CENTRALIZED RESOURCE ROUTING AND DISTRIBUTION
The centralized resource routing and distribution improves upon the routing of interactions and distribution of resources for interactions between users and operator entities. A centralized gateway is provided through which interactions may be routed and resources distributed using one or more substitute interfaces. The one or more substitute interfaces may mimic interfaces of the operator, or otherwise provide a universal interface for use of multiple resource pools for the interactions. Use of the gateway and substitute interfaces increases processing capacity, reduces memory requirements, and/or improves processing time for both the operator entities and the organization entities since it provides for centralized routing and distribution for multiple operator entities without the operator entities having to store and/or process user information or the interactions associated therewith.
The present invention relates to centralization of resource routing and distribution, and more particularly to improving the processing capability, memory, and processing speed of the systems that are utilized to route and distribute resources.
BACKGROUNDResource routing and distribution is typically handled by each operator entity. That is each operator entity is responsible for interacting with users and providing routing and distribution options for interactions. These routing and distribution methods result in reduced processing capacity, increase memory requirements, and reduce the processing speed needed for interactions between various parties. Improved systems, processes, and computer program products are needed to increase the processing capacity, reduce memory requirements, and increase the processing speed associated with routing interactions between parties.
SUMMARYThe following presents a simplified summary of one or more embodiments of the present invention, in order to provide a basic understanding of such embodiments. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor delineate the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments of the present invention in a simplified form as a prelude to the more detailed description that is presented later.
Generally, systems, computer products, and methods are described herein that provide for improving the routing of interactions and distribution of resources for the interactions between users and operator entities. The present invention provides a centralized gateway through which interactions may be routed and resources distributed using one or more substitute interfaces. The one or more substitute interfaces may mimic interfaces of the operator, or otherwise provide a universal interface for use of multiple resource pools for the interactions. The present invention allows an operator entity to utilize the centralized gateway and substitute interfaces provided by the organization to handle routing and processing interactions between the user and the operator entity, without the operator having to store routing and distribution information and/or without the operator having to manage user or interaction information. The present invention increases processing capacity, reduces memory requirements, and/or improves processing time for both the operator entities and the organization entities since the present invention provides for centralized routing and distribution for multiple operator entities without the operator entities having to store and/or process user information or the interactions associated therewith.
Embodiments of the invention comprise systems, computer implemented methods, and computer products for centralized resource routing and distribution. The invention comprises receiving an interaction notification for an interaction between a user and an operator entity, wherein the interaction notification is received through one or more operator entity systems. The invention further comprises receiving a selection indication that the user would like to utilize a resource pool of a resource entity for the interaction. Next the invention determines a resource pool interface, including at least required resource pool information for entering into the interaction using the resource pool, wherein the resource pool information is determined from a resource pool database or from communicating with one or more resource entity systems. The invention also displays the resource pool interface with the required resource pool information for the resource pool, wherein the resource pool interface is provided to the operator entity in place of one or more operator interfaces, and wherein the resource pool interface is provided through the one or more operator entity systems for display to the user on a user computer system or on the one or more operator entity systems. The invention further comprises receiving the required resource pool information for the resource pool, and authenticating the user for the resource pool, wherein the authentication occurs by accessing a user authentication database or by communicating with the one or more resource entity systems. The invention also includes determining routing of the interaction for the resource pool based on a routing factor, and completing the interaction between the user, the operator entity, and the resource entity.
In further accord with embodiments, the invention comprises providing a resource selection interface to the user, wherein the resource selection interface is provided for the operator entity in place of the one or more operator interfaces, and wherein the resource pool interface is provided through the one or more operator entity systems for display to the user on the user computer system or on the one or more operator entity systems. The invention further comprises providing resources distribution options for one or more resource pools or one or more resource entities in the resource selection interface to the user for the interaction.
In other embodiments of the invention, the one or more resource entities are one or more digital resource entities, and wherein receiving the selection indication that the user would like to utilize the resource pool for the interaction comprises receiving a selection of one of the one or more resource pools available through the one or more digital resource entities.
In still other embodiments of the invention, the interaction is one of a plurality of interactions that the operator entity has entered into with a plurality of users that utilize a plurality of resource entities. The invention further comprises aggregating the plurality of interactions and a plurality of interaction information for the plurality of interactions with the plurality of resource entities into a report, and sending the report to the operator entity, wherein the report is provided through the one or more operator entity systems.
