METHOD AND SYSTEM OF COAL MINE ROOF STABILIZATION
The present application relates to a system for supporting a roof of a portion of a mine. The system includes a first plurality of stabilizing members disposed above the roof at a first elevation. The first plurality of stabilizing members originate from a first common location and terminate at a second elevation that is higher than the first elevation. The system further includes a second plurality of stabilizing members disposed above the roof and the first plurality of stabilizing members at a third elevation. The second plurality of stabilizing members originate from a second common location and terminate at a fourth elevation that is higher than the third elevation. The second plurality of stabilizing members are disposed generally perpendicular to the first plurality of stabilizing members.
Latest REI, Inc. Patents:
- Remote recessed reflector antenna and use thereof for sensing wear
- Method and system for wear monitoring using RF reflections
- Method and system for slurry pipe liner wear monitoring
- METHOD AND SYSTEM FOR COMPONENT WEAR MONITORING
- Intelligent blast-hole drill bit with redundant transducer wear sensor and remote recessed reflector antenna
This application is a continuation of U.S. patent application Ser. No. 15/234,537, filed on Aug. 11, 2016. U.S. patent application Ser. No. 15/234,537 is a continuation of U.S. patent application Ser. No. 14/790,263, filed on Jul. 2, 2015 (now U.S. Pat. No. 9,429,017). U.S. patent application Ser. No. 14/790,263 is a continuation of U.S. patent application Ser. No. 12/983,088, filed Dec. 31, 2010 (now U.S. Pat. No. 9,080,444). U.S. patent application Ser. No. 12/983,088 claims priority from U.S. Provisional Patent Application No. 61/292,066, filed Jan. 4, 2010, and titled METHOD AND SYSTEM OF COAL MINE ROOF STABILIZATION. U.S. patent application Ser. No. 15/234,537, U.S. patent application Ser. No. 14/790,263; U.S. patent application Ser. No. 12/983,088; and U.S. Provisional Patent Application No. 61/292,066 are incorporated herein by reference.
BACKGROUND Technical FieldThe present invention relates generally to a method of and system for stabilizing a subterranean rock formation during subterranean mining operations, and, in particular, but not by way of limitation, to coal mine roof stabilization and control.
History of Related ArtMining for coal or other minerals located beneath the Earth's surface requires a variety of operational issues. In particular, the structural integrity of a subterranean mine (hereinafter referred to as a “mine”) is of great concern. Longwall mining has been used to recover coal from beneath the Earth's surface for decades. Typically, longwall mining refers to a process of removing coal from along a face of coal or a stratified mineral deposit. Once the longwall is exposed, a machine may be used to shear off a portion of the face of the mineral deposit. The sheared off portion is then removed, for example, by a conveyor belt.
Due to enormous pressure that is exerted by the surrounding rock formation above a mining tunnel, it is sometimes difficult to maintain the integrity of a roof within the mining tunnel. Various systems have been developed to increase the stability of roofs within the mining tunnels. An exemplary system includes a use of a plurality of hydraulic jacks, wood supports, or steel supports secured between a floor and the roof of the mine tunnel. Typically, the plurality of hydraulic jacks are placed in a line along a face of the longwall to reduce a likelihood of a cave-in and protect around an area of the longwall face. As more of the face is removed from the longwall, the plurality of hydraulic jacks are moved closer to the face of the longwall in order to ensure stability of the roof near the face of the longwall.
In some mining efforts, as the plurality of hydraulic jacks are moved towards the face of the longwall, the portion of the roof that becomes unsupported as a result of moving the plurality of hydraulic jacks is allowed to cave-in. This area is typically behind the plurality of jacks and away from the direction of mining.
After it has been determined that enough of a coal seam has been removed, it is desirable to remove the mining equipment from the mining tunnel. In some mines, a surrounding rock formation in which the mine has been created may be weak or water saturated. Typically, weaker formations such as, for example, water-saturated sandstone do not support very well when mining tunnels are formed beneath it. In such mines, removing support structures such as, for example, the plurality of hydraulic jacks used for longwall mining, becomes very difficult and dangerous. Therefore, it would be beneficial to provide a method of and system for supporting a surrounding rock formation above support structures to facilitate removal of the support structures such as, for example, hydraulic jacks from a takedown room for a longwall mine.
SUMMARY OF THE INVENTIONIn one embodiment, the present application relates to a system for supporting a roof of a portion of a mine. The system includes a first plurality of stabilizing members such as, for example cables or directionally-drilled sacrificial tooling (DDSTM) disposed above the roof at a first elevation. The first plurality of stabilizing members terminate at a second elevation. The system further includes a second plurality of stabilizing members disposed above the roof and the first plurality of stabilizing members at a third elevation. The second plurality of stabilizing members terminate at a fourth elevation. The second plurality of stabilizing members are disposed generally perpendicular to the first plurality of stabilizing members.
