrastructure appealing and cost-effective for consumers. If the options for replacing a battery on an electric vehicle are difficult and costly, the replacement-battery model is not likely to be successful.
Some current configurations, such as those described in U.S. Patent Application Publication No. 2012/0009804 and U.S. Pat. No. 7,201,384, allow an entire battery pack to be replaced when discharged. This type of configuration has drawbacks, however, because it limits the ability of a driver to adjust the remaining charge left in their vehicle. This is problematic because a remaining charge on a vehicle may not match a user's planned amount of driving. Thus, it becomes difficult for the user to determine when to replace the battery pack.
The present disclosure is directed to overcoming one or more problems of the prior art.
SUMMARYIn one aspect, the present disclosure is directed to a modular battery assembly. The modular battery assembly includes a first battery pack and a second battery pack. The first battery pack includes a first container at least partially enclosing a first plurality of electrical storage devices, a first attachment mechanism configured to removably attach the first container to a chassis of a vehicle, a first mechanical connector, and a first electrical connector configured to connect the first plurality of electrical storage devices to a control section of the vehicle. The second battery pack includes a second container at least partially enclosing a second plurality of electrical storage devices, a second attachment mechanism configured to attach the second container to the chassis of the vehicle, a second mechanical connector, and a second electrical connector configured to connect the second plurality of electrical storage devices to the control section of the vehicle. The first container is configured to be removably attached to the second container by connection of the first and second mechanical connectors.
In another aspect the present disclosure is directed to a vehicle. The vehicle includes a body forming a passenger compartment and an exterior shell. The vehicle also includes a chassis supporting the body. The chassis includes a pair of side rails running longitudinally along the body, a pair of end rails interconnecting the side rails, and a bay defined between the side rails and the end rails. The vehicle further includes a modular battery assembly comprising a plurality of battery packs positioned in the bay and a control section. Each battery pack includes a container at least partially enclosing a plurality of electrical storage devices, an attachment mechanism removably attaching a respective battery pack to the frame structure, at least one mechanical connector removably attaching a respective battery pack to an adjacent battery pack, and an electrical connector connecting the pluralities of electrical storage devices to each other and to the control section.
In yet another aspect the present disclosure is directed to a vehicle. The vehicle includes a body forming a passenger compartment and an exterior shell. The vehicle also includes a chassis supporting the body. The chassis includes a pair of side rails running longitudinally along the body, one or more rigid cross rails interconnecting the pair of side rails, and a plurality of bays defined between the side rails and separated by the one or more cross rails. The vehicle further includes a modular battery assembly comprising a plurality of battery packs, each positioned in a separate bay of the plurality of bays, and a control section. Each battery pack includes a container at least partially enclosing a plurality of electrical storage devices, an attachment mechanism removably attaching a respective battery pack to the frame structure, at least one mechanical connector removably attaching a respective battery pack to an adjacent battery pack, and an electrical connector connecting the pluralities of electrical storage devices to each other and to the control section. Longitudinal sides of the containers each include a cutout portion, and wherein a pair of cutout portions in adjacent battery packs define a channel for receiving a cross rail of the one or more rigid cross rails.
The foregoing summary and the following detailed description will be better understood when read in conjunction with the appended drawings, which illustrate a preferred embodiment of the invention. In the drawings:
Disclosed embodiments pertain to a modular battery system. The modular battery system includes a standardized and universal battery pack which may be secured to a vehicle to provide electrical power to that vehicle. The use of standardized connecting structures allows the battery pack to be connected to any of a number of different types and sizes of vehicles. Moreover, a plurality of the universal battery packs may be combined such that the electrical storage capacity for any given vehicle is customizable. Each battery pack includes connecting structures which allow for quick attachment and detachment to and from an adjoining battery pack. The disclosed modular battery assembly allows a variety of different vehicles to use any number of battery packs such that implementation of an associated replacement battery infrastructure and system is uncomplicated and cost-effective for consumers and service providers.
Consistent with disclosed embodiments, vehicle 10 is an electric vehicle. This means that the electrical storage devices 18 provide electrical energy to a motor (not shown) for generating mechanical power to move the vehicle 10. For example, in some embodiments, vehicle 10 is an all-electric vehicle in which all or substantially all of the power generated to move vehicle 10 is provided by the electrical storage devices 18. In these embodiments, the vehicle 10 includes an engine only as a backup power source or does not include an engine. In other embodiments, vehicle 10 is a hybrid vehicle in which some of the power generated by vehicle 10 is provided by the electrical storage devices 18 and a remainder of the power is provided by an engine, such as an internal combustion engine.