In yet other embodiments, the invention further comprises identifying one or more resource pools or one or more resource entities that the operator entity would like to offer to a plurality of users. The invention further comprises creating one or more substitute interfaces for the operator entity to present to the plurality of users in place of the one or more operator interfaces, wherein the one or more substitute interfaces at least comprise the resource pool interface.
In further accord with embodiments of the invention, the one or more substitute interfaces comprise one or more mimic interfaces, wherein the one or more mimic interfaces mimic the one or more operator interfaces provided by the operator entity.
In other embodiments of the invention, the one or more substitute interfaces comprise one or more universal interfaces, wherein the one or more universal interfaces are utilized by the operator entity through the operator entity systems.
In still other embodiments, the invention further comprises determining one or more routing factors for the routing of the interaction to the one or more resource entities, and storing the one or more routing factors in a routing engine.
In yet other embodiments of the invention, the one or more routing factors comprise one or more operator entity conditions, wherein the one or more operator entity conditions are preferred routings of routing channels of the operating entity. The routing factors may further comprise one or more organization entity conditions, wherein the one or more organization entity conditions are preferred routings of the routing channels of an organization performing the routing. The routing factors may also comprise one or more acceptance factors, wherein the one or more acceptance factors comprise likelihood of acceptance of the interaction using the routing channels. The routing factors may comprise one or more security factors, wherein the security factor comprises security level of the routing channels. The routing factors may further comprise one or more expenditure factors, wherein the one or more expenditure factors comprise expenditure levels for the operating entity or the organization entity based on the routing channels. The routing factor may also comprise one or more speed factors, wherein the speed factor comprises the speed of the routing channels.
To the accomplishment the foregoing and the related ends, the one or more embodiments comprise the features hereinafter described and particularly pointed out in the claims. The following description and the annexed drawings set forth certain illustrative features of the one or more embodiments. These features are indicative, however, of but a few of the various ways in which the principles of various embodiments may be employed, and this description is intended to include all such embodiments and their equivalents.
Having thus described embodiments of the invention in general terms, reference will now be made to the accompanying drawings, and wherein:
Embodiments of the invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all, embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It may be evident; however, that such embodiment(s) may be practiced without these specific details. Like numbers refer to like elements throughout.
Generally, systems, computer products, and methods are described herein that provide for improving the routing of interactions and distribution of resources for the interactions between users and operator entities. The present invention provides a centralized gateway through which interactions may be routed and resources distributed using one or more substitute interfaces. The one or more substitute interfaces may mimic interfaces of the operator, or otherwise provide a universal interface for use of multiple resource pools for the interactions. The present invention allows an operator entity to utilize the centralized gateway and substitute interfaces provided by the organization to handle routing and processing interactions between the user and the operator entity, without the operator having to store routing and distribution information and/or without the operator having to manage user or interaction information. The present invention increases processing capacity, reduces memory requirements, and/or improves processing time for both the operator entities and the organization entities since the present invention provides for centralized routing and distribution for multiple operator entities without the operator entities having to store and/or process user information or the interactions associated therewith.
The organization systems 10 may facilitate interactions between operator entities and a user 4 by communicating with the operator systems 20, the resource systems 30, the third-party systems 40, the user computer systems 50, and/or other systems through the network 2. The network 2 may be a global area network (GAN), such as the Internet, a wide area network (WAN), a local area network (LAN), or any other type of network or combination of networks. The network 2 may provide for wireline, wireless, or a combination of wireline and wireless communication between systems, services, components, and/or devices on the network 2.
As illustrated in
The one or more processing components 14 use the one or more communication components 12 to communicate with the network 2 and other components on the network 2, such as, but not limited to, the components of the one or more operator systems 20, the one or more resource systems 30, the one or more third-party systems 40, the one or more user computer systems 50, and/or other systems (not illustrated). As such, the one or more communication components 12 generally comprise a wireless transceiver, modem, server, electrical connection, electrical circuit, or other component for communicating with other components on the network 2. The one or more communication components 12 may further include an interface that accepts one or more network interface cards, ports for connection of network components, Universal Serial Bus (USB) connectors and the like.