In another embodiment, the present application relates to a method of forming subterranean mineworkings. The method includes installing a first plurality of stabilizing members in a roof region at a first elevation. The first plurality of stabilizing members terminate at a second elevation. The method further includes installing a second plurality of stabilizing members in the roof region above the first plurality of stabilizing members at a third elevation. The second plurality of stabilizing members terminate at a fourth elevation. The second plurality of stabilizing members are disposed generally perpendicular to the first plurality of stabilizing members. The method finally includes creating a subterranean mine in a region of earth underlying the supported roof region.
A more complete understanding of the method and system of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:
Various embodiments of the present invention will now be described more fully with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, the embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
In a typical embodiment, each of the first set of boreholes are directionally drilled to pass over a takedown room 113 and are oriented generally perpendicular to a plane 114 located on a face of a coal seam 116. In a typical embodiment, the takedown room 113 is essentially a room that is used to recover longwall mining equipment. In some cases, the takedown room 113 can be pre-mined ahead of a longwall face. The takedown room 113 is typically created by a plurality of individual shields that support a roof. In a typical embodiment, each of the first set of boreholes is located approximately 10 feet above a roof 115 of the takedown room 113. In other embodiments, the first set of boreholes may be located closer to or farther from the roof of the takedown room 113. Placement of the first set of boreholes above the takedown room 113 depends, for example, on geology of overlying strata and geomechanics of the surrounding formation. In some embodiments, the takedown room 113 may not yet exist. An end of each of the first set of boreholes (not explicitly shown) terminates past the plane 114 of the face of the coal seam 116. In a typical embodiment, each of the first set of boreholes includes a collar (not explicitly shown) that is cemented into the surrounding rock formation at a beginning portion of the first set of boreholes. The collar is typically installed prior to drilling the first set of boreholes. In a typical embodiment, the collar may be, for example, a piece of casing having, for example, a diameter of approximately 4 inches and a length of approximately 10 feet.
In a typical embodiment, each of the first set of boreholes terminates approximately at least 40 feet past the takedown room 113. Furthermore, in various embodiments, an end of each of the first set of boreholes may terminate at an elevation that is higher than a portion of the first set of boreholes that passes above the takedown room 113. For example, the first set of boreholes may pass approximately 10 feet above the takedown room 113 and have ends that terminate at an elevation of approximately 40 feet above the takedown room. However, in various embodiments, an end of each of the first set of boreholes may terminate at an elevation that is generally equal to a portion of the first set of boreholes that passes above the takedown room 113. The exact terminating elevation of the first set of boreholes is dependent, for example, upon the surrounding geology. As a result, any pre-determined terminating elevation could be used to ensure that the first set of cables 110(1)-(7) are secured into a competent rock formation.
The first set of boreholes may include any desired number of boreholes, but typically includes a sufficient number of boreholes to span a width of the face of the coal seam 116 while maintaining a reasonable spacing, such as, for example, approximately 75 feet between each of the first set of boreholes. In a typical embodiment, each of the first set of boreholes is generally equally spaced from adjacent boreholes; however, design considerations could alter the spacing between of each of the first set of boreholes. In a typical embodiment, each of the first set of cables 110(1)-(7) is installed upon completion of its corresponding borehole. However, depending on stability of the formation, each of the first set of cables 110(1)-(7) may be installed after some or all of the first set of boreholes have been completed.
In various embodiments, each of the first set of cables 110(1)-(7) may include a series of bulbs 111 spaced at, for example, approximately 5 foot intervals along a length of each of the first set of cables 110(1)-(7). The series of bulbs are illustrated in
Still referring to
In a typical embodiment, each of the second set of boreholes includes a collar (not explicitly shown) that is cemented into the surrounding rock formation at a beginning portion of the second set of boreholes. The collar may be, for example, a section of casing having a diameter of approximately 4 inches and a length of approximately 10 feet.