It should be understood that the battery assembly 16 includes additional components which allow the electrical storage devices 18 to be utilized to provide electrical energy to a motor to power the vehicle 10. For example, the battery assembly 16 may include electrical connections (e.g., wiring, bus bars, etc.), cooling features (e.g., cooling panels), control system components (e.g., controllers, sensors, actuators, etc.), and the like, in order to allow the vehicle 10 to operate via electrical energy. At least some of these features are further described below.
As shown in
The battery assembly 16 includes a control section 38. The control section 38 is preferably connected at one end of the battery assembly 16. The control section 38 includes components, such as control circuits, power circuits, and other electronics which control the functional aspect of using the electrical energy from the electrical storage devices 18.
A first battery pack 20A is connected to the control section 38. The remaining battery packs 20B are successively connected on the opposite end of the battery pack 20A from the control section 38. In this way, battery assembly 16 includes a linear array of transversely extending battery packs 20 (i.e., the longitudinal direction of each battery pack is positioned transverse to a longitudinal direction of the vehicle 10.
In alternative embodiments, the battery packs 20 may be arranged in other manners. For example, one or more battery packs 20 may be positioned parallel to a longitudinal direction of a vehicle. In one embodiment, a two-dimensional array of battery packs 20 may include pairs of side-by-side battery packs 20 may be stacked in a longitudinal direction of the vehicle 10.
The configurations illustrated in
As shown, the battery packs 20 are consecutively positioned in relation to each other to form a linear array. Each battery pack 20 includes a pair of longitudinal sides 40 which are positioned parallel to the longitudinal sides 40 of the other battery packs 20, with at least one longitudinal side 40 of each battery pack 20 being positioned directly adjacent to a longitudinal side of the next battery pack 20. Each battery pack 20 also includes a pair of transverse ends 42. In an exemplary embodiment, the transverse ends 42 of the battery packs 20 are collinear with the corresponding transverse ends 42 of the adjoining battery packs 20. It should be understood that the terms “longitudinal” and “transverse” are terms only used as a convention to refer to the sides of the battery pack 20 and that it is not required that a longitudinal side be the longest side or the transverse end be perpendicular to the longitudinal side.
In an exemplary embodiment, each battery pack 20 includes an attachment mechanism 24 at each transverse end 42 thereof. The attachment mechanism 24 includes corresponding attachment parts 26, 28. The attachment mechanism 24 is configured to attach the battery packs 20 to the vehicle 10 in the depicted configuration. In this way, each battery pack is positioned in a separate bay 22A formed between the side rails 32 and end rails 34/cross rails 36.
In some embodiments, the corresponding attachment parts 26, 28 form a latching mechanism. The latching mechanism includes, for example, a striker positioned on the chassis 14 or the battery pack 20 and a receiving member with latching hook positioned on the other of the chassis 14 or the battery pack 20. The receiving member receives the striker and the latching hook is inserted in a portion of the striker, retaining the striker in place. The latching hook may be remotely and/or electronically controllable in order to allow for ease of attachment and detachment of each battery pack 20. For example, the latching hook may automatically attach the striker to the receiving member when the striker is in the receiving member. In some embodiments, the latching mechanism further includes a biasing seal which maintains the latching hook in a latched position. It should be understood, however, that other attachment mechanisms are possible. For example, the attachment parts 26, 28 may be fasteners, such as bolts received in aligned apertures, including single-sided fasteners, blind bolts, etc.
In a preferred embodiment, each battery pack 20 includes a mechanical connector 44 on each longitudinal side 40. Each mechanical connector 44 is configured to be connected to a mechanical connector 44 of an adjoining battery pack 20 such that the plurality of battery packs 20 are connected to each other. Alternative embodiments may not include the mechanical connectors 44 (e.g., the battery packs 20 may be connected to each other only through their attachment to the chassis 16).
In the illustrated embodiment, the adjoining battery packs 20 are connected to each other in such a way that a channel 46 is formed above attached mechanical connectors 44 of adjoining battery packs 20. Each channel 46 is configured to receive a cross rail 36. In embodiments that do not include a cross rail 36 (or in which the channel 46 is formed at another location), it is not necessary that the adjacent longitudinal sides 40 form a channel.
