COMPACT AUTO-INJECTOR
A novel single use auto-injector for delivering a fixed amount of medicament is described. The auto-injector may include a sealed housing rotatably held in a cover. Once the auto-injector is positioned at the injection location, the user can transition the housing from a locked to an armed position. The user can then compress the sealed housing into the cover, triggering activation mechanisms that initiate the injection. A first activation mechanism engages an interlock to prevent reuse of the auto-injector. A second activation mechanism straightens and extends a curved needle to a set the exposed needle length. A third activation mechanism pierces a sealed reservoir allowing the medicament to be forced through the injection needle. Following the injection, the auto-injector expands and interlocks, retracting the needle into the auto-injector and preventing reuse.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 62/552,052 entitled “Compact Auto-Injector,” filed on Aug. 30, 2017, and U.S. Provisional Patent Application No. 62/568,567 entitled “Protective Case for an Auto-Injector,” filed on Oct. 5, 2017, the contents of both of which are incorporated herein by reference in their entireties.
TECHNICAL FIELDThe invention relates generally to medicament auto-injectors and, more particularly, to an auto-injector of a relatively low profile and high aspect ratio. The auto-injector allows for administration of a desired dose of medicament intramuscularly or subcutaneously.
BACKGROUNDThe auto-injector market is growing rapidly through an increase in prescriptions, along with new indications for use. Auto-injectors are becoming more dominant as they provide an innovative approach to administer drugs or biological products, and they may enhance safety, improve dosing accuracy, and increase patient compliance, particularly in self-administration settings.
Existing auto-injectors leave patients actively seeking an alternative to address the anxiety they feel associated with existing pain points; poor portability, unwanted attention, accidental injections, and lacerations. An improved auto-injector is needed.
SUMMARY OF THE INVENTIONThrough a human-centered design focus, embodiments of the auto-injector described herein are portable, intuitive, and easy-to-use. The auto-injector technology is diversely applicable to many indications for uses that require fixed dose, single-use intramuscular or subcutaneous injections. Embodiments of the auto-injector are designed to consider the human element. The enhanced ergonomics of embodiments of the device, in combination with the high aspect ratio injector technology, are designed to match modern lifestyles. Embodiments of the invention include a high aspect ratio auto-injector technology that enables the creation of a portable as well as wearable auto-injector for safe and effective dosing of epinephrine, and other medicaments (note that the exemplary value ranges in the chart of
The novel auto-injector technology can be readily incorporated into an auto-injector that can be worn in a bracelet, pendant or other accessory to ensure that the auto-injector is always within reach in the event of an emergency. The objectives of a portable and wearable auto-injector that is safe, easy to use, as well as other objectives, will be apparent to those skilled in the art.
In one aspect, the invention is a compact auto-injector for delivering a medicament dose subcutaneously or intramuscularly. The auto-injector may be composed of two main components: a sealed housing, and a cover. Disposed inside the sealed housing is a medicament reservoir containing the medicament, a medicament dispensing system (MDS) and a needle extension system (NES). Upon time of injection, the medicament reservoir and needle extension system are in fluidic connection.
The sealed housing may be rotatably retained in a cover. In one embodiment, the sealed housing may be rotated relative to the cover from an initial position, to a second position following a user input through a designed interface. At least one of the components comprising the sealed housing or the cover may include indicia indicating the first, second, or subsequent positions. The sealed housing may be bounded during the transition such that the sealed housing may be displaced relative to the cover in a controlled means. The auto-injector can further include a biasing member, whose function includes displacing the sealed housing relative to the cover. In various embodiments, the biasing member can be a spring that is integrally formed with the sealed housing or cover or conversely a separate component which can be disposed between the sealed housing and the cover. The auto-injector may further include an interlock, such that the sealed housing cannot be displaced unless the mechanism has been removed or released by the user when use of the auto-injector is required.
To assist the user in performing a proper administration, the auto-injector should be correctly oriented at the time of injection. The auto-injector may assist orientation with labeling, tactile surfaces, material color or transparency, and other indicia indicating select sides. Furthermore, the auto-injector may present itself with rotational aids, whereas the aids can be contoured, textured, coated or combination of such to further indicate orientation and operation. In addition, the auto-injector can include a viewing window into the internals of the auto-injector for medicament inspection which may further assist the user in establishing orientation.
In one aspect the sealed housing is composed of two components; a top and bottom half that are mated together. Disposed inside the sealed housing is a medicament reservoir containing the medicament, a medicament dispensing system (MDS), and a needle extension system (NES). The embodiment of the bottom half may provide an aperture for the injection needle to pass through. The two halves, are of such geometry that they may locate and secure the internal components. The two halves which comprise the sealed housing may provide a mechanism or interface for rotating the housing relative to the cover. In some embodiments the sealed housing may aid in determining the fixation location for the MDS, and the NES, as well as aid in the releasing of both systems at time of injection. Additionally, the housing may provide a feature for determining the angular displacement or rotation of the needle barrel that the injection needle is affixed to. The sealed housing may aid in providing alignment during the displacement relative to the cover. Furthermore, the two halves may each provide features to assist in assembly of the two halves to ensure the correct internal alignment. The sealed housing can provide a means of bracing or supporting the injection needle. In addition, the two halves may contain or align the interlocks for preventing displacement of the sealed housing relative to the cover, once the injection has been performed.