As further illustrated in
As illustrated in
The one or more processing components 24 are operatively coupled to the one or more communication components 22, the one or more image capture components 25, and the one or more memory components 26. The one or more processing components 24 use the one or more communication components 22 to communicate with the network 2 and other components on the network 2, such as, but not limited to, the organization systems 10, the resource systems 30 (in some cases), the third-party systems 40, one or more user computer systems 50, and/or other systems. As such, the one or more communication components 22 generally comprise a wireless transceiver, modem, server, electrical connection, or other component for communicating with other components on the network 2. The one or more communication components 22 may further include an interface that accepts one or more network interface cards, ports for connection of network components, Universal Serial Bus (USB) connectors and the like.
As illustrated in
As illustrated in
As illustrated in
Moreover, as illustrated in
It should be understood that the one or more third-party entities may be intermediaries that currently act as intermediaries between the resource entities, organization entities, and/or operator entities. The one or more third party systems 40 may be the systems that the one or more third party entities use to communicate with the other systems.
It should be understood that the one or more user computer systems 50 may be a desktop, mobile device (e.g., laptop, smartphone device, PDA, tablet, or other mobile device), or any other type of computer that generally comprises one or more communication components, one or more processing components, and one or more memory components. It should be understood that the one or more communication components generally comprise a wireless transceiver, modem, server, electrical connection, or other component for communicating with other components on the network 2. The one or more communication components may further include an interface that accepts one or more network interface cards, ports for connection of network components, Universal Serial Bus (USB) connectors and the like. Moreover, the one or more communication components may include a keypad, keyboard, touch-screen, touchpad, microphone, mouse, joystick, other pointer component, button, soft key, and/or other input/output component(s) for communicating with the other systems.
Blocks 220 and 230 of
Block 220 of
Alternatively, block 230 illustrates that one or more universal interfaces are created and/or utilized (e.g., if previously created) to present to users 4 in the case when the operators do not currently have one or more substitute interfaces to present to the one or more users 4 when entering into interactions. The one or more universal interfaces may provide generic interfaces through which the operator entities may allow for processing of any type of interaction. For example, the one or more universal interfaces may have the same generic look and feel as the other interfaces offered by the operator entity, but may allow for any type of interaction based on information stored by the organization for each resource entity. The one or more universal interfaces may be implemented through the operator systems 20 through the use of one or more universal APIs 116 provided by the organization systems 10, as illustrated in
In some embodiments of the invention, as illustrated in
As described briefly herein, the one or more APIs allow for a centralized location for the one or more operators in order to carry out the interactions described herein. That is, the present invention provides a single location that the operator entities may use to present interfaces to users 4 for providing various types of resources and routing options for the interactions. This central location allows the operators to transfer the costs and security associated with capturing, storing, and routing user information and/or associated resources for interactions to an organization that provides more routing options and has improved security with respect to processing the user information and interaction information. In this way, the operator does not have to access and communicate with the various resource systems and/or the third-parties each time the operator enters into an interaction with a user 4 and/or transfers resources to the recipient entity. Since the organizations and/or third parties are more regularly handling the resource routing and distribution from a centralized location, this improves processing times, reduces memory requirements, and increases the processing capacity of the operators, the organizations, the resource entities, and/or third-parties involved in the interactions. That is, for example, the parties involved do not each have to store redundant information for the users and/or interactions, and/or do not have to take redundant actions. For example, an operator does not have to capture and store resource pool information and user information to transfer such information to the organization and the resource entity in order to transfer resources from the resource entity to the resource pool of the operator located at the organization.
Returning to
It should be understood that the routing factors may determine how the resources for the interaction may be routing and/or distributed. Routing factors may include one or more operator conditions. The operator conditions may include preferences of the routing based on previously negotiated contracts with one or more resource entities 130 and/or one or more of the third-party entities 140. That is, the operator entities may have contracts with the one or more third-party entities 140 and/or the one or more resource entities 130 in order to receive discounts for routing each interaction in a particular way. The routing factors may further include one or more organization conditions. Like the operator conditions, the organization conditions may be based on negotiated contracts with the one or more resource entities 130 and/or the one or more third party entities 140.
