CONDUIT ASSEMBLY FOR SERVICE PORT OF AIR CONDITIONING UNIT
Apparatus includes a conduit assembly configured to be selectively connectable to a service port of an air conditioning unit. An actuator assembly is configured to selectively urge disconnection between the conduit assembly and the service port of the air conditioning unit. This is done in such a way that activation of the actuator assembly, in use, reduces, at least in part, an amount of inadvertent departure of a refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port.
This document relates to the technical field of (and is not limited to) a conduit assembly for a service port of an air conditioning unit (and a method therefor).
BACKGROUNDAn air conditioning unit (system) is configured to control the humidity, ventilation, and/or the temperature in a building or a vehicle, and to maintain, at least in part, a relatively cooler atmosphere during relatively warmer climate conditions. The air conditioning unit includes an internal pipe system configured to contain a refrigerant. From time to time, maintenance is performed on the air conditioning unit (in order to ensure continued reliable operation of the air conditioning unit).
SUMMARYIt will be appreciated that there exists a need to mitigate (at least in part) at least one problem associated with the existing conduits for a service port of an air conditioning unit (also called the existing technology). After much study of the known systems and methods with experimentation, an understanding (at least in part) of the problem and its solution have been identified (at least in part) and is articulated (at least in part) as follows:
From time to time, it may be required to measure the internal pressure of the refrigerant contained in an air conditioning unit. A service port is provided with the air conditioning unit, and the service port is configured to be fluidly connected to a gauge device. The gauge device is configured to read or measure the refrigerant pressure of the refrigerant contained in the air conditioning unit (once the service port is fluidly connected to the gauge device).
Once the gauge device is selectively disconnected from the service port of the air conditioning unit, an amount of inadvertent egress (exit, leakage) of the refrigerant (refrigerant flow), in use, may exit from between a conduit assembly (of the gauge device) and the service port (during separation of the gauge device and the service port from each other). Under this condition, some small quantity of the refrigerant is inadvertently released into the atmosphere (from a higher pressure), and causes moisture to freeze on the conduit assembly (of the gauge device) making it relatively difficult to complete the removal of the conduit assembly (of the gauge device). As a result, some pressurized refrigerant sprays into the atmosphere and onto the hands of the operator (user of the gauge device), which may cause a severe burn to the user. In addition, for the case where the complete disconnection of the gauge device is not accomplished quickly enough, the refrigerant may freeze the conduit and then the refrigerant from the air conditioning unit may be significantly reduced and/or entirely lost.
For the case where the mechanic (the user) attempts to make a connection (between the service port and the gauge device), the user may fumble and inadvertently incur severe skin burns (to the hands) during the course of connecting and/or disconnecting the service port from the gauge device. It can be appreciated also that fumbling with the connection may cause unwanted refrigerant loss from the service port.
During the attachment of the service port with the gauge device, some of the refrigerant may escape from the air conditioning unit, and is lost to the atmosphere.
Additionally, the escaping refrigerant may come in contact with the hands of the user (person) attaching the service port to the gauge device, thereby causing an inadvertent burning of the skin on the fingers of the user. Consequently, when this operation must be repeated frequently, the hands of the user may become sore with the possibility of permanent injury.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus.
The apparatus includes and is not limited to (comprises) a conduit assembly configured to be selectively connectable to a service port of an air conditioning unit.
An actuator assembly is configured to selectively urge disconnection of the conduit assembly from the service port of the air conditioning unit (disconnection between the conduit assembly and the service port of the air conditioning unit).
This is done in such a way that activation of the actuator assembly, in use, reduces, at least in part, an amount of inadvertent departure of a refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port. In accordance with some embodiments, the conduit assembly is configured to be utilized with a refrigerant-service device.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) a method.
The method is for utilizing a conduit assembly configured to be selectively connectable to a service port of an air conditioning unit.
The method includes and is not limited to (comprises) using an actuator assembly to selectively urge disconnection of the conduit assembly from the service port of the air conditioning unit (disconnection between the conduit assembly and the service port of the air conditioning unit).
This is done in such a way that activation of the actuator assembly, in use, reduces, at least in part, an amount of inadvertent departure of a refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port. In accordance with some embodiments, the conduit assembly is configured to be utilized with a refrigerant-service device.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus.