The medicament dispensing system (MDS) which dispenses the medicament is composed of a plunger, a biasing member, a retainer, and a keeper. The biasing member may be similar to a mechanical compression spring. The spring may be held in a state preserving potential energy to be released at the time of injection. The retainer which displaces the plunger, may bound the spring on one end and may have a fixation point on the opposite end. The retainer may facilitate a self-fixation or be fixed in place with a separate locking mechanism which may be released or unlocked at the time of injection. The keeper may bound the side of the spring opposite of the retainer and control the displacement of the retainer relative to the keeper. The displacement of the retainer relative to the keeper is proportional to the volume of medicament dispensed. The MDS may further include a dispensing needle coupled to the retainer in constant fluidic communication to the injection needle. Once the retainer contacts the plunger, the dispensing needle pierces the plunger and is in communication with the contained medicament, and therefore, the medicament is in fluidic connection with the injection needle as well. Once released, the retainer further displaces the plunger to pump the dose out of the reservoir, through the dispensing needle, through the fluidic connection, and through the injection needle. A flexible or combination of a rigid and flexible tube may be used to interconnect the dispensing needle with the injection needle.
In certain embodiments the needle extension system (NES) can include a curved injection needle, a needle barrel for supporting the curved injection needle, a needle barrel guide for aligning the needle barrel and injection needle during administration, and a biasing member coupled to the needle barrel for rotating the needle barrel to straighten the curved injection needle to deploy the distal end of the tissue. The biasing member may be a torsion spring. In some embodiments, the axis of rotation of the needle barrel may be substantially perpendicular to a longitudinal axis of the medicament reservoir. The NES can include a needle barrel cap, or another means of fixating or securing a proximal end of the injection needle to the barrel. Additionally, the needle barrel cap may aid in securing the flexible tubing to the needle. The barrel cap and or barrel may provide a means of determining the starting and ending rotational position of the injection needle proportional to the depth of injection. In certain embodiments the needle barrel may be secured with a locking mechanism to maintain the potential energy of the torsion spring while held under load, to be released or removed at the time of injection. Furthermore, the needle barrel guide may maintain the concentricity of the needle barrel during the injection. The step of triggering the deployment of the curved injection needle through the aperture in the housing can include manually compressing the auto-injector when the housing is aligned with the cover for an injection and the rotation of the needle barrel to drive the distal end of the curved injection needle through the aperture. Advantageously, the step of retracting the distal end of the injection needle through the aperture, results from releasing the manual compression of the auto-injector. Following the injection, the displacement of the sealed housing relative to the cover may actuate an interlock, preventing further reuse of the auto-injector.
In certain embodiments the housing is protected by the cover which provides protection for the sealed housing during the storage of the auto-injector. The cover may also provide a means of bounding the sealed housing, such that the sealed housing is displaced with respect to the cover in a controlled manner. In various embodiments, a biasing member facilitates this displacement of the housing relative to the cover. The biasing member can be a spring that is integrally formed with the cover, or sealed housing, or conversely a separate component which can be disposed between the sealed housing and the cover. The cover may act or perform as the triggering mechanism for the injection. In addition to acting or performing as a protection and a triggering mechanism, the cover may also provide a stable base or platform to perform the injection. The injection contact surface of the cover may provide a tactile surface, which can facilitate the following functionalities: provide a stabilizing base for the auto-injector during injection, aid the user in establishing orientation, as well as affix the auto-injector to the injection location through the means of an adhesive layer or other attachment means. Furthermore, the bounding of the sealed housing by the cover may serve as a means of alignment during the injection. Once the sealed housing has been displaced relative to the cover to perform an injection, the cover will maintain alignment during the manual compression of the auto-injector from the armed to injection position to release the MDS and NES. The manual compression of the sealed housing while performing an injection, reduces the total height of the auto-injector and causes the sealed housing to contact with the intended triggers or protrusions on the cover. The contact with the triggers or protrusions between the cover and the sealed housing while performing an injection, due to the compression of the auto-injector by the user may release the energy stored in the biasing members to both deploy the injection needle and dispense the medicament. Upon compressing the sealed housing relative to the cover, the distal end of the injection needle will protrude past the cover, through an aperture, and dispense the desired dose. In some embodiments the cover may serve as a means of straightening the injection needle and provide a backing to support the injection needle during injection. In this manner, the length of the injection needle that is deployed into the tissue can be straight and perpendicular to the injection surface. Additionally, the cover can provide a means of guiding the sealed housing during the manual compression to aid in the alignment between the two components, to ensure proper release of the MDS and NES. Upon releasing the applied compression force, the biasing member displaces the sealed housing relative to the cover, increasing the height of the auto-injector and retracting the distal end of the injection needle to conceal the needle and protect the user from accidental needle sticks. Advantageously, the auto-injector can include an interlock to prevent a subsequent manual compression of the auto-injector, thereby rendering the auto-injector single-use. The interlock can be an abutting structure in the housing and the cover. The method mentioned above includes the steps of triggering deployment of the curved injection needle through an aperture in the housing, straightening of the injection needle, to embed the distal end of the injection needle in tissue at a desired depth, triggering piercing of the medicament reservoir with the dispensing needle to provide fluidic communication between the reservoir and the injection needle, dispensing the dose through the injection needle and, thereafter, retracting the distal end of the injection needle.