Other routing factors may include an acceptance factor, an expenditure factor, a security factor, and/or a speed factor. The acceptance factor may include the rate at which a particular routing results in acceptance of the interaction. It should be understood that some routings are more reliable than others (e.g., computer systems are more reliable) and more accurate (e.g., less errors occur), and/or are more apt to result in acceptance of the interaction. With respect to the expenditure factor of the routing, this may include both the expenses associated with the routing based on what the one or more resource entities 130 and/or third-party entities 140 may charge for routing the interactions, as well as the expenses of the organization in order to route the resources (e.g., computing power, software used to route the resources, or the like). With respect to the security factor, this may include which routings have more secure channels for routings. That is, some resource entities 130 and/or third-party entities 140 may have more secure communication systems, software, interfaces, and protocols associated with routing the interactions and distributing the resources. Finally, with respect to the speed factor, different routing channels may result in more timely approvals and/or distribution of resources, and as such, the interactions may be routed and the resources may be distributed based on the time it takes to route the interactions and/or resources. It should be further understood that in some embodiments an interaction may be routed for approval using one routing channel, while the distribution of the resources for the interaction are routed through a different channel (e.g., routed to or from the same resource entity using different channels). In this way, the approval routing may be routed based on one or more routing factors (e.g., for speed, or the like), while the resources may be routed based on one or more routing factors (e.g., expenditures, or the like).
It should be understood that the routing factors may be stored within a routing engine 102 as illustrated in
Returning to
Regardless of the location of the interaction (e.g., over the Internet or through a point of sale location) the interactions may proceed in the same or similar way. It should be understood that an interaction may be the user requesting to purchase a product, return a product, receive a rebate or refund, or the like with the operator entity (e.g., merchant or the like). For example, after agreeing to enter into an interaction, the user 4 may indicate to the operator systems 20, that the user would like to checkout (e.g., pay to complete the interaction). The indication may be in the form of an electronic request over a network 2, such as through the Internet 2 when the user 4 is in a different location than the operator entity, in the form of an in-person electronic request (e.g., near field communication, or other like in-person electronic communication) when the user 4 is located at the operator systems 20 (e.g., at the point of sale), or in the form of a physical indication (e.g., selecting checkout feature at a point of sale device, making a selection to pay by a physical card or other physical device, or other like indication). Regardless of how the user 4 indicates the selection of the payment, in response, the operator systems 20 may communicate with the organization systems 10 that an interaction is occurring between the user 4 and the operator entity.
Block 304 of
Block 306 illustrates that a selection indication is received that the user 4 would like to utilize a resource pool and/or utilize a specific resource entity (e.g., a particular digital wallet including the resource pool) for the interaction. For example, the user 4 may select resource pool 1, resource pool 2, or the like, and/or resource entity 1, resource entity 2, or the like from the resource selection interface 500. Alternatively, when located at the operatory systems 20 (e.g., at a point of sale) the user 4 may select a resource pool and/or resource entity on the operator systems 20 directly from a display on the operator systems 20, or on the user computer systems (e.g., in a mobile device app) that can be transferred to the operator systems 20 (e.g., wave a phone over the point of sale, allow the point of sale to scan the display or other feature of the user computer system 50, or the like). It should be understood that multiple resource entities may allow for the use of the same resource pools. For example, a first digital wallet for one resource entity may allow for use of resource pool 1 and resource pool 2, while a second digital wallet may allow for use of resource pool 2 and resource pool 3. As such, the user 4 may select any one of the resource pools from any one of the resource entities that allow for the user of the resource pool to enter into an interaction.
As illustrated by block 308 in
Block 312 of
Block 316 of
Block 320 of
The present invention provides a number of technical improvements over the current routing of interactions. For one, the present invention provides one or more substitute payment interfaces that are accessed by a plurality of merchants through a single merchant API (e.g., through which multiple interfaces may be accessed), which each merchant may utilize to present a single payment interface to customers regardless of the form of the payment that the customer would like to use. Once the customer selects the payment type (e.g., digital wallet provider and/or specific account) the financial institution determines the required information needed to use the payment type for the interaction and displays inputs for the payment type and user authentication in the substitute interface that the merchant presents to the user 4. As such, the present invention provides a simulated merchant site, such that the merchant does not have to handle any processing of the transactions, but still controls the payment interface presented to the customer (e.g., look and feel of the interface).
Moreover, since the financial institution already has relationships with various routing channels, the present invention shifts the responsibility of routing transactions to the financial institution, which has more routing options. In this way, the merchants do not have to store routing process requirements for all of the different payment options that customers may like to use. The financial institution is in a better position to store this information and handle the routing because the financial institution has more available routing options. As such, the complexity of each merchant having multiple connections to processors, gateways, and digital wallets, with multiple APIs is handled by the financial institution through a single connection, gateway, and API between the merchant and financial institution.