Each battery pack 20 also includes one or more electrical connectors 48. Each electrical connector 48 may be connected to each other and to the control section 38 such that the energy stored in the electrical storage devices 18 may be used by the vehicle 10 (e.g., provided to a motor for generating motive power). In an exemplary embodiment each electrical connector 48 includes two terminals (a positive terminal and a negative terminal) which are connected to the electrical storage devices 18 in the respective battery pack.
In an exemplary embodiment, the electrical connectors 48 are connected to each other and to the control section 38 by a pair of bus bars 50. One bus bar 50 preferably connects the positive terminals of the electrical connectors 48 and another bus bar 50 connects the negative terminals of the electrical connectors 48. In this way, the battery packs 20 are electrically connected in parallel.
Each bus bar 50 may be a high voltage connection configured to transport electrical current from the electrical storage devices 18. In addition to bus bar 50, an low voltage line 51 may be used to allow the battery packs 20 and associated controls to share data, such as data for monitoring and/or controlling the discharge of the electronic storage devices 18.
Each battery pack 20 also preferably includes a cooling connector 52 configured to connect the battery pack 20 to a flow of coolant for controlling a temperature of the electrical storage devices 18 in the associated battery pack 20. A cooling channel 54 may be formed adjacent to the bus bar 50 to provide a connecting circuit for the flow of coolant in and around the various battery packs 20.
Each of the battery packs 20 of the battery assembly 16 may include the same mechanical connectors 44 such that adjoining battery packs 20 may be attached to each other. Moreover, the mechanical connectors 44 are configured such that the connection is interchangeable such that opposing sides of adjoining battery packs 20 may be interchangeably connectable to each other. For example, one longitudinal side 40 may include a receiving member and an opposing longitudinal side 40 may include an inserting member for being inserted into the receiving member and attached thereto. In this way, the battery packs 20 are universal and standardized such that the battery assembly 16 can be extended and shortened through the linking of battery packs 20.
In an exemplary embodiment, a first longitudinal side 40A includes a striker 58 as a first mechanical connector 44 and a second longitudinal side 40B includes a receiving member 60 with a slot 62 for receiving the striker 58 of another battery pack 20. The receiving member 60 further includes a latching hook 64 for being inserted in the striker 58 in order to secure the two battery packs 20 to each other.
In an exemplary embodiment, the battery packs 20 are connected to each other in parallel (e.g., via electrical connectors 48 and bus bars 50). In other words, the electrical storage devices 18 of one battery pack 20 are electrically connected to the electrical storage devices 18 of each other battery pack 20 in parallel. This may be achieved by connecting negative terminals of each battery pack 20 to each other and positive terminals of each battery pack 20 to each other, for example.
By virtue of being connected in parallel, the capacity rating of the sum of the two battery packs 20 is double that of just one of the battery packs 20. On the other hand, the voltage of the combined pair is the same as a single battery pack 20. In this way, the addition of battery packs 20 to a battery assembly 16 of a vehicle 10 adds additional capacity rating (additional amp hours), which provides additional range (time-in-use) to the vehicle 10. The range of the vehicle 10 is thus customizable based on the number of battery packs 20 attached thereto. In an exemplary embodiment, each battery pack 20 provides 40-60 amp hours of electrical charge/range.
As this type of connection does not increase voltage, the power and speed dynamics of the vehicle will remain relatively unchanged regardless of the number of battery packs 20 added to the vehicle 10. Each battery pack 20 is preferably configured to produce sufficient voltage to adequately power an associated motor of the vehicle 10 (e.g., to allow the vehicle 10 to reach highways speeds, travel uphill, etc.). In an exemplary embodiment, each battery pack 20 supplies a voltage of approximately 350-400 V (which is thus also the combined voltage provided by all of the battery packs 20).
The disclosed modular battery assembly provides a system for an electric vehicle which allows for the removable attachment of modular battery packs to thereby customize the electrical storage capacity of the vehicle. Each battery pack includes a plurality of electrical storage devices and the battery packs are electrically connected in parallel. Thus, adding an additional battery pack adds range and removing a battery pack removes range. In this way, a driver may customize the amount of electrical charge in a vehicle to more closely match a planned amount of driving.