The apparatus includes and is not limited to (comprises) a conduit assembly having a conduit channel.
The conduit assembly is configured to be selectively connectable to, and is also configured to be selectively disconnected from, a service port of an air conditioning unit.
The conduit channel of the conduit assembly is configured to fluidly receive a refrigerant flow from the service port of the air conditioning unit once the conduit assembly, in use, is selectively connected to the service port of the air conditioning unit.
An actuator assembly is configured to cooperate with the conduit assembly.
The actuator assembly is also configured to be selectively activated and selectively deactivated.
The actuator assembly is also configured to, in response to activation of the actuator assembly, selectively urge disconnection of the conduit assembly from the service port of the air conditioning unit after the conduit assembly, in use, is selectively connected to the service port (disconnection between the conduit assembly and the service port of the air conditioning unit after the conduit assembly, in use, is selectively connected to the service port).
This is done in such a way that activation of the actuator assembly, in use, urges physical disconnection of the conduit assembly from the service port, and reduces, at least in part, an amount of inadvertent departure of the refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port. In accordance with some embodiments, the conduit assembly is configured to be utilized with a refrigerant-service device.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) a method.
The method is for utilizing a conduit assembly having a conduit channel.
The conduit assembly is configured to be selectively connectable to, and is also configured to be selectively disconnected from, a service port of an air conditioning unit.
The conduit channel of the conduit assembly is configured to fluidly receive a refrigerant flow from the service port of the air conditioning unit once the conduit assembly, in use, is selectively connected to the service port of the air conditioning unit.
The method includes (and is not limited to) using an actuator assembly configured to cooperate with the conduit assembly.
The actuator assembly is also configured to be selectively activated and selectively deactivated.
The actuator assembly is also configured to, in response to activation of the actuator assembly, selectively urge disconnection of the conduit assembly from the service port of the air conditioning unit after the conduit assembly, in use, is selectively connected to the service port (disconnection between the conduit assembly and the service port of the air conditioning unit after the conduit assembly, in use, is selectively connected to the service port).
This is done in such a way that activation of the actuator assembly, in use, urges physical disconnection of the conduit assembly from the service port, and reduces, at least in part, an amount of inadvertent departure of the refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port. In accordance with some embodiments, the conduit assembly is configured to be utilized with a refrigerant-service device.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus.
The apparatus includes and is not limited to (comprises) a conduit assembly having a first end portion.
The conduit assembly is configured to fluidly receive, and is also configured to fluidly convey a refrigerant flow.
A first connector is configured to be mountable to the first end portion of the conduit assembly.
The first connector is also configured to be selectively fluidly connectable to, and is also configured to be disconnected from, a service port of an air conditioning unit.
A first valve device is configured to be securely positioned at the first end portion of the conduit assembly.
The first valve device is also configured to be in fluid communication with the interior of the conduit assembly once the first valve device, in use, is securely positioned at the first end portion of the conduit assembly.
The first valve device is also configured to selectively permit fluid communication of the refrigerant flow between an interior of the conduit assembly and the service port of the air conditioning unit once the first valve device, in use, is securely positioned at the first end portion of the conduit assembly, and once the movable section is fluidly connected to the service port of the air conditioning unit.
An actuator assembly is configured to be coupled to the first connector.
The actuator assembly is also configured to selectively urge disconnection of the conduit assembly from the service port of the air conditioning unit (disconnection between the conduit assembly and the service port) after the conduit assembly, in use, is selectively connected to the service port. This is done in such a way that activation of the actuator assembly, in use, urges physical disconnection of the conduit assembly from the service port, and reduces, at least in part, an amount of inadvertent departure of the refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port. In accordance with some embodiments, the conduit assembly is configured to be utilized with a refrigerant-service device.
Other aspects are identified in the claims. Other aspects and features of the non-limiting embodiments may now become apparent to those skilled in the art upon review of the following detailed description of the non-limiting embodiments with the accompanying drawings. This Summary is provided to introduce concepts in simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the disclosed subject matter, and is not intended to describe each disclosed embodiment or every implementation of the disclosed subject matter. Many other novel advantages, features, and relationships will become apparent as this description proceeds. The figures and the description that follow more particularly exemplify illustrative embodiments.
The non-limiting embodiments may be more fully appreciated by reference to the following detailed description of the non-limiting embodiments when taken in conjunction with the accompanying drawings, in which:
The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details unnecessary for an understanding of the embodiments (and/or details that render other details difficult to perceive) may have been omitted. Corresponding reference characters indicate corresponding components throughout the several figures of the drawings. Elements in the several figures are illustrated for simplicity and clarity and have not been drawn to scale. The dimensions of some of the elements in the figures may be emphasized relative to other elements for facilitating an understanding of the various disclosed embodiments. In addition, common, but well-understood, elements that are useful or necessary in commercially feasible embodiments are often not depicted to provide a less obstructed view of the embodiments of the present disclosure.
LISTING OF REFERENCE NUMERALS USED IN THE DRAWINGS
- 102 conduit assembly
- 103 conduit channel
- 104 first end portion
- 106 second end portion
- 108 first connector
- 109 internal threads
- 110 first valve device
- 112 actuator assembly
- 114 second connector
- 115 first threads
- 116 second valve device
- 118 tube section
- 119 second threads
- 120 flange
- 122 first bearing
- 124 second bearing
- 126 stationary section
- 127 threads
- 128 movable section
- 129 pathway
- 130 retainer
- 200 gear assembly
- 202 first gear
- 204 second gear
- 206 cavity
- 208 channel
- 210 external threads
- 212 first stop
- 214 second stop
- 216 first bearing device
- 218 second bearing device
- 220 stop device
- 222 opening
- 224 interior cavity
- 226 portal
- 228 threads
- 900 service port
- 901 disconnection location
- 902 air conditioning unit
- 904 hose assembly
- 906 refrigerant-service device
- 908 port
- 910 gauge indicator
- 912 user
- 914 refrigerant flow
The following detailed description is merely exemplary and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure. The scope of the claim is defined by the claims (in which the claims may be amended during patent examination after the filing of this application). For the description, the terms “upper,” “lower,” “left,” “rear,” “right,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the examples as oriented in the drawings. There is no intention to be bound by any expressed or implied theory in the preceding Technical Field, Background, Summary or the following detailed description. It is also to be understood that the devices and processes illustrated in the attached drawings, and described in the following specification, are exemplary embodiments (examples), aspects and/or concepts defined in the appended claims. Hence, dimensions and other physical characteristics relating to the embodiments disclosed are not to be considered as limiting, unless the claims expressly state otherwise. It is understood that the phrase “at least one” is equivalent to “a”. The aspects (examples, alterations, modifications, options, variations, embodiments and any equivalent thereof) are described regarding the drawings. It should be understood that the invention is limited to the subject matter provided by the claims, and that the invention is not limited to the particular aspects depicted and described. It will be appreciated that the scope of the meaning of a device configured to be coupled to an item (that is, to be connected to, to interact with the item, etc.) is to be interpreted as the device being configured to be coupled to the item, either directly or indirectly. Therefore, “configured to” may include the meaning “either directly or indirectly” unless specifically stated otherwise.
Referring to the embodiments as depicted in
The conduit assembly 102 (also called a hollow conduit assembly) is configured to be selectively connectable to a service port 900 of an air conditioning unit 902. In accordance with a preferred embodiment, the conduit assembly 102 is associated with (is configured to be utilized with) a refrigerant-service device 906 (also called a refrigerant auxiliary device, a gauge assembly, a refrigerant-recharging device, etc.). The refrigerant-service device 906 includes a gauge indicator 910 configured to indicate the amount of pressure associated with the refrigerant contained in the air conditioning unit 902.
The air conditioning unit 902 is configured to utilize a refrigerant (a refrigerant flow 914). The air conditioning unit 902 is configured to cool down the internal temperature of a building (by utilizing the refrigerant). The air conditioning unit 902 is configured to control the humidity, ventilation, and temperature in a building or a vehicle (to maintain a cool atmosphere in warm conditions). The air conditioning unit 902 may be called AC or A/C. The air conditioning unit 902 utilizes a process of removing heat from the interior of an occupied space, and/or to improve the comfort of occupants of the interior space (of a building). The air conditioning unit 902 may be used in both domestic and commercial environments. The air conditioning unit 902 is configured to achieve a more comfortable interior environment, typically for humans or animals, etc. The air conditioning unit 902 may be also used to cool and/or dehumidify rooms filled with heat-producing electronic devices, such as computer servers, power amplifiers, and even to display and store artwork. The air conditioning unit 902 may utilize a fan to distribute the conditioned air to an occupied space (such as a building or a car) to improve thermal comfort and indoor air quality. The air conditioning unit 902 is configured to utilize a refrigeration cycle.
The service port 900 is utilized for checking the efficiency of the air conditioning unit 902. The service port 900 is a connection (such as a permanent portal or a connection, etc.) to a refrigerant line of the air conditioning unit 902. The service port 900 is utilized to selectively connect a refrigerant-service device 906 (which is depicted as a gauge assembly configured to display a pressure measurement) to the refrigerant line of the air conditioning unit 902. The refrigerant-service device 906 is configured to measure the pressure of the refrigerant contained in the refrigerant line of the air conditioning unit 902 (once the service port 900 is connected to the refrigerant-service device 906).
For the case where the air conditioning unit 902 requires an additional amount of refrigerant (which is called recharging the air conditioning unit 902), the service port 900 may be utilized to receive the additional amount of refrigerant and communicate this refrigerant into the refrigerant line of the air conditioning unit 902.
However, after recharging is completed and the refrigerant-service device 906 is selectively disconnected from the service port 900 of the air conditioning unit 902, an amount of inadvertent egress (exit, leakage) of the refrigerant (a flow of refrigerant), in use, may exit from the service port 900 and a conduit of the refrigerant-service device 906 (that is, during the disconnection or separation of the refrigerant-service device 906 and the service port 900 from each other). Under this condition (case), a quantity of the refrigerant may be inadvertently released into the atmosphere (from a relatively higher pressure associated with the refrigerant contained in the refrigerant line of the air conditioning unit 902). The inadvertently released refrigerant causes surrounding moisture to freeze on (or around) the service port 900 (and/or the conduit of the refrigerant-service device 906), thereby making it relatively difficult to complete the removal of the conduit of the refrigerant-service device 906 from the service port 900. In addition, some of the inadvertently released refrigerant may be sprayed into the atmosphere (and is lost) and/or sprayed onto the hands of the operator (user of the refrigerant-service device 906) that may cause a severe burn to the skin of the user's hands, etc. In addition, for the case where the complete disconnection of the refrigerant-service device 906 is not accomplished quickly enough, the refrigerant may inadvertently freeze the service port 900 (into an open state or open condition), and the refrigerant escaping from the air conditioning unit 902 to the atmosphere may continue unabated (an unabated release of refrigerant), resulting in significantly reduced refrigerant and/or the refrigerant becoming entirely lost.
To resolve the above situation, the actuator assembly 112 may be utilized. The actuator assembly 112 is configured to selectively urge disconnection of the conduit assembly 102 from the service port 900 of the air conditioning unit 902 (disconnection between the conduit assembly 102 and the service port 900 of the air conditioning unit 902). This is done in such a way that activation of the actuator assembly 112, in use, reduces, at least in part, an amount of inadvertent departure (egress, exit, leakage) of a refrigerant flow 914 from the conduit assembly 102 and the service port 900 (while the actuator assembly 112, in use, disconnects the conduit assembly 102 from the service port 900). The actuator assembly 112 may include any type of actuator (a hand-operated actuator, an electrically-driven actuator, etc.). The actuator assembly 112 is configured to move or control a mechanism, for example, by actuating (that is, the opening and/or the closing of) a valve, etc. The actuator assembly 112 may utilize a control signal and a source of energy (if so desired).
A technical advantage of the apparatus is that utilization (by the user 912) of the actuator assembly 112, in use, reduces (at least in part) inadvertent injury (burn) to the hands of the user 912 during disconnection of the conduit assembly 102 from the service port 900 by the actuator assembly 112.
Referring to the embodiments as depicted in
The conduit assembly 102 has a conduit channel 103. The conduit assembly 102 is configured to be selectively connectable to the service port 900 of the air conditioning unit 902. The conduit assembly 102 is also configured to be disconnected (selectively removable) from the service port 900 of the air conditioning unit 902. The conduit channel 103 of the conduit assembly 102 is configured to fluidly receive (permit fluid communication of) a refrigerant flow 914 from the service port 900 of the air conditioning unit 902 (once the conduit assembly 102, in use, is selectively connected to the service port 900 of the air conditioning unit 902).
The actuator assembly 112 is configured to cooperate with the conduit assembly 102. The actuator assembly 112 is also configured to be selectively activated and selectively deactivated. The actuator assembly 112 is also configured to, in response to activation of the actuator assembly 112, selectively urge disconnection of the conduit assembly 102 from the service port 900 of the air conditioning unit 902, or disconnection between the conduit assembly 102 and the service port 900 (after the conduit assembly 102, in use, is selectively connected to the service port 900). This is done in such a way that activation of the actuator assembly 112, in use, (A) urges physical disconnection (separation, actuated disconnection) between the conduit assembly 102 and the service port 900, and (B) reduces, at least in part, an amount of inadvertent departure (egress, exit, leakage) of the refrigerant flow 914 from the conduit assembly 102 and the service port 900 (while the actuator assembly 112, in use, disconnects the conduit assembly 102 from the service port 900).
A technical advantage of the actuator assembly 112 is that utilization (by the user 912) of the actuator assembly 112, in use, reduces (at least in part) inadvertent injury (burn) to the hands of the user 912 during disconnection of the conduit assembly 102 from the service port 900 by the actuator assembly 112 (disconnection between the conduit assembly 102 and the service port 900 by the actuator assembly 112).
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
As depicted in the embodiments of
Referring to the embodiment as depicted in
As depicted in the embodiment of
As depicted in the embodiment of
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
As depicted in the embodiments of
Referring to the embodiments as depicted in
As depicted in the embodiment of
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
As depicted in the embodiments of
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
The movable section 128 is also configured to be movable (rotatable) relative to the conduit assembly 102 (once the conduit assembly 102, in use, is received (at least in part) by the movable section 128, as depicted in the embodiment of
The movable section 128 defines (provides) a pathway 129 configured to receive (at least in part) the first end portion 104 of the conduit assembly 102 (as depicted in the embodiment of
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
The first bearing device 216 and the second bearing device 218 are each configured to permit rotation of the movable section 128 relative to the stationary section 126 once the movable section 128 is received in the stationary section 126, as depicted in the embodiment of
Referring to the embodiments as depicted in
The retainer 130 is configured to retain the movable section 128 relative to the stationary section 126 (within the stationary section 126), and the retainer 130 is configured to provide a motioned surface (as depicted in the embodiment of
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
As depicted in the embodiment of
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
As depicted in the embodiment of
Referring to the embodiment as depicted in
The following is offered as further description of the embodiments, in which any one or more of any technical feature (described in the detailed description, the summary and the claims) may be combinable with any other one or more of any technical feature (described in the detailed description, the summary and the claims). It is understood that each claim in the claims section is an open ended claim unless stated otherwise. Unless otherwise specified, relational terms used in these specifications should be construed to include certain tolerances that the person skilled in the art would recognize as providing equivalent functionality. By way of example, the term perpendicular is not necessarily limited to 90.0 degrees, and may include a variation thereof that the person skilled in the art would recognize as providing equivalent functionality for the purposes described for the relevant member or element. Terms such as “about” and “substantially”, in the context of configuration, relate generally to disposition, location, or configuration that are either exact or sufficiently close to the location, disposition, or configuration of the relevant element to preserve operability of the element within the invention which does not materially modify the invention. Similarly, unless specifically made clear from its context, numerical values should be construed to include certain tolerances that the person skilled in the art would recognize as having negligible importance as they do not materially change the operability of the invention. It will be appreciated that the description and/or drawings identify and describe embodiments of the apparatus (either explicitly or inherently). The apparatus may include any suitable combination and/or permutation of the technical features as identified in the detailed description, as may be required and/or desired to suit a particular technical purpose and/or technical function. It will be appreciated that, where possible and suitable, any one or more of the technical features of the apparatus may be combined with any other one or more of the technical features of the apparatus (in any combination and/or permutation). It will be appreciated that persons skilled in the art would know that the technical features of each embodiment may be deployed (where possible) in other embodiments even if not expressly stated as such above. It will be appreciated that persons skilled in the art would know that other options would be possible for the configuration of the components of the apparatus to adjust to manufacturing requirements and still remain within the scope as described in at least one or more of the claims. This written description provides embodiments, including the best mode, and also enables the person skilled in the art to make and use the embodiments. The patentable scope may be defined by the claims. The written description and/or drawings may help to understand the scope of the claims. It is believed that all the crucial aspects of the disclosed subject matter have been provided in this document. It is understood, for this document, that the word “includes” is equivalent to the word “comprising” in that both words are used to signify an open-ended listing of assemblies, components, parts, etc. The term “comprising”, which is synonymous with the terms “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, un-recited elements or method steps. Comprising (comprised of) is an “open” phrase and allows coverage of technologies that employ additional, un-recited elements. When used in a claim, the word “comprising” is the transitory verb (transitional term) that separates the preamble of the claim from the technical features of the invention. The foregoing has outlined the non-limiting embodiments (examples). The description is made for particular non-limiting embodiments (examples). It is understood that the non-limiting embodiments are merely illustrative as examples.
Claims
1. An apparatus, comprising:
- a conduit assembly being configured to be selectively connectable to a service port of an air conditioning unit, in which the conduit assembly is configured to be utilized with a refrigerant-service device; and
- an actuator assembly being configured to selectively urge disconnection of the conduit assembly from the service port of the air conditioning unit in such a way that activation of the actuator assembly, in use, reduces, at least in part, an amount of inadvertent departure of a refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port.
2. The apparatus of claim 1, further comprising:
- a first connector being configured to be mountable to the conduit assembly; and
- the first connector also being configured to be selectively fluidly connectable to, and also being configured to be disconnected from, the service port of the air conditioning unit; and
- a second connector being configured to be mountable to the conduit assembly; and
- the second connector also being configured to be selectively fluidly connectable to, and to be disconnected from, a hose assembly of the refrigerant-service device.
3. The apparatus of claim 1, further comprising:
- a first connector being configured to be mountable to the conduit assembly, and
- the first connector being configured to be selectively fluidly connectable to, and also being configured to be disconnected from the service port of the air conditioning unit; and
- a first valve device securely positioned in the conduit assembly; and
- wherein the first valve device is configured to be in fluid communication with the interior of the conduit assembly; and
- wherein the first valve device is also configured to selectively permit fluid communication of the refrigerant flow between the interior of the conduit assembly and the service port of the air conditioning unit.
4. An apparatus, comprising:
- a conduit assembly having a conduit channel, and the conduit assembly being configured to be selectively connectable to, and also being configured to be selectively disconnected from, a service port of an air conditioning unit, in which the conduit assembly is configured to be utilized with a refrigerant-service device; and
- the conduit channel of the conduit assembly being configured to fluidly receive a refrigerant flow from the service port of the air conditioning unit once the conduit assembly, in use, is selectively connected to the service port of the air conditioning unit; and
- an actuator assembly being configured to cooperate with the conduit assembly, and the actuator assembly also being configured to be selectively activated and selectively deactivated; and
- the actuator assembly also being configured to, in response to activation of the actuator assembly, selectively urge disconnection of the conduit assembly from the service port of the air conditioning unit after the conduit assembly, in use, is selectively connected to the service port, in such a way that activation of the actuator assembly, in use, urges physical disconnection of the conduit assembly from the service port, and reduces, at least in part, an amount of inadvertent departure of the refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port.
5. The apparatus of claim 4, wherein:
- the actuator assembly is positioned in a spaced-apart relationship from a disconnection location in which the conduit assembly and the service port become disconnected by the actuator assembly.
6. The apparatus of claim 4, wherein:
- the actuator assembly is also configured to selectively connect the conduit assembly to the service port of the air conditioning unit
- in such a way that the actuator assembly, in use, selectively permits fluid communication of the refrigerant flow from the service port of the air conditioning unit to the interior of the conduit assembly.
7. The apparatus of claim 4, wherein:
- the actuator assembly is also configured to selectively prevent fluid movement, of the refrigerant flow from the service port of the air conditioning unit to the interior of the conduit assembly after the conduit assembly, in use, is selectively connected to the service port.
8. The apparatus of claim 4, wherein:
- the actuator assembly is also configured to selectively urge fluid movement of the refrigerant flow from the service port of the air conditioning unit to the interior of the conduit assembly once the conduit assembly, in use, is selectively connected to the service port.
9. The apparatus of claim 4, further comprising:
- a second connector being configured to be mountable to the conduit assembly, and the second connector being configured to be selectively fluidly connectable to, and to be disconnected from, a hose assembly of the refrigerant-service device; and
- a first valve device being securely positioned in the conduit assembly; and
- wherein the first valve device is configured to be in fluid communication with the interior of the conduit assembly once the first valve device, in use, is securely positioned in the conduit assembly; and
- wherein the first valve device is also configured to selectively permit fluid communication of the refrigerant flow between the interior of the conduit assembly and the service port of the air conditioning unit.
10. An apparatus, comprising:
- a conduit assembly having a first end portion, and the conduit assembly being configured to fluidly receive and also being configured to fluidly convey a refrigerant flow, in which the conduit assembly is configured to be utilized with a refrigerant-service device; and
- a first connector being configured to be mountable to the first end portion of the conduit assembly, and the first connector being configured to be selectively fluidly connectable to, and also being configured to be disconnected from, a service port of an air conditioning unit; and
- a first valve device being securely positioned at the first end portion of the conduit assembly; and
- the first valve device being configured to be in fluid communication with the interior of the conduit assembly once the first valve device, in use, is securely positioned at the first end portion of the conduit assembly; and
- the first valve device being configured to selectively permit fluid communication of the refrigerant flow between an interior of the conduit assembly and the service port of the air conditioning unit once the first valve device, in use, is securely positioned at the first end portion of the conduit assembly, and once the conduit assembly is fluidly connected to the service port of the air conditioning unit; and
- an actuator assembly being coupled to the first connector; and
- the actuator assembly also being configured to selectively urge disconnection of the conduit assembly from the service port of the air conditioning unit after the conduit assembly, in use, is selectively connected to the service port, in such a way that activation of the actuator assembly, in use, urges physical disconnection of the conduit assembly from the service port, and reduces, at least in part, an amount of inadvertent departure of the refrigerant flow from the conduit assembly and the service port while the actuator assembly, in use, disconnects the conduit assembly from the service port.
11. The apparatus of claim 10, wherein:
- the actuator assembly is positioned in a spaced-apart relationship from a disconnection location in which the conduit assembly and the service port become disconnected by the actuator assembly.
12. The apparatus of claim 10, wherein:
- the actuator assembly is also configured to selectively urge actuation of the first connector between a flow state and a no-flow state once the actuator assembly, in use, is coupled to the first connector, and once the conduit assembly is fluidly connected to the service port of the air conditioning unit.
13. The apparatus of claim 10, wherein:
- in a flow state, the first valve device, in use, selectively permits fluid communication of the refrigerant flow between the interior of the conduit assembly and the service port of the air conditioning unit once the first connector, in use, is fluidly connected to the service port.
14. The apparatus of claim 10, wherein:
- in a no-flow state, the first valve device, in use, selectively prevents fluid communication of the refrigerant flow between the interior of the conduit assembly and the service port of the air conditioning unit.
15. The apparatus of claim 10, wherein:
- the conduit assembly also has a second end portion spaced apart from the first end portion; and
- the second end portion of the conduit assembly includes a hose assembly of the refrigerant-service device.
16. The apparatus of claim 10, wherein:
- the conduit assembly also has a second end portion spaced apart from the first end portion.
17. The apparatus of claim 16, further comprising:
- a second connector being configured to be mountable to the second end portion of the conduit assembly.
18. The apparatus of claim 17, wherein:
- the second connector also being configured to be selectively fluidly connectable to, and to be disconnected from, a hose assembly of the refrigerant-service device.
19. The apparatus of claim 18, further comprising:
- a second valve device configured to be in fluid communication with the interior of the conduit assembly once the second valve device, in use, is securely positioned at the second end portion of the conduit assembly.
20. The apparatus of claim 19, wherein:
- the second valve device is also configured to selectively permit fluid communication of the refrigerant flow between the interior of the conduit assembly and the hose assembly of the refrigerant-service device once the second connector is fluidly connected to the hose assembly of the refrigerant-service device.
Type: Application
Filed: Nov 20, 2017
Publication Date: May 23, 2019
Inventor: Corey Andri HORTH (Niagara Falls)
Application Number: 15/817,391