Moreover, because of the ability of the finical institution to aggregate transactions, the financial institution is able to provide a single settlement file to each of the merchants across multiple payment entities (e.g., other financial institutions, digital wallet providers, or the like). The single settlement file simplifies the back office accounting entries of the merchants regardless of how each of the customers pay for the transactions.
Furthermore, the centralized location of routing the transactions provides a single location to trace transactions for the merchant such that the merchants only need to access a single location to determine the status of transactions (e.g., stamped, pressed, circulated, posted, settled, or the like as some examples) instead of having to access each payment entity (e.g., digital wallet provider, traditional financial institution) separately. As such, the full lifecycle of payment requests and settlements can be accessed and controlled in a single location. Additionally, each merchant may change the routing of its transactions to optimize the underlining features of the routing factors for different transactions. For example, the merchants may send some transactions to improve the acceptance rate, and send other transactions to reduce expenses. Without the present invention merchants do not have access to all the routing channels that the financial institution has, and thus, cannot manage the various routings of the transactions.
Additionally, the financial institution has a more secure systems than most merchants. The financial institution is able to store the user information and account information in a centralized location instead in redundant locations at each merchant. The less information the merchant has to “touch” reduces the risk of a breach of user or account information occurring through the merchant systems.
These improvements of the present invention over traditional routing of transactions provides improved processing capacity, reduced memory requirements, and improved processing times because each merchant is not required to have redundant APIs with the payment entities, redundant storage of user and account information, and additional cyber security systems and processes.
In some embodiments of the invention, one or more of the systems described herein may be combined with each other, or otherwise perform the functions of the other systems described herein. In other embodiments of the invention one or more of the applications described herein may be combined with each other, or otherwise perform the functions of the other applications described herein. Furthermore, the applications may be any type of application, such as an application stored on a desktop, server, or other device, a mobile application stored on a mobile device, a cloud application, or other like application. As such, the applications described herein, or portions of the applications described herein may be stored and operated on any of the systems, devices, or components thereof described herein.
It should be understood, that the systems, devices, and components described in
Moreover, it should be understood that the process flows described herein include transforming the information sent and/or received from the applications of the different systems (e.g., internally or externally) from one or more data formats into a data format associated with each individual system. There are many ways in which information is converted within the system environment 1. This may be seamless, as in the case of upgrading to a newer version of a computer program. Alternatively, the conversion may require processing by the use of a special conversion program, or it may involve a complex process of going through intermediary stages, or involving completing “exporting” and “importing” procedures, which may convert to and from a tab-delimited or comma-separated text file. In some cases, a program may recognize several data file formats at the data input stage and then is also capable of storing the output data in a number of different formats. Such a program may be used to convert a file format. If the source format or target format is not recognized, then at times a third program may be available which permits the conversion to an intermediate format, which can then be reformatted.
As will be appreciated by one of skill in the art, the present invention may be embodied as a method (including, for example, a computer-implemented process, a business process, and/or any other process), apparatus (including, for example, a system, machine, device, computer program product, and/or the like), or a combination of the foregoing. Accordingly, embodiments of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.), or an embodiment combining software and hardware aspects that may generally be referred to herein as a “system.” Furthermore, embodiments of the present invention may take the form of a computer program product on a computer-readable medium having computer-executable program code embodied in the medium.
Any suitable transitory or non-transitory computer readable medium may be utilized. The computer readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device.
More specific examples of the computer readable medium include, but are not limited to, the following: an electrical connection having one or more wires; a tangible storage medium such as a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a compact disc read-only memory (CD-ROM), or other optical or magnetic storage device.
In the context of this document, a computer readable medium may be any medium that can contain, store, communicate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer usable program code may be transmitted using any appropriate medium, including but not limited to the Internet, wireline, optical fiber cable, radio frequency (RF) signals, or other mediums.
Computer-executable program code for carrying out operations of embodiments of the present invention may be written in an object oriented, scripted or unscripted programming language such as Java, Perl, Smalltalk, C++, or the like. However, the computer program code for carrying out operations of embodiments of the present invention may also be written in conventional procedural programming languages, such as the “C” programming language or similar programming languages.
Embodiments of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products. It will be understood that each block of the flowchart illustrations and/or block diagrams, and/or combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer-executable program code portions. These computer-executable program code portions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a particular machine, such that the code portions, which execute via the processor of the computer or other programmable data processing apparatus, create mechanisms for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer-executable program code portions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the code portions stored in the computer readable memory produce an article of manufacture including instruction mechanisms which implement the function/act specified in the flowchart and/or block diagram block(s).