The disclosed modular battery assembly further includes mechanisms which removably attach each battery pack to a chassis of the vehicle and to each other. The mechanisms further include electrical connections which facilitate the interconnection of the electrical storage devices for providing electrical energy to a motor of the vehicle and electronic control over the battery packs. The attachment mechanisms thereby contribute to the ability to customize the electrical storage capacity of the vehicle. Moreover, the frame and battery packs use connections that create a standardized and universal system that a variety of vehicles may be manufactured and/or adapted to use.
Having thus described the presently preferred embodiments in detail, it is to be appreciated and will be apparent to those skilled in the art that many physical changes, only a few of which are exemplified in the detailed description of the invention, could be made without altering the inventive concepts and principles embodied therein. It is also to be appreciated that numerous embodiments incorporating only part of the preferred embodiment are possible which do not alter, with respect to those parts, the inventive concepts and principles embodied therein. The present embodiments and optional configurations are therefore to be considered in all respects as exemplary and/or illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all alternate embodiments and changes to this embodiment which come within the meaning and range of equivalency of said claims are therefore to be embraced therein.
Claims
1-12. (canceled)
13. A vehicle, comprising:
- a body forming a passenger compartment and an exterior shell;
- a chassis supporting the body, the chassis including a frame structure comprising: a pair of side rails running longitudinally along the body; a pair of end rails interconnecting the side rails; and a bay defined between the side rails and the end rails; and
- a modular battery assembly comprising a plurality of battery packs positioned in the bay and a control section, the battery packs each comprising: a container at least partially enclosing a plurality of electrical storage devices; an attachment mechanism removably attaching a respective battery pack to the frame structure; and an electrical connector connecting the pluralities of electrical storage devices to each other and to the control section,
- wherein the electrical storage devices of one battery pack are electrically connected to the electrical storage devices of each other battery pack in parallel.
14. The vehicle of claim 13, wherein the attachment mechanism is a latching mechanism including a receiving member in which a striker attached to the frame structure is inserted and further including a latching hook for automatically attaching the striker to the receiving member when the striker is in the receiving member.
15. The vehicle of claim 13, wherein each battery pack further comprises at least one mechanical connector removably attaching a respective battery pack to an adjacent battery pack.
16. The vehicle of claim 15, wherein the at least one mechanical connector includes a receiving member on one longitudinal side of a respective container and an inserting member on an opposing longitudinal side of the respective container, and
- wherein the receiving member of one battery pack is configured to receive the inserting member of an adjacent battery pack.
17. A vehicle, comprising:
- a body forming a passenger compartment and an exterior shell;
- a chassis supporting the body, the chassis including a frame structure comprising: a pair of side rails running longitudinally along the body; one or more rigid cross rails interconnecting the pair of side rails; and a plurality of bays defined between the side rails and separated by the one or more cross rails; and
- a modular battery assembly comprising a plurality of battery packs, each positioned in a separate bay of the plurality of bays, and a control section, the battery packs each comprising: a container at least partially enclosing a plurality of electrical storage devices; and an attachment mechanism removably attaching a respective battery pack to the frame structure; and an electrical connector connecting the pluralities of electrical storage devices to each other and to the control section,
- wherein longitudinal sides of the containers each include a cutout portion, and wherein a pair of cutout portions in adjacent battery packs define a channel for receiving a cross rail of the one or more rigid cross rails.
18. The vehicle of claim 17, wherein the electrical storage devices of one battery pack are electrically connected to the electrical storage devices of each other battery pack in parallel.
19. The vehicle of claim 17, wherein the attachment mechanism is a latching mechanism including a receiving member in which a striker attached to the frame structure is inserted and further including a latching hook for automatically attaching the striker to the receiving member when the striker is in the receiving member.
20. The vehicle of claim 17, wherein each battery pack further includes at least one mechanical connector removably attaching a respective battery pack to an adjacent battery pack, and wherein the at least one mechanical connector includes a receiving member on one longitudinal side of a respective container and an inserting member on an opposing longitudinal side of the respective container, and
- wherein the receiving member of one battery pack is configured to receive the inserting member of an adjacent battery pack.
Type: Application
Filed: Dec 24, 2018
Publication Date: May 16, 2019
Inventor: Austin L. Newman (San Jose, CA)
Application Number: 16/231,786