In certain embodiments the auto-injector will be presented with a safety mechanism to be removed firstly before any subsequent operations. The injection surface may be exposed to the user once the safety mechanism has been removed, further aiding in establishing an auto-injector orientation. The safety mechanism may also provide a means of preventing the sealed housing from displacing relative to the cover prior to removal, such that the injection sequence may not commence without first removing said mechanism. Alternatively, or additionally, the safety mechanism may protect the user from the injection needle if an accidental discharge were to happen or remove a protective shroud or sheath that would perform a similar functionality. Therefore, the removal of the safety mechanism may provide or facilitate the following functionalities: establish orientation of the auto-injector, provide an interlock to prevent the displacement of the sealed housing relative to the cover prior to removal, protecting the user from the injection needle, removing a conjoined or coupled component that would further protect the injection needle or user from said injection needle, as well as protecting a tactile coating or surface on the injection contact surface of the cover.
Prior to performing the injection, the injection needle in the NES and the dispensing needle in the MDS may be covered or sealed to maintain predetermined cleanliness criteria during storage of the auto-injector. Subsequently one embodiment of the auto-injector may provide the user with protection from the distal end of the injection needle by the means of a needle sheath. The needle sheath may fully encase the injection needle to prevent any contamination to the needle prior to use. In one embodiment the needle sheath is used in conjunction with another component to protect the distal portion of the injector needle, which will be embedded in the tissue, from contaminants. The needle sheath may also provide a means to prevent the needle from injuring the user if an accidental discharge were to occur. In other embodiments, the needle sheath may be fixed to the safety mechanism to aid in preventing an accidental injection. The needle sheath may provide a means of fixation to aid in removal prior to use. In one embodiment the needle sheath has a snap fit which allows the joining of the needle sheath to the safety mechanism to assist in removal prior to injection. Alternatively, the needle sheath may only serve to prevent the injection needle from being contaminated and the safety mechanism can provide the user with protection from an accidental discharge of the injection needle.
In some embodiments the auto-injector may have an internal power source to allow certain functionalities of the auto-injector during storage, during injection, and post injection. The auto-injector may provide audible instructions for performing an injection. Additionally, connectivity of the auto-injector to everyday smart devices allows for additional functionality. The connected smart device may display visual and/or auditory instructions for performing an injection. Certain embodiments may allow for the user to monitor the temperature, and location of the auto-injector. Additionally, the connected smart device may allow the user to see if other auto-injectors are nearby. Additional embodiments may allow the smart device to contact emergency responders or next of kin once an injection has been initiated. Furthermore, information about the auto-injector may be monitored remotely by the manufacturer.
In one aspect, the invention relates to a compact, high aspect ratio auto-injector for delivering a medicament dose subcutaneously or intramuscularly. The auto-injector can include a housing; a medicament dispensing system disposed within the housing and including a medicament reservoir adapted to contain the dose; and a needle extension mechanism coupled to the medicament reservoir, the needle extension mechanism including a curved injection needle adapted to be straightened during deployment of the needle to facilitate dispensing of the dose by the auto-injector.
In some embodiments of the above aspect, the housing includes a sealed housing rotatably retained in a cover. The housing can also include an interface to receive user input to facilitate a manual rotation of the housing relative to the cover from a first locked position to a second unlocked position. In some cases, the housing, the cover, a label, and/or a component directly visible to the user includes indicia indicating the locked position, the unlocked position, and an armed position. The auto-injector can also include a biasing member, such that when the housing is rotated to the unlocked position, the sealed housing is automatically displaced axially relative to the cover, increasing a height of the auto-injector. The biasing member can include a spring that integrally formed with the housing integrally formed with the cover, and disposed between the housing and the cover. In some instances, the auto-injector also includes an interlock, such that the housing cannot be rotated relative to the cover or displaced axially relative to the cover without removal of the interlock. In some cases, manual compression of the auto-injector in an armed position, reduces the height of the auto-injector, and activates a mechanism that straightens and extends a distal end of the injection needle through the housing, dispenses the dose through the injection needle, and activates an interlock. In such cases, upon release of manual compression, the biasing member can automatically displace the housing axially relatively to the cover, increasing a height of the auto-injector and retracting the distal end of the injection needle into the housing. The auto-injector can also include an interlock to prevent subsequent manual compression of the auto-injector, thereby rendering the auto-injector single-use. The interlock can include an abutting structure in the housing and the cover.