The computer-executable program code may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that the code portions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the flowchart and/or block diagram block(s). Alternatively, computer program implemented steps or acts may be combined with operator or human implemented steps or acts in order to carry out an embodiment of the invention.
Embodiments of the present invention are described above with reference to flowcharts and/or block diagrams. It will be understood that steps of the processes described herein may be performed in orders different than those illustrated in the flowcharts. In other words, the processes represented by the blocks of a flowchart may, in some embodiments, be in performed in an order other that the order illustrated, may be combined or divided, or may be performed simultaneously. It will also be understood that the blocks of the block diagrams illustrated, in some embodiments, merely conceptual delineations between systems and one or more of the systems illustrated by a block in the block diagrams may be combined or share hardware and/or software with another one or more of the systems illustrated by a block in the block diagrams. Likewise, a device, system, apparatus, and/or the like may be made up of one or more devices, systems, apparatuses, and/or the like. For example, where a processor is illustrated or described herein, the processor may be made up of a plurality of microprocessors or other processing devices which may or may not be coupled to one another. Likewise, where a memory is illustrated or described herein, the memory may be made up of a plurality of memory devices which may or may not be coupled to one another.
In accordance with embodiments of the invention, the term organization may relate to a “financial institution” and/or “financial entity”, which includes any organization that processes financial resource transfers including, but not limited to, banks, credit unions, savings and loan associations, investment companies, stock brokerages, assess management firms, insurance companies and the like. In specific embodiments of the invention, use of the term “bank” may be limited to a financial entity in which account-bearing customers conduct financial resource transfers, such as account deposits, withdrawals, transfers and the like. Moreover, the term organization entity may be a third party acting on behalf of the financial institution and/or financial entity.
As the phrase is used herein, a processor may be “configured to” perform a certain function in a variety of ways, including, for example, by having one or more general-purpose circuits perform the function by executing particular computer-executable program code embodied in computer-readable medium, and/or by having one or more application-specific circuits perform the function.
It should be understood that “operatively coupled,” when used herein, means that the components may be formed integrally with each other, or may be formed separately and coupled together. Furthermore, “operatively coupled” means that the components may be coupled directly to each other, or to each other with one or more components located between the components that are operatively coupled together. Furthermore, “operatively coupled” may mean that the components are detachable from each other, or that they are permanently coupled together.
Where possible, any terms expressed in the singular form herein are meant to also include the plural form and vice versa, unless explicitly stated otherwise. Also, as used herein, the term “a” and/or “an” shall mean “one or more,” even though the phrase “one or more” is also used herein. Furthermore, when it is said herein that something is “based on” something else, it may be based on one or more other things as well. In other words, unless expressly indicated otherwise, as used herein “based on” means “based at least in part on” or “based at least partially on.” Like numbers refer to like elements throughout.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of, and not restrictive on, the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other changes, combinations, omissions, modifications and substitutions, in addition to those set forth in the above paragraphs, are possible. Those skilled in the art will appreciate that various adaptations and modifications of the just described embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
Claims
1. A system for centralized resource routing and distribution, the system comprising:
- one or more memory components having computer readable code stored thereon; and
- one or more processing components operatively coupled to the one or more memory components, wherein the one or more processing components are configured to execute the computer readable code to: receive an interaction notification for an interaction between a user and an operator entity, wherein the interaction notification is received through one or more operator entity systems; receive a selection indication that the user would like to utilize a resource pool of a resource entity for the interaction; determine a resource pool interface, including at least required resource pool information for entering into the interaction using the resource pool, wherein the resource pool information is determined from a resource pool database or from communicating with one or more resource entity systems; display the resource pool interface with the required resource pool information for the resource pool, wherein the resource pool interface is provided to the operator entity in place of one or more operator interfaces, and wherein the resource pool interface is provided through the one or more operator entity systems for display to the user on a user computer system or on the one or more operator entity systems; receive the required resource pool information for the resource pool; authenticate the user for the resource pool, wherein the authentication occurs by accessing a user authentication database or by communicating with the one or more resource entity systems; determine routing of the interaction for the resource pool based on a routing factor; and completing the interaction between the user, the operator entity, and the resource entity.