In some embodiments, the second set of boreholes are spaced, relative to the first set of boreholes, closer together. For example, the second set of boreholes may be spaced approximately 7.5 feet apart. After the second set of boreholes has been drilled, the second set of cables 118 (1)-(5) may be run through the second set of boreholes. The first set of cables 110 (1)-(7) has been illustrated by way of example in
In a various embodiments, each of the second set of cables 118 (1)-(5) may include a series of bulbs 119 spaced at approximately 5 foot intervals along a length of each of the second set of cables 118 (1)-(5). The series of bulbs 119 are represented in
Still referring to
Still referring to
In a typical embodiment, after the first and second sets of boreholes have been completed, a stabilizing member such as, for example, one of the first or second sets of cables 110 (1)-(7) or 118 (1)-(5) (shown in
Still referring to
Referring now to
Still referring to
In a typical embodiment, each of the first set of boreholes are directionally drilled to pass over a takedown room 813 and are oriented generally perpendicular to a plane 814 located on a face of a coal seam 816. In a typical embodiment, the takedown room 813 is essentially a room that is used to recover longwall mining equipment. The takedown room 813 is typically created by a plurality of individual shields that support the roof. In a typical embodiment, the takedown room 813 may be pre-mined or ahead of a longwall face advance. In a typical embodiment, each of the boreholes is located approximately 10 feet above a roof 815 of the takedown room 813. In other embodiments, the boreholes may be located closer to or farther from the roof 815 of the takedown room 813. Placement of the boreholes above the takedown room 813 depends, for example, on geology of overlying strata and geomechanics of the surrounding formation. In some embodiments, the takedown room 813 may not yet exist. An end of each of the first set of boreholes (not explicitly shown) terminates past the plane 814 of the face of the coal seam 816. In a typical embodiment, each of the first set of boreholes includes a collar (not explicitly shown) that is cemented into the surrounding rock formation at a beginning portion of the borehole. The collar is typically installed prior to drilling the borehole. In a typical embodiment, the collar may be, for example, a piece of casing having, for example, a diameter of approximately 4 inches and a length of approximately 10 feet.
In a typical embodiment, each of the first set of boreholes terminates approximately at least 40 feet past the take takedown room 813. Furthermore, in various embodiments, an end of each of the first set of boreholes may terminate at an elevation that is higher than a portion of the first set of boreholes that passes above the takedown room 813. For example, the first set of boreholes may pass approximately 10 feet above the takedown room 813 and have ends that terminate at an elevation of approximately 40 feet above the takedown room. However, in various embodiments, an end of each of the first set of boreholes may terminate at an elevation that is generally equal to a portion of the first set of boreholes that passes above the takedown room 813. The exact terminating elevation of the first set of boreholes is dependent, for example, upon the surrounding geology. As a result, any terminating elevation could be used to ensure that the first set of sacrificial drill rods 810(1)-(7), having the directional drilling motors 811(1)-(7) affixed to an end, are secured into a competent rock formation.
The first set of boreholes may include any desired number of boreholes, but typically includes a sufficient number of boreholes to span a width of the face of the coal seam 116 while maintaining a reasonable spacing, such as, for example, approximately 75 feet between each of the first set of boreholes. In a typical embodiment, each of the first set of boreholes is generally equally spaced from adjacent boreholes; however, design considerations could alter the spacing between of each of the first set of boreholes. In a typical embodiment, the process of drilling the first set for boreholes places both the first set of sacrificial drill rods 810(1)-(7) and the directional drilling motors 811(1)-(7) there within.
In order to secure each of the first set of sacrificial drill rods 810(1)-(7) within its respective borehole, a solution such as, for example, grout, may be pumped into each of the first set of boreholes. As the grout hardens, each of the first set of sacrificial drill rods 810(1)-(7) and the directional drilling motors 811(1)-(7) become set within each of the first set of boreholes. This process will be described in more detail below.
Still referring to
In a typical embodiment, the second set of boreholes is drilled generally perpendicular to the first set of boreholes and passes above the takedown room 813 along the width of the coal seam 816. In a typical embodiment, the second set of boreholes is drilled at height of approximately 15 feet above the roof the takedown room 813, which is approximately 5 feet above the first set of boreholes. Each of the second set of boreholes spans the width of the face of the coal seam 816 and may, in various embodiment, terminate at an end that is approximately 40 feet higher than a portion that spans the takedown room 813. However, in various embodiments, an end of each of the second set of boreholes may terminate at an elevation that is generally equal to a portion of the second set of boreholes that passes above the takedown room 813. The exact terminating elevation of the second set of boreholes is dependent, for example, upon the surrounding geology. As a result, any terminating elevation could be used to ensure that the second set of sacrificial drill rods 818(1)-(5), having the directional drilling motors 819(1)-(5) affixed to an end, are secured into a competent rock formation.
In a typical embodiment, each of the second set of boreholes includes a collar (not shown) that is cemented into the surrounding rock formation at a beginning portion of the second set of boreholes. The collar may be, for example, a section of casing having a diameter of approximately 4 inches and a length of approximately 10 feet.