In some embodiments of the above aspect, the medicament dispensing system can further include a plunger within the medicament reservoir and forming a sealed cavity for retaining the dose. The medicament dispensing system can include a dispensing needle in fluidic communication with the injection needle. In some cases, the auto-injector can include a flexible tube interconnecting the dispensing needle with the injection needle. The medicament dispensing system can also include a spring, a retainer, and a locking mechanism such that when the locking mechanism is released, the spring displaces the retainer and forces the dispensing needle to pierce the plunger to provide fluidic communication with the dose. In some cases, the cover includes a second trigger to release the retainer and the locking mechanism. The spring (e.g., a compression spring) may further displace the plunger out of the vial and through the dispensing needle to the injection needle.
In some embodiments of the above aspect, the needle extension mechanism can also include a needle barrel for supporting the curved injection needle, a spring (e.g., a torsion spring) coupled to the barrel for rotating the barrel to uncoil the curved injection needle, and a barrel locking mechanism to prevent inadvertent rotation of the barrel. The cover can form an aperture through which a distal end of the injection needle passes during rotation of the barrel to straighten the injection needle. In some cases, release of the barrel locking mechanism permits the spring to rotate the barrel and deploy the injection needle. In some cases, the cover includes a first trigger to release the needle barrel locking mechanism. The needle extension mechanism may also include a barrel cap to secure a proximal end of the injection needle to the needle barrel.
In another aspect, the invention relates to a method of operating a compact, high aspect ratio auto-injector auto-injector for delivering a medicament dose subcutaneously or intramuscularly. The auto-injector can include a housing, a medicament dispensing system including a medicament reservoir adapted to contain the dose, and a needle extension mechanism coupled to the medicament reservoir, the needle extension mechanism including a curved injection needle. The method can include the steps of triggering deployment of a distal end of a curved injection needle through an aperture in a cover of the housing to straighten the injection needle; triggering piercing of the medicament reservoir to provide fluidic communication between the reservoir and the curved injection needle; dispensing the dose through the injection needle at a desired injection location; and thereafter, retracting the distal end of the injection needle into the auto-injector.
In some embodiments of the above aspect, the auto-injector further includes an interlock, such that the housing cannot be rotated relative to the cover or displaced axially relative to the cover without removal of the interlock. In some cases the housing can include a sealed housing rotatably retained in the cover and the method further includes manually rotating the housing relative to the cover from a first locked position to a second unlocked position, in which the sealed housing is automatically displaced axially relative to the cover to an armed position, increasing a height of the auto-injector. In some instances, the method further includes the step of determining the locked position, the unlocked position, and the armed position based on indicia on at least one of the housing, the cover, a label, and a component directly visible to the user. The method can further include adhering the cover to the desired injection location prior to triggering of the auto-injector. In some instances, the step of triggering piercing of the medicament reservoir includes manually compressing the auto-injector when the auto-injector is in the armed position, which includes activating the medicament dispensing mechanism triggering piercing of a plunger within the medicament reservoir with a distal end of a dispensing needle. The step of triggering piercing of the medicament reservoir can further include pumping the dose out of the reservoir to the injection needle.
In some embodiments of the above aspect, the step of manually compressing the auto-injector when the auto-injector is in the armed position further includes activating the needle extension mechanism triggering the deployment of the curved injection needle through the aperture in the cover. In some cases, the step of activating the needle extension mechanism including deploying the curved injection needle through the aperture in the cover further includes rotating a needle barrel to drive the distal end of the curved injection needle through the aperture. In some cases, the step of activating the needle extension mechanism includes deploying a distal end of the curved injection needle through the aperture in the cover to straighten the injection needle. The step of retracting the distal end of the injection needle into the auto-injector can result from releasing manual compression of the auto-injector. The method can also include the step of removing the auto-injector from the desired injection location after dispensing the dose. The method can also include the step of automatically interlocking the auto-injector after retraction of the needle to prevent reuse of the auto-injector and exposure of a distal end of the injection needle. The method can also include the step of disposing of the auto-injector after a single use.
In the drawings, reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis is instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
A first embodiment of an auto-injector 1 is described below. Example user interactions and inputs with the auto-injector 1 are described first, followed by example internal mechanisms and interactions of the auto-injector's 1 components.