2. The system of claim 1, wherein the one or more processing components are configured to execute the computer readable code to
- provide a resource selection interface to the user, wherein the resource selection interface is provided for the operator entity in place of the one or more operator interfaces, and wherein the resource pool interface is provided through the one or more operator entity systems for display to the user on the user computer system or on the one or more operator entity systems; and
- provide resources distribution options for one or more resource pools or one or more resource entities in the resource selection interface to the user for the interaction.
3. The system of claim 2, wherein the one or more resource entities are one or more digital resource entities; and wherein receiving the selection indication that the user would like to utilize the resource pool for the interaction comprises receiving a selection of one of the one or more resource pools available through the one or more digital resource entities.
4. The system of claim 1, wherein the interaction is one of a plurality of interactions that the operator entity has entered into with a plurality of users that utilize a plurality of resource entities, and wherein the one or more processing components are further configured to:
- aggregate the plurality of interactions and a plurality of interaction information for the plurality of interactions with the plurality of resource entities into a report; and
- send the report to the operator entity, wherein the report is provided through the one or more operator entity systems.
5. The system of claim 1, wherein the one or more processing components are further configured to:
- identify one or more resource pools or one or more resource entities that the operator entity would like to offer to a plurality of users; and
- create one or more substitute interfaces for the operator entity to present to the plurality of users in place of the one or more operator interfaces, wherein the one or more substitute interfaces at least comprise the resource pool interface.
6. The system of claim 5, wherein the one or more substitute interfaces comprise one or more mimic interfaces, wherein the one or more mimic interfaces mimic the one or more operator interfaces provided by the operator entity.
7. The system of claim 5, wherein the one or more substitute interfaces comprise one or more universal interfaces, wherein the one or more universal interfaces are utilized by the operator entity through the operator entity systems.
8. The system of claim 5, wherein the one or more processing components are further configured to:
- determine one or more routing factors for the routing of the interaction to the one or more resource entities; and
- store the one or more routing factors in a routing engine.
9. The system of claim 8, wherein the one or more routing factors comprise at least one of:
- one or more operator entity conditions, wherein the one or more operator entity conditions are preferred routings of routing channels of the operating entity;
- one or more organization entity conditions, wherein the one or more organization entity conditions are preferred routings of the routing channels of an organization performing the routing;
- one or more acceptance factors, wherein the one or more acceptance factors comprise likelihood of acceptance of the interaction using the routing channels;
- one or more security factors, wherein the security factor comprises security level of the routing channels;
- one or more expenditure factors, wherein the one or more expenditure factors comprise expenditure levels for the operating entity or the organization entity based on the routing channels; or
- one or more speed factors, wherein the speed factor comprises the speed of the routing channels.
10. A computer implemented method for centralized resource routing and distribution, the method comprising:
- receiving, by one or more processing components, an interaction notification for an interaction between a user and an operator entity, wherein the interaction notification is received through one or more operator entity systems;
- receiving, by the one or more processing components, a selection indication that the user would like to utilize a resource pool of a resource entity for the interaction;
- determining, by the one or more processing components, a resource pool interface, including at least required resource pool information for entering into the interaction using the resource pool, wherein the resource pool information is determined from a resource pool database or from communicating with one or more resource entity systems;
- displaying, by the one or more processing components, the resource pool interface with the required resource pool information for the resource pool, wherein the resource pool interface is provided to the operator entity in place of one or more operator interfaces, and wherein the resource pool interface is provided through the one or more operator entity systems for display to the user on a user computer system or on the one or more operator entity systems;
- receiving, by the one or more processing components, the required resource pool information for the resource pool;
- authenticating, by the one or more processing components, the user for the resource pool, wherein the authentication occurs by accessing a user authentication database or by communicating with the one or more resource entity systems;
- determining, by the one or more processing components, routing of the interaction for the resource pool based on a routing factor; and
- completing, by the one or more processing components, the interaction between the user, the operator entity, and the resource entity.
11. The method of claim 10, further comprising:
- providing, by the one or more processing components, a resource selection interface to the user, wherein the resource selection interface is provided for the operator entity in place of the one or more operator interfaces, and wherein the resource pool interface is provided through the one or more operator entity systems for display to the user on the user computer system or on the one or more operator entity systems;
- providing, by the one or more processing components, resources distribution options for one or more resource pools or one or more resource entities in the resource selection interface to the user for the interaction;
12. The method of claim 11, wherein the one or more resource entities are one or more digital resource entities; and wherein receiving the selection indication that the user would like to utilize the resource pool for the interaction comprises receiving a selection of one of the one or more resource pools available through the one or more digital resource entities.