In some embodiments, the second set of boreholes are spaced, relative to the first set of boreholes, closer together. For example, the second set of boreholes may be spaced approximately 7.5 feet apart. In a typical embodiment, the process of drilling the second set for boreholes places both the first set of sacrificial drill rods 818 (1)-(5) and the directional drilling motors 819 (1)-(5) there within. In order to secure each of the second set of sacrificial drill rods 818 (1)-(5) within its respective borehole, a solution such as, for example, grout, may be pumped into each of the second set of boreholes. As the grout hardens, each of the second set of sacrificial drill rods 818 (1)-(5) and the directional drilling motors 819 (1)-(5) become set within the second set of boreholes.
Still referring to
Referring now to
Referring now to
Referring now to
Referring now to
Although various embodiments of the method and system of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth herein.
Claims
1. A system for supporting a roof of a subterranean mine, the system comprising:
- a first plurality of stabilizing members disposed underground above the roof of the subterranean mine at a first elevation, the first plurality of stabilizing members terminating at a second elevation;
- a second plurality of stabilizing members disposed above the roof of the subterranean mine and above the first plurality of stabilizing members at a third elevation, the second plurality of stabilizing members terminating at a fourth elevation;
- wherein, the second plurality of stabilizing members are disposed generally perpendicular to the first plurality of stabilizing members; and
- wherein weight of the roof of the subterranean mine is distributed to a surrounding structure via the first plurality of stabilizing members and the second plurality of stabilizing members.
2. The system of claim 1, wherein:
- the first plurality of stabilizing members comprises a first plurality of cables; and
- the second plurality of stabilizing members comprises a second plurality of cables.
3. The system of claim 2, wherein:
- the first plurality of cables are contained within a first plurality of boreholes; and
- the second plurality of cables are contained within a second plurality of boreholes.
4. The system of claim 2, wherein at least one cable of the first plurality of cables comprises a plurality of bulbs disposed along a length of the at least one cable.
5. The system of claim 2, wherein at least one cable of the second plurality of cables comprises a plurality of bulbs disposed along a length of the at least one cable.
6. The system of claim 4, wherein the plurality of bulbs are spaced approximately five feet apart.
7. The system of claim 2, wherein at least one cable of the first plurality of cables and the second plurality of cables is disposed in an inter-layered fan pattern.
8. The system of claim 2, wherein at least one cable of the first plurality of cables and the second plurality of cables is secured via a fastener plate assembly.
9. The system of claim 2, wherein at least one cable of the first plurality of cables and the second plurality of cables is secured via a fish hook assembly, the fish hook assembly comprising an end cap having at least one barb projecting therefrom.
10. The system of claim 1, wherein:
- the first plurality of stabilizing members comprise a first plurality of sacrificial drill rods; and
- the second plurality of stabilizing members comprise a second plurality of sacrificial drill rods.
11. The system of claim 10, wherein the first plurality of sacrificial drill rods and the second plurality of sacrificial drill rods comprise directional drilling motors.
12. The system of claim 10, wherein at least one sacrificial drill rod of the first plurality of sacrificial drill rods and the second plurality of sacrificial drill rods is arranged in an inter-layered fan pattern.
13. The system of claim 1, wherein the first elevation and the second elevation are equal.
14. The system of claim 1, wherein the first elevation and the second elevation are not equal.
15. The system of claim 1, wherein the third elevation and the fourth elevation are equal.
16. The system of claim 1, wherein the third elevation and the fourth elevation are not equal.
17. A method of forming subterranean mineworkings, the method comprising:
- installing a first plurality of stabilizing members in a roof region at a first elevation, the first plurality of stabilizing members terminating at a second elevation;
- installing a second plurality of stabilizing members in the roof region above the first plurality of stabilizing members at a third elevation, the second plurality of stabilizing members terminating at a fourth elevation;
- wherein the second plurality of stabilizing members are disposed generally perpendicular to the first plurality of stabilizing members; and
- creating a subterranean mine in a region of earth underlying the roof region.
18. The method of claim 17, wherein:
- the first plurality of stabilizing members comprises a first plurality of cables; and
- the second plurality of stabilizing members comprises as second plurality of cables.
19. The method of claim 18, further comprising:
- drilling a first plurality of boreholes for placement of the first plurality of cables therein; and
- drilling a second plurality of boreholes for placement of the second plurality of cables therein.
20. The method of claim 18, further comprising arranging at least cable one of the first plurality of cables and the second plurality of cables in an inter-layered fan pattern.
Type: Application
Filed: Jan 29, 2019
Publication Date: May 23, 2019
Applicant: REI, Inc. (Salt Lake City, UT)
Inventors: Daniel J. Brunner (Salt Lake City, UT), Jeffrey D. Jorgensen (Murray, UT), Jeffrey G. Burton (Farmington, UT), Jeffrey J. Schwoebel (Park City, UT), Michael J. Hardin (Draper, UT), Forrest Paul Schumacher (Sandy, UT)
Application Number: 16/261,042