To assist the user in performing a proper administration, the auto-injector 1 should be correctly oriented at the time of injection. The auto-injector 1 may assist orientation with labeling, tactile surfaces, material color or transparency, and/or other indicia indicating select sides. Furthermore, the auto-injector 1 may present itself with rotational aids MC-301 (see, e.g.,
In certain embodiments, the auto-injector 1 includes a safety mechanism SS-200 (see, e.g.,
In various embodiments, in addition to the internal components discussed below, the auto-injector 1 includes two main parts, a sealed housing MC-200, MC-300 rotatably retained in a cup-shaped cover MC-100 that also forms the bottom side or injection contact surface MC-121. The sealed housing MC-200, MC-300 is made from upper MC-300 and lower MC-200 halves bonded together through the means of ultrasonic welding or alternative means that provide sufficient adhesion and strength. In some embodiments the bond between the upper MC-300 and lower MC-200 halves may be such that it is a hermetic seal. Furthermore, the housing MC-200, MC-300 or one of the subsequent halves that compose the housing MC-200, MC-300 may contain tabs MC-210 (see, e.g.,
The cover MC-100, provides a protective shroud around the housing MC-200, MC-300 and supports the housing for rotation. In some embodiments, the first step in performing or initiating an injection is to remove the safety mechanism SS-200. The next step can be to place the injection contact surface MC-121 of the cover MC-100 on location. As mentioned previously, the safety mechanism SS-200 may aid the user in establishing an overall orientation of the auto-injector 1; therefore, once the injection contact surface MC-121 of the cover MC-100 is exposed from its removal it may further establish this orientation. The injection contact surface MC-121 of the cover MC-100 may provide a tactile surface which can facilitate the following functionalities: provide a stabilizing base for the auto-injector 1 during injection, aid the user in establishing orientation, and/or affix the auto-injector 1 to the injection location through the means of an adhesive or other attachment means.
In various embodiments, the cover MC-100 has a spring SS-300 (see, e.g.,
In various embodiments, when the auto-injector 1 is in a stored position MC-117 and prior to use, the auto-injector 1 is in a locked position, in which the spring SS-300 is compressed and the auto-injector 1 is constrained. To move from the locked position MC-117 to the unlocked position MC-118, the user manually rotates the housing MC-200, MC-300 by applying an activation force to the grip surfaces MC-301 (e.g., one or more depressions, protrusions, textures, coatings, or combinations, etc.) formed on the upper surface MC-300 of the housing MC-200, MC-300. The user applied force displaces the sealed housing MC-200, MC-300 relative to the cover MC-100 from the locked position MC-117 to the unlocked position MC-118. Indicia, such as alignment marks on the sidewalls of the housing MC-200, MC-300 and the cover MC-100 may indicate the different positions (MC-117, MC-118, MC-119, MC-120) of the auto-injector 1. The alignment indicia may also be indicated using labels or other auto-injector 1 components (e.g., interlock SS-100) that are observable from the exterior surfaces. Once the housing MC-200, MC-300 is rotated from the locked position MC-117 to the unlocked position MC-118, the housing MC-200, MC-300 is biased away from the cover MC-100, and the auto-injector 1 expands to the armed position MC-119. The expansion from the unlocked position MC-118 to the armed position MC-119 is performed automatically by means of the stored potential energy in the biasing member SS-300, such that the user only needs to apply an activating force to the grip surfaces MC-301 to move the auto-injector 1 from the locked position MC-117 to the unlocked position MC-118. The automatic translation and rotation of the sealed housing MC-200, MC-300 relative to the cover MC-100 may be constrained and guided by the tabs or protrusions MC-210 on the sealed housing MC-200, MC-300 and channels, slots, detents, etc. MC-103 on the cover MC-100.
In various embodiments, once the housing MC-200, MC-300 is in the armed position MC-119, the tabs or protrusions MC-210 on the housing MC-200, MC-300, and the guides on the cover wall MC-103 prevent the housing MC-200, MC-300 from being rotated back to the unlocked position MC-118 and the locked position MC-117. In the armed position MC-119, the auto-injector 1 can only be vertically displaced towards the injection position MC-120. The orientation of the auto-injector 1 is such that the top side MC-300 is facing upwards (i.e., away from the injection location), with the flat bottom surface MC-121 of the cover MC-100 against the injection site. To inject the medicament, the user applies a normal force, perpendicular to the top side MC-300 pushing the sealed housing MC-200, MC-300 into the cover MC-100 to commence the activation sequence of the auto-injector 1 and injection of the medicament. The interlock mechanism SS-100 is activated just before the auto-injector 1 reaches the injection position MC-120, such that, once the user releases pressure, the interlock SS-100 is engaged, and a second injection cannot be attempted. To ensure complete dosing, the user maintains force on the sealed housing MC-200, MC-300 to maintain the injection position MC-120 for an allotted duration, and then releases pressure on the top side MC-300 of the auto-injector 1. The release of pressure on the sealed housing MC-200, MC-300 may permit the sealed housing MC-200, MC-300 to translate relative to the cover MC-100, by means of the biasing member SS-300, thereby retracting the needle NES-700. In various embodiments, since the interlocks SS-100 were previously activated MC-109, they will engage themselves while the sealed housing MC-200, MC-300 is translating relative to the cover MC-100. After the injection has been performed and the interlock SS-100 has engaged the triggering mechanism MC-109, a force of, at minimum, twice the injection force on the sealed housing MC-200, MC-300 will not permit exposure of the needle NES-700 from the injection contact surface MC-121 of the cover MC-100 and is able to be safely disposed of.
The following list of items (1-11) describes an example activation sequence of internal components and mechanisms of the auto-injector 1 and the individual component interactions, according to various embodiments.