13. The method of claim 10, wherein the interaction is one of a plurality of interactions that the operator entity has entered into with a plurality of users that utilize a plurality of resource entities, and wherein the method further comprises:
- aggregating, by the one or more processing components, the plurality of interactions and a plurality of interaction information for the plurality of interactions with the plurality of resource entities into a report; and
- sending, by the one or more processing components, the report to the operator entity, wherein the report is provided through the one or more operator entity systems.
14. The method of claim 10, further comprising:
- identifying, by the one or more processing components, one or more resource pools or one or more resource entities that the operator entity would like to offer to a plurality of users; and
- creating, by the one or more processing components, one or more substitute interfaces for the operator entity to present to the plurality of users in place of the one or more operator interfaces, wherein the one or more substitute interfaces at least comprise the resource pool interface.
15. The method of claim 14, wherein the one or more substitute interfaces comprise one or more mimic interfaces, wherein the one or more mimic interfaces mimic the one or more operator interfaces provided by the operator entity.
16. The method of claim 14, wherein the one or more substitute interfaces comprise one or more universal interfaces, wherein the one or more universal interfaces are utilized by the operator entity through the operator entity systems.
17. The method of claim 14, wherein the method further comprises:
- determining, by the one or more processing components, one or more routing factors for the routing of the interaction to the one or more resource entities; and
- storing, by the one or processing components, the one or more routing factors in a routing engine.
18. The method of claim 17, wherein the one or more routing factors comprise at least one of:
- one or more operator entity conditions, wherein the one or more operator entity conditions are preferred routings of routing channels of the operating entity;
- one or more organization entity conditions, wherein the one or more organization entity conditions are preferred routings of the routing channels of the organization performing the routing;
- one or more acceptance factors, wherein the one or more acceptance factors comprise likelihood of acceptance of the interaction using the routing channels;
- one or more security factors, wherein the security factor comprises security level of the routing channels;
- one or more expenditure factors, wherein the one or more expenditure factors comprise expenditure levels for the operating entity or the organization entity based on the routing channels; or
- one or more speed factors, wherein the speed factor comprises the speed of the routing channels.
19. A computer program product for centralized resource routing and distribution, the computer program product comprising at least one non-transitory computer-readable medium having computer-readable program code portions embodied therein, the computer-readable program code portions comprising:
- an executable portion configured to receive an interaction notification for an interaction between a user and an operator entity, wherein the interaction notification is received through one or more operator entity systems;
- an executable portion configured to receive a selection indication that the user would like to utilize a resource pool of a resource entity for the interaction;
- an executable portion configured to determine a resource pool interface, including at least required resource pool information for entering into the interaction using the resource pool, wherein the resource pool information is determined from a resource pool database or from communicating with one or more resource entity systems;
- an executable portion configured to display the resource pool interface with the required resource pool information for the resource pool, wherein the resource pool interface is provided to the operator entity in place of one or more operator interfaces, and wherein the resource pool interface is provided through the one or more operator entity systems for display to the user on a user computer system or on the one or more operator entity systems;
- an executable portion configured to receive the required resource pool information for the resource pool;
- an executable portion configured to authenticate the user for the resource pool, wherein authentication occurs by accessing a user authentication database or by communicating with the one or more resource entity systems;
- an executable portion configured to determine routing of the interaction for the resource pool based on a routing factor; and
- an executable portion configured to completing the interaction between the user, the operator entity, and the resource entity.
20. The computer readable of claim 19, wherein the computer-readable program code portions further comprise:
- an executable portion configured to provide a resource selection interface to the user, wherein the resource selection interface is provided for the operator entity in place of the one or more operator interfaces, and wherein the resource pool interface is provided through the one or more operator entity systems for display to the user on the user computer system or on the one or more operator entity systems; and
- an executable portion configured to provide resources distribution options for one or more resource pools or one or more resource entities in the resource selection interface to the user for the interaction.
Type: Application
Filed: Nov 17, 2017
Publication Date: May 23, 2019
Inventors: Anand Ahuja (Hoboken, NJ), Alfred James Reed (Huntersville, NC), Joe Nathan Lamar, III (Lithia Springs, GA), Ayeesha Sachedina (New York, NY)
Application Number: 15/816,798