TRAY FOR PREVENTING MEAT BROWNING
A tray including projections may store a product, such as meat. The projections may extend upward or downward from the tray. The projections may allow the tray to be offset from a subsequent tray or surface. The projections may allow air flow and thus oxygen flow through a film of the tray and into the product stored within.
Latest Walmart Apollo, LLC Patents:
- Relabeling system for unlabeled items and method
- Methods and apparatus for recommending substitutions
- Systems and methods for determining an order collection start time
- Methods and apparatuses for adding supplemental order deliveries to delivery plans
- System and method for removing debris from a storage facility
This present patent application claims priority benefit from U.S. Provisional Patent Application No. 62/590,749 filed on Nov. 27, 2017, the entire content of which is hereby incorporated herein by reference.
TECHNICAL FIELD OF THE INVENTIONThe present application relates to trays for storing and displaying products for consumers to select. More specifically, the present application relates to trays for storing meat products and preventing premature browning of the meat products.
BACKGROUND OF THE INVENTIONCurrent retail packaging for meat products involve placing meat in a disposable tray and sealing the meat therein with a film. When displayed in a store, such as a grocery or retail store, multiple trays of meat are stacked such that the base of one tray rests directly on the film of a subsequent tray. The weight of the meat in the top tray pushes the film downward and, often, into contact with the meat in the lower tray. This prevents air flow from being allowed to penetrate the film and reach the meat stored in the tray. Myoglobin is a protein in the meat that is responsible for a majority of the red color of the meat. When the myoglobin is mixed with oxygen, it becomes oxymyoglobin and produces a bright red color. If air is not allowed to reach the meat, the myoglobin cannot mix with oxygen, resulting in a brown coloring.
Consumers often select a meat product based on the color of the meat in the package. If consumers see a brown meat, they often assume the meat has spoiled and do not select the meat. In fact, much of the time, the meat has not received enough oxygen to allow for the bright red color produced by the oxymyoglobin. The brown meat is often not spoiled, but instead lacks a flow of oxygen to the meat. Therefore, a need exists to enhance the air flow and the available oxygen to a meat product stored in retail packaging. Enhancing the air flow to the meat product may enhance the oxygen to the meat, prevent premature browning of the meat. A need also exists for reducing the weight or pressure applied to stacked products, especially stacked meat products.
BRIEF SUMMARY OF THE INVENTIONAccording to an embodiment of the present disclosure, a tray for preventing the browning of meat may have a base, a first wall connected to the base and extending axially upward from the base, a second wall connected to the base and extending axially upward from the base, a third wall opposite from the first wall, the third wall connected to the base and extending axially upward from the base, a fourth wall opposite from the second wall, the fourth wall connected to the base and extending axially upward from the base; the first wall, the second wall, the third wall, and the fourth wall are connected to form a generally rectangular shape, an area defined between the base, the first wall, the second wall, the third wall, and the fourth wall; a film attached to the first wall, the second wall, the third wall, and the fourth wall, offset from the base and configured to seal the area; and a plurality of projections, the plurality of projections connected to at least one of the first wall, the second wall, the third wall, and the fourth wall and extending axially upward from the film. The plurality of projections may be configured to provide a space between the film and a base of a second tray, the space configured to prevent compression from the second tray on the film of the tray and configured to allow a volume of air to exist between the film of the tray and the base of the second tray.
According to an embodiment of the present disclosure, a tray for preventing the browning of meat may comprise a base, a first wall connected to the base and extending axially upward from the base, a second wall connected to the base and extending axially upward from the base, a third wall opposite from the first wall, the third wall connected to the base and extending axially upward from the base, a fourth wall opposite from the second wall, the fourth wall connected to the base and extending axially upward from the base; the first wall, the second wall, the third wall, and the fourth wall are connected to form a generally rectangular shape, an area defined between the base, the first wall, the second wall, the third wall, and the fourth wall; a film attached to the first wall, the second wall, the third wall, and the fourth wall, offset from the base, and configured to seal the area; and a plurality of projections, the plurality of projections connected to at least one of the first wall, the second wall, the third wall, and the fourth wall and extending axially downward from the base. The plurality of projections may be configured to prevent compression from the tray on the film of the second tray and configured to allow a volume of air to exist between the film of the second tray and the base of the tray.
According to an embodiment of the present disclosure, a system for preventing the browning of meat may have a first tray and a surface. The first tray may have a first tray base connected to a first tray wall, the first tray wall extending from the first tray base and surrounding a perimeter of the first tray base; a first tray film connected to the first tray wall and axially offset from the first tray base; and at least one first tray projection extending axially from the first tray wall. The surface may be connected to the at least one first tray projection to define a space between the surface and the first tray, the space configured to prevent compression between the first tray and the surface and configured to allow a volume of air to exist between the first tray and the surface.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detailed description serve to explain the principles of the invention. In the drawings:
Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art would recognize that other equivalent parts can be employed and other methods developed without departing from the spirit and scope of the invention. All references cited herein are incorporated by reference as if each had been individually incorporated.
The present disclosure relates to a tray, such as a retail packaging tray, such as a tray for meat storage and/or display. The tray may be for individual sale and may maintain the product, such as meat, therein to remain fresh looking and prevent premature browning. The present disclosure may allow air flow and/or oxygen to reach the meat and yet keep the meat from coming into contact with the film layer securing and sealing the meat. The tray may allow air flow and/or oxygen permeation by providing projections on the meat tray that offset the meat tray from a subsequent surface, such as a display table or another meat tray. The offset meat tray may reduce and/or remove the pressure applied to the film of another meat tray. The meat tray and/or projections may be reusable, recyclable, or disposable. The tray may have upper projections or lower projections. The projections may allow the trays to be stacked when loaded with meat. The trays may be nested when the projections are removed or received in a second tray. The projections may be manufactured to allow the corner projections to be folded in to support a subsequent tray in the stack. Absorbent material pads can be added to the sides of the trays so the trays may be angled up for better presentation. Grooves or slots may be added to the tray bottom to allow air flow under the meat. An empty tray may nest in one alignment and be stacked with clearance if rotated or offset with respect to the previous tray.
Referring to
With continued reference to
Although only a first sidewall 20 and second sidewall 22 are shown, a third sidewall may be located parallel to the first sidewall 20 on the opposing end surface of second sidewall 22. A fourth sidewall may be located parallel to the second sidewall 22 on the opposing end surface of first sidewall 20. In
Referring again to
Referring now to
In the exemplary stacked trays 10a, 10b of
The space 17 may allow for oxygen to permeate the film 16a to reach the product stored within the first meat tray 10a. The oxygen and/or air flow may be permitted to flow between about 0 and 0.5 m/s, or any sub-range therein, into the space 17. The size of the openings 34 and/or the placement, size, number, and location of the projections 24a may be selected to achieve the desired oxygen flow and/or permeation. The projections 24a may also permit the second meat tray 10b to be offset from the first meat tray 10a such that the base 12b does not place pressure on the film 16a of the first meat tray 10a. This allows the weight of the second meat tray 10b to not be transferred to the film 16a. The reduction and/or elimination of weight transfer to the first meat tray 10a may result in permitting more oxygen to permeate the film 16a. The oxygen permeation, oxygen flow, the reduction and/or elimination of weight transfer, or combinations thereof, may enhance the red color of the meat and prevent premature browning of the meat stored within the first meat tray 10a. The size or dimensions of the space 17 (e.g. the width, height and/or length) may be selected to minimize or eliminate the pressure of the second meat tray 10b on the film 16a and/or maximize the oxygen allowed to permeate the film 16a.