1.) Before initiating an injection, the user can remove a safety mechanism SS-200 before any subsequent operations. The safety mechanism SS-200 protects the injection surface MC-121 such that upon removal, the injection surface MC-121 is exposed to the user, which may further aid in establishing proper orientation. The safety mechanism SS-200 can also provide a means (e.g., interlock SS-204) of preventing the sealed housing MC-200, MC-300 from displacing relative to the cover MC-100 prior to removal, such that the injection sequence may not commence without first removing said mechanism SS-200. The safety mechanism SS-200 may also remove a needle sheath NES-100 that protects the user from the injection needle NES-700 in the event of an accidental discharge. Additionally, the sheath NES-100 in combination with a barrier NES-600 (see, e.g.,
2.) Following the removal of the safety mechanism SS-200, the user can rotate the sealed housing MC-200, MC-300 from the locked position MC-117 to the unlocked position MC-118, whereupon the sealed housing MC-200, MC-300 is automatically moved to the armed position MC-119 by a biasing member SS-300. As a result, the housing MC-200, MC-300 translates and rotates a certain constrained distance and angle. When the user applies a force and transitions the sealed housing MC-200, MC-300 from the armed position MC-119 to the injection position MC-120, the mechanisms that initiate the internal activation sequences inside the sealed housing MC-200, MC-300 are triggers or protrusions MC-106, MC-107 (see, e.g.,
3.) When the user applies a force to the top surface MC-300 of the sealed housing MC-200, MC-300 to compresses the sealed housing MC-200, MC-300 into the cover MC-100 to perform the injection, the first system to be activated may be the interlock system SS-100. Activating the interlock system SS-100 first, ensures that when the user deploys the needle extension system (NES), the interlock system SS-100 will always engage the triggering mechanism MC-109. In some embodiments, the interlocks SS-100 are activated by an interference fit between the cover MC-109 and interlock SS-101 (see, e.g.,
4.) Following the activation of the interlocks SS-100, the needle extension system (NES) can be activated. The corresponding needle extension trigger or protrusion MC-107 on the cover MC-100 breaks the plane of the sealed housing MC-200, MC-300 in a predetermined location MC-203 (see, e.g.,
5.) Once the locking mechanism NES-500 is disengaged from the needle barrel NES-200, the torsion spring NES-800 may rotate the needle barrel NES-200. The injection needle NES-700 may be fixed to and retained in the needle barrel NES-200 by a needle barrel cap NES-300 (see, e.g.,
6.) Upon rotation of the injection needle NES-700, the distal end NES-701 (see
7.) After the needle barrel locking mechanism NES-500 has been disengaged by the first trigger MC-107, further compression of the housing MC-200, MC-300 into the cover MC-100, allows the second trigger MC-106 to initiate release of the medicament dispensing system (MDS) and deliver the medicament. Similar to the NES, the medicament dispensing trigger MC-106 makes contact MDS-101 with a corresponding fixture or locking mechanism MDS-100 and releases said locking mechanism MDS-100. The trigger MC-106 makes contact at an interface portion MDS-101 (see
8.) Upon release of the MDS fixture or locking mechanism MDS-100 (see
9.) Both the needle extension and drug dispensing triggers MC-106, MC-107, which activate the NES and MDS respectively, may have complimentary contoured surfaces to their respective locking mechanisms NES-501 (see
10.) The proximal end MDS-604 (see
11.) After the injection, and the release of pressure on the sealed housing MC-200, MC-300 by the user, the sealed housing MC-200, MC-300 may automatically translate relative to the cover MC-100 due to the biasing member SS-300. In some embodiments, the biasing member is a compression spring SS-300. During the subsequent expansion of the sealed housing MC-200, MC-300 the interlocks SS-100 are removed from their cavities MC-201, MC-314 and restrict any relative motion between the sealed housing MC-200, MC-300 and cover MC-100. The interlocks SS-100 prevent the auto-injector 1 from being collapsed, thereby preventing subsequent extension of the distal end NES-701 of the injection needle NES-700 from the cover MC-100. The expansion of the sealed housing MC-200, MC-300 relative to cover MC-100 can be sufficient to fully withdraw and conceal the injection needle NES-700 in the auto-injector 1. Additionally, the channels, slots, detents, etc. MC-103 in the cover MC-100 and the molded or formed tabs or protrusions MC-210 on the sealed housing MC-200, MC-300 may prevent any rotation of either the cover MC-100 or the sealed housing MC-200, MC-300 relative to one another. The interlocks SS-100 which prevent subsequent collapse of the auto-injector 1 and the inability to rotate the cover MC-100 or housing MC-200, MC-300 allow for a safe means of disposal, preventing accidental needle exposure NES-700.
The following paragraphs describe another embodiment of the auto-injector 1, including alternate or complimentary configurations and activation sequences of the auto-injector 1.