Two meat trays 10a, 10b are depicted; however, more meat trays may be stacked above and/or below the meat trays 10a, 10b. The meat trays 10 may be stacked substantially vertically, as depicted in
With continued reference to
Referring back to
Referring to
With continued reference to
Although only a first sidewall 120 and second sidewall 122 are shown, a third sidewall may be located parallel to the first sidewall 120 on the opposing end surface of second sidewall 122. A fourth sidewall may be located parallel to the second sidewall 122 on the opposing end surface of first sidewall 120. In
Referring again to
Referring now to
In the exemplary stacked trays 100a, 100b of
The space 117 may allow for oxygen to permeate the film 116a to reach the product stored within the first meat tray 100a. The oxygen and/or air flow may be permitted to flow between about 0 and 0.5 m/s into the space 117. The size of the openings 134 and/or the placement, size, number, and location of the projections 124b may be selected to achieve the desired oxygen flow and/or permeation. The projections 124b may also permit the second meat tray 100b to be offset from the first meat tray 100a such that the base 112b does not place pressure on the film 116a of the first meat tray 100a. This allows the weight of the second meat tray 100b to not be transferred to the film 116a. The reduction and/or elimination of weight transfer to the first meat tray 100a may result in permitting more oxygen to permeate the film 16a. The oxygen permeation, oxygen flow, the reduction and/or elimination of weight transfer, or combinations thereof, may enhance the red color of the meat and prevent premature browning of the meat stored within the first meat tray 100a. The size or dimensions of the space 117 (e.g. the width, height and/or length) may be selected to minimize or eliminate the pressure of the second meat tray 100b on the film 116a and/or maximize the oxygen allowed to permeate the film 116a.
Two meat trays 100a, 100b are depicted; however, more meat trays may be stacked above and/or below the meat trays 100a, 100b. The meat trays 100 may be stacked substantially vertically, as depicted in
With continued reference to
Referring back to
Referring now to
With continued reference to
Although only two sidewalls 214 are shown, two more sidewalls may be provided such that the meat tray 200 is substantially rectangular in top view and/or bottom view, similar to meat trays 10, 100. Alternatively, as in meat trays 10, 100, only a single sidewall 214 may be provided such that meat tray 200 is substantially circular or elliptical in a top view and/or a bottom view or any number of sidewalls 214 may be provided such that the meat tray 200 may take on a variety of shapes in a top view and/or a bottom view, such as, for example, triangular, square, rectangular, circular, elliptical, or other polygonal shapes.
Referring again to
The frame 240 may be removably or permanently coupled to the body 242 of the meat tray 200. The frame 240 may be coupled to the body 242 after the body 242 has been sealed with film 216. The frame 240 may be coupled to the body 242 at the upper surface 228 or at the base 212. When the frame 240 is coupled to the base 212, the frame 240 may be rotated 180 degrees from the view of
Referring now to
With continued reference to
The frame 340 may be removably or permanently coupled to the body 342 comprising the sidewalls 314. The projections 324 may extend axially downward from the frame 340. The frame 340 may rest on an upper surface 328 of the sidewalls 314. Thus, although the projections 324 extend axially downward from the frame 340, the projections 324 may extend axially upward and past the top of the film 316 and the upper surface 328 of the sidewalls 314. More or fewer projections 324 may be provided. Any combination of number, size, location, placement, and orientation of the projections 324 is contemplated.
The frame 340 may be removably or permanently coupled to the body 342 of the meat tray 300. The frame 340 may be coupled to the body 342 after the body 342 has been sealed with film 316. The frame 340 may be coupled to the body 342 at the upper surface 328 or at the base 312. When the frame 340 is coupled to the base 312, the frame 340 may be rotated 180 degrees from the view of
Although frames 240 and 340 are depicted and described as coupling to the top surface of a meat tray 200 or 300, respectively, the frames 240, 340 may be coupled to a base of an adjacent tray Once the frames 240, 340 are coupled to the respective meat trays 200, 300 the meat trays 200, 300 may be stacked with adjacent meat trays. That is, the meat trays 200, 300 300 may be stacked similar to meat trays 10 in
The projections of any of the described trays may be sized and dimensioned to allow for air flow to access the film and/or to prevent the pressure from the weight of an adjacent meat tray. In an exemplary embodiment, the projections may be about 5 mm high, alternatively, the projections may be shorter. The projections may be spaced very close, about 5 mm or less, or any sub-range therein, from an adjacent projection. Accordingly, the projections may be tightly spaced. The projections may be as low profile as possible to maintain the space or gap between adjacent trays and to support the weight of the adjacent tray. The projections may be cut out of or formed in an existing or conventional meat tray thus reducing the packaging required due to the gaps provided by the projections.
The projections of the present disclosure avoid compression from a top meat tray onto a lower meat tray, avoid pressure from a top meat tray onto a lower meat tray, and maintain a space or gap between adjacent meat trays. In addition to preventing, eliminating, or minimizing compression, the projections allow for a volume of air or oxygen to access the film and thus access the product stored within the meat tray. By avoiding, limiting, or preventing compression on the product and by allowing a volume of air or oxygen to access the product, premature browning of the product is prevented or prohibited.
The projections 24, 124, 224, and 324 may conceal an absorbent material located in or on the sidewalls 14, 114, 214, and 314 of the trays 10, 100, 200, and 300. The absorbent material may absorb product fluids, such as meat juices. The projections 24, 124, 224, and 324 may conceal the absorbed meat juices by concealing the absorbent material. The projections 24, 124, 224, and 324 are depicted as rectangular, generally turret shaped projections. The projections 24, 124, 224, 324 may be one or more of teeth or turrets or scallops. However, any shape projections 24, 124, 224, 324 may be provided. The projections 24, 124, 224, 324 may be shaped to provide support for the trays 10, 100, 200, 300 when stacked. The projections 24, 124, 224, 324 may be shaped or oriented to allow air flow between the trays 10, 100, 200, 300 when stacked. Although only one set of projections is shown with respect to each of the described meat trays, more sets of projections may be provided. For example, a set of projections may be provided extending from the upper surface of the meat tray and a set of projections may be provided extending downward from the base of the meat tray. The projections may then interact with a meat tray having no projections. The projections may alternatively interact with a meat tray having projections, such that distal surfaces of the adjacent projections touch when the meat trays are stacked.
Although not depicted, the projections 24 and/or projections 124 may be removable, similar to projections 224 and/or 324. That is, the projections 24 and/or projections 124 may be attached to the sidewalls 14 and 114, respectively, such that the projections 24, 124 may be added to the meat tray 10, 100 or removed from the meat tray 10, 100 at any time. The projections 24, 124 may snap or otherwise fasten or attach to the sidewalls 14, 114. The projections 24, 124, 224, 324 may have a perforation on the connection to the sidewalls 14, 114 or frames 240, 340 such that the projections 24, 124. 224, 324 may be folded down, torn, or detached from the sidewalls 14, 114 or frames 240, 340. The projections 24, 124 and frames 240, 340 may be removable such that when not attached to trays 10, 100, 200, 300 the trays 10, 100, 200, 300 are configured to nest. The projections 24, 124 and frames 240, 340 may then attach to the trays 10, 100 when desired to stack the trays 10, 100, either before or after sealing of the trays with the film. The projections 24, 124 may be permanently attached to the trays 10, 100. The projections 24, 124 may be integrally formed with the trays 10, 100 or permanently attached to the tray 10, 100 after forming.
Any or all of the projections 24, 124, 224, and/or 324 may be foldable such that in one configuration, the projections are upright (e.g.
Additionally, or alternatively, the projections 24, 124, 224, 324 may be folded on top of the film 16, 116, 216, 316 prior to use, such as prior to display in a store. The projections may rest on top of the film 16, 116, 216, 316 and be unfolded to an upright configuration when it is desired to stack the trays 10, 100, 200, 300. The trays 10, 100, 200, 300 may include one or more feet, and the one or more feet may extend axially downward from the base of the trays 10, 100, 200, 300. The one or more feet may be configured to move from a first position substantially parallel with the base and a second position substantially perpendicular to the base. The one or more feet may support the tray 10, 100, 200, 300 on a surface beneath the trays 10, 100, 200, 300. The one or more feet may be foldable. Additionally, or alternatively, the trays 10, 100, 200, 300 may be folded from a flat configuration (not shown) to the box-like configuration of
The trays 10, 100, 200, 300 may be constructed of any known material for holding food products, and more specifically for holding meat products. The projections 24, 124, 224, 324 may be constructed of the same or different material as trays 10, 100, 200, 300. The projections 24, 124, 224, 324 may be constructed of a material capable of supporting the trays 10, 100, 200, 300. The trays 10, 100, 200, 300 and/or projections 24, 124, 224, 324 may be constructed of a reusable, recyclable, or disposable material. The trays 10, 100, 200, 300 and/or projections 24, 124, 224, 324 may be constructed of, for example, but not limited to polystyrene, foamed polystyrene, polyethylene, polypropylene, polyethylene terephthalate (PET), or other materials. The trays 10, 100, 200, 300 may be formed as single, unitary trays. The trays 10, 100, 200, 300 may be formed as multiple pieces and attached together, such as, for example, through adhesion. The trays 10, 100 may be formed integrally with projections 24, 124. The trays 10, 100 may be formed separate from the projections 24, 124 and attached subsequent to forming.
The retail packaging of the present disclosure may be provided in the form of a tray, such as a meat tray, to store and display fresh meat. The fresh meat is secured in the tray with an oxygen-permeable film. The tray further has projections to allow the tray to be offset from a second tray when the trays are stacked for display in a store. The weight of the top tray may not be weighing on the film of the lower tray and thus the top tray may place no pressure on the lower tray. In this manner, air, air flow, oxygen, and/or oxygen flow may be allowed in a space between the stacked trays. The air flow is allowed to penetrate the oxygen-permeable film and reach the meat, allowing for oxygenation of the myoglobin in the meat. Oxygenation of the myoglobin in the meat allows the meat to remain red and fresh looking and prevents premature browning of the meat. Thus, the trays do not rest on one another, blocking oxygen flow through the film and to the meat.
Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.
Claims
1. A tray for preventing the browning of meat, the tray comprising:
- a base;
- a first wall connected to the base and extending axially upward from the base;
- a second wall connected to the base and extending axially upward from the base;
- a third wall opposite from the first wall, the third wall connected to the base and extending axially upward from the base;
- a fourth wall opposite from the second wall, the fourth wall connected to the base and extending axially upward from the base, the first wall, the second wall, the third wall, and the fourth wall are connected to form a generally rectangular shape;
- an area defined between the base, the first wall, the second wall, the third wall, and the fourth wall;
- a film attached to the first wall, the second wall, the third wall, and the fourth wall, offset from the base and configured to seal the area; and
- a plurality of projections, the plurality of projections connected to at least one of the first wall, the second wall, the third wall, and the fourth wall and extending axially upward from the film,
- wherein the plurality of projections are configured to provide a space between the film and a base of a second tray, the space configured to prevent compression from the second tray on the film of the tray and configured to allow a volume of air to exist between the film of the tray and the base of the second tray, and wherein the plurality of projections are configured to move from a first position substantially parallel with the film to a second position substantially perpendicular to the film.
2. The tray of claim 1, wherein the plurality of projections are configured to support the base of the second tray.
3. The tray of claim 1, wherein the plurality of projections are one of teeth and turrets.
4. The tray of claim 1, wherein the film is an oxygen-permeable film and the film is configured to conceal an absorbent material.
5. The tray of claim 1, wherein in a first position, the tray is configured to stack with the second tray, and in a second position, the tray is configured to nest with the second tray.
6. The tray of claim 5, wherein in the first position, the base of the second tray is configured to rest on the plurality of projections, thus providing the space between the film and the base of the second tray and thereby allowing air flow between the tray and the second tray.
7. The tray of claim 5, wherein in the second position, the plurality of projections are configured to extend into a corresponding plurality of slots located in the second tray.
8. The tray of claim 1, wherein the plurality of projections form a plurality of openings between adjacent projections, the plurality of openings configured to permit the volume of air to enter the space, and wherein the plurality of openings are configured to allow air to flow across the film between about 0 m/s and about 0.5 m/s.
9. (canceled)
10. The tray of claim 1, wherein each of the plurality of projections has a height of about 5 mm or less.
11. The tray of claim 1, further comprising at least one foot, the at least one foot extending axially downward from the base, the at least one foot configured to move from a first position substantially parallel with the base and a second position substantially perpendicular to the base.
12. (canceled)
13. A tray for preventing the browning of meat, the tray comprising:
- a base;
- a first wall connected to the base and extending axially upward from the base;
- a second wall connected to the base and extending axially upward from the base;
- a third wall opposite from the first wall, the third wall connected to the base and extending axially upward from the base;
- a fourth wall opposite from the second wall, the fourth wall connected to the base and extending axially upward from the base, the first wall, the second wall, the third wall, and the fourth wall are connected to form a generally rectangular shape;
- an area defined between the base, the first wall, the second wall, the third wall, and the fourth wall;
- a film attached to the first wall, the second wall, the third wall, and the fourth wall, offset from the base, and configured to seal the area; and
- a plurality of projections, the plurality of projections connected to at least one of the first wall, the second wall, the third wall, and the fourth wall and extending axially downward from the base,
- wherein the plurality of projections are configured to provide a space between the base and a film of a second tray, the space configured to prevent compression from the tray on the film of the second tray and configured to allow a volume of air to exist between the film of the second tray and the base of the tray, and wherein the plurality of projections are removeable.
14. The tray of claim 13, wherein the plurality of projections are configured to sit on an upper surface of a plurality of walls of the second tray.
15. The tray of claim 13, wherein the plurality of projections form a plurality of openings between adjacent projections, the plurality of openings configured to permit the volume of air to enter the space, and wherein the plurality of openings are configured to allow air to flow across the film of the second tray between about 0 m/s and about 0.5 m/s.
16. The tray of claim 13, wherein each of the plurality of projections has a height of about 5 mm or less.
17. A system for preventing the browning of meat, the system comprising:
- a first tray, the first tray comprising: a first tray base connected to a first tray wall, the first tray wall extending from the first tray base and surrounding a perimeter of the first tray base, a first tray film connected to the first tray wall and axially offset from the first tray base, and at least one first tray projection extending axially from the first tray wall; and
- a surface connected to the at least one first tray projection to define a space between the surface and the first tray, the space configured to prevent compression between the first tray and the surface and configured to allow a volume of air to exist between the first tray and the surface;
- a second tray, the second tray comprising:
- a second tray base connected to a second tray wall; and
- a second tray film connected to the second tray wall and axially offset from the second tray base; the surface comprising the second tray film, wherein the at least one first tray projection extends axially downward from the first tray base and wherein the space is provided between the second tray film and the first tray base such that the first tray does not transfer a weight of the first tray onto the second tray film and such that the volume of air is provided between the first tray base and the second tray film.
18. (canceled)
19. The system of claim 18, the surface comprising the second tray base, wherein the at least one first tray projection extends axially upward from the first tray film and wherein the space is provided between the second tray base and the first tray film such that the second tray does not transfer a weight of the second tray onto the first tray film and such that the volume of air is provided between the second tray base and the first tray film.
20. (canceled)
Type: Application
Filed: Nov 26, 2018
Publication Date: May 30, 2019
Applicant: Walmart Apollo, LLC (Bentonville, AR)
Inventors: Greg Bryan (Bentonville, AR), Lanora Sue Carver (Hiwasse, AR), Jeffrey Scott Cruz (Bentonville, AR)
Application Number: 16/200,177