In this embodiment, the auto-injector 1 may have an internal power source to allow certain functionalities of the auto-injector 1 during storage, during injection, and post injection. The auto-injector 1 may provide audible instructions for performing an injection. Additionally, connectivity of the auto-injector 1 to everyday smart devices allows for additional functionality. The connected smart device may display visual and/or auditory instructions for performing an injection. Certain embodiments may allow for the user to monitor the temperature, and location of the auto-injector 1. Additionally, the connected device may allow the user to see if other auto-injectors 1 are nearby. Additional embodiments may allow the smart device to contact emergency responders or next of kin once an injection has been initiated. Furthermore, information about the auto-injector 1 may be monitored remotely by the manufacturer.
Similar to the embodiment described above, this embodiments can establish an orientation of the auto-injector 1 prior to performing any injection, through proper human factor engineering principles. The auto-injector 1 may present the user with an intuitive interface, leveraging existing mental models from everyday applications. In regard to the user interface, additional or alternative embodiments will provide the same benefits with possible variations of the following aspects: geometry or element 1101 (see
In certain embodiments, the auto-injector 1 includes a safety mechanism SS-200 to be removed before any subsequent operations. The injection surface MC-121 may be exposed to the user once the safety mechanism SS-200 has been removed, further aiding in establishing the proper orientation. The safety mechanism SS-200 may also provide a means of preventing the auto-injector 1 from moving from a locked position 3102 (see
In addition to the internal components discussed below, the auto-injector 1 can include two main parts, a sealed housing 1100, 2100 (see
The following list of items (1-14) describes another example activation sequence of internal components and mechanisms of the auto-injector 1 and the individual component interactions, according to various embodiments.
1.) When the user unlocks the housing 1100, 2100 from the cover 3100, the housing 1100, 2100 automatically moves to an armed position 3103 (see
2.) In certain embodiments the internal injection needle 4102 is not aligned with the needle aperture MC-112 formed in the bottom side of the cover 3100. Therefore, if the injection needle 4102 were to inadvertently misfire, the sharp distal end of the needle NES-701 would not penetrate through the bottom side of the cover MC-121. The user may verify the positioning of the housing 1100, 2100 relative to the cover 3100 by means of indicia and labeling present on the auto-injector 1.
3.) Once the auto-injector 1 is in the unlocked position MC-118 and has transitioned to the activated position 3103, 3104, the housing 1100, 2100 can rotate freely without interference with the triggers MC-106, MC-107. Preceding the manual compression of the auto-injector 1 to facilitate an injection, the housing 1100, 2100 can be reset or returned to the locked position 3102, if accidental movement to the activated position 3103 has taken place.
4.) When the housing 1100, 2100 is compressed into the cover 3100, transitioning from the armed position 3104 to the injection position MC-120, the triggers or protrusions MC-106, MC-107 on the cover 3100 pierce the designated locations MC-203 on the housing 2100, making contact with the corresponding locks 5100, 7110, and starting the injection sequence. To allow the triggers MC-106, MC-107 to penetrate through the bottom side of the lower housing half 2100 without causing any loose breakage or compromising the structure of the triggers MC-106, MC-107. Therefore, the areas MC-203 where the triggers MC-106, MC-107 penetrate may contain perforations or other aids MC-219 (e.g., different material, etc.).
5.) When the user compresses the auto-injector 1 to perform the injection, the first trigger MC-107 pierces the lower housing half 2100 and initiates the uncoiling of the curved injection needle 4102. The uncoiling is initiated by the first trigger MC-107 disengaging the locking mechanism 5100. The first trigger MC-107 pierces the housing and contacts the uncoiling locking mechanism 5100. The uncoiling locking mechanism 5100 is disengaged by being retracted from the needle barrel 4100 (see
6.) Once the locking mechanism 5100 is disengaged from the needle barrel 4100, the torsion spring 8100 is free to rotate the needle barrel 4100 a set angle. The injection needle 4102 can be fixed to a retainer 4103 (see
7.) The distal end NES-701 of the helical injection needle 4102 passes through an aperture 2111 (see
8.) In addition, when the distal end NES-701 of the needle 4102 exits the lower housing half 2100, it may pass through and pierce a seal covering the aperture 2111. The seal acts as the barrier between the internals of the housing 1100, 2100 and the outside environment. This seal may by an adhesively adhered thin TPE membrane (e.g., Santoprene® material) that keeps the housing 1100, 2100 hermetically sealed. In addition, this type of seal allows the distal end NES-701 of the needle 4102 to pass through, without removing any material, avoiding a corking effect and partial or complete blocking of the internal lumen or bore of the needle 4102 during injection. The seal may also ensure that the sterile internal environment of the housing is maintained.
9.) Once the needle barrel 4100 uncoiling rotation is complete, the torsion spring 8100 can disengage from the needle barrel 4100. The torsion spring 8100 can disengage from the needle barrel 4100 because an uncoiling spring tensioner 4104 (see
10.) After the needle barrel locking mechanism 5100 has been disengaged by the first trigger MC-107, further compression of the housing 1100, 2100 into the cover 3100 allows the second trigger MC-106 to initiate dispensing of the medicament. A plunger 7102 associated with a reservoir or vial 7100 containing the medicament is propelled or driven forward by a compression spring 7106, which in turn dispenses the medicament. The compression spring 7106 is actuated when the second trigger MC-106 released a retainer 7101 that bounds and retains the spring 7106 in a stored position. The compression spring 7106 drives the retainer 7101 and in turn the plunger 7102 into the vial 7100, to force the medicament out of the vial 7100, through the dispensing port 7104.
11.) The proximal end NES-703 of the injection needle 4102 is fluidically connected to the dispensing port 7104 by a length of flexible hose or tubing NES-900. The timing of the uncoiling NES and medicament administration MDS is such that the injection NES and medicament MDS delivery occur within a short designated time window (e.g., a few seconds after compression).
12.) Once the auto-injector 1 has been compressed against the injection location and the injection has commenced, the individual holds the auto-injector 1 against the injection location for a designated time duration. Upon release of the pressure on the auto-injector 1, after the designated time duration, recoiling of the injection needle 4102 commences. Due to the biasing member 3101, the housing 1100, 2100 automatically expands and upon expansion releases a third locking 9100 (see
13.) While the auto-injector 1 is in the compressed configuration, the recoil torsion spring 8101 can be maintained in a wound state by another tensioner 9101 (see
14.) Once the auto-injector 1 is permitted to expand after the injection has been completed, the trigger MC-106 disengages, releasing the tensioner 9101 and allowing the recoil torsion spring 8101 to recoil the injection needle 4102 into the housing 1100, 2100. Subsequently an interlock SS-100 prevents the injection needle 4102 from being able to be deployed again.
The table below provides names and brief descriptions of the references numerals appearing in the figures:
Each numerical value presented herein is contemplated to represent an exemplary minimum value or a maximum value in a range for a corresponding parameter. Accordingly, when added to the claims, the exemplary values provide express support for claiming the range, which may lie above or below the numerical value, in accordance with the teachings herein. Every value between the minimum value and the maximum value within each numerical range presented herein (including in the chart shown in
The terms and expressions employed herein are used as terms and expressions of description and not of limitation and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof. In addition, having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. The structural features and functions of some embodiments may be arranged in various combinations and permutations, and all are considered to be within the scope of the disclosed invention. Unless otherwise necessitated, recited steps in the various methods may be performed in any order and certain steps may be performed substantially simultaneously. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive. Furthermore, the configurations described herein are intended as illustrative and in no way limiting. Similarly, although physical explanations have been provided for explanatory purposes, there is no intent to be bound by any particular theory or mechanism, or to limit the claims in accordance therewith.
Claims
1. A compact, high aspect ratio auto-injector for delivering a medicament dose subcutaneously or intramuscularly, the auto-injector comprising:
- a housing;
- a medicament dispensing system disposed within the housing and comprising a medicament reservoir adapted to contain the dose; and
- a needle extension mechanism coupled to the medicament reservoir, the needle extension mechanism comprising a curved injection needle and a needle guide adapted to Pa straighten the curved needle during deployment of the curved needle through the needle guide to facilitate dispensing of the dose by the auto-injector.
2. The auto-injector according to claim 1, wherein the housing comprises a sealed housing rotatably retained in a cover.
3. The auto-injector according to claim 2, where the housing further comprises an interface to receive user input to facilitate a manual rotation of the housing relative to the cover from a first locked position to a second unlocked position.
4. The auto-injector according to claim 3, wherein at least one of the housing, the cover, a label, and a component directly visible to the user comprises indicia indicating the locked position, the unlocked position, and an armed position.
5. The auto-injector according to claim 3, wherein the auto-injector further comprises a biasing member, such that when the housing is rotated to the unlocked position, the sealed housing is automatically displaced axially relative to the cover, increasing a height of the auto-injector.
6. The auto-injector according to claim 5, wherein the biasing member comprises a spring that is at least one of integrally formed with the housing integrally formed with the cover, and disposed between the housing and the cover.
7. The auto-injector according to claim 5, wherein the auto-injector further comprises an interlock, such that the housing cannot be rotated relative to the cover or displaced axially relative to the cover without removal of the interlock.
8. The auto-injector according to claim 5, wherein manual compression of the auto-injector in an armed position, reduces the height of the auto-injector, and activates a mechanism that straightens and extends a distal end of the injection needle through the housing, dispenses the dose through the injection needle, and activates an interlock.
9. The auto-injector according to claim 8, wherein upon release of manual compression, the biasing member automatically displaces the housing axially relatively to the cover, increasing a height of the auto-injector and retracting the distal end of the injection needle into the housing.
10. The auto-injector according to claim 9, wherein the auto-injector further comprises an interlock to prevent subsequent manual compression of the auto-injector, thereby rendering the auto-injector single-use.
11. The auto-injector according to claim 10, wherein the interlock comprises an abutting structure in the housing and the cover.
12. The auto-injector according to claim 1, wherein the medicament dispensing system further comprises a plunger within the medicament reservoir and forming a sealed cavity for retaining the dose.
13. The auto-injector according to claim 12, wherein the medicament dispensing system further comprises a dispensing needle in fluidic communication with the injection needle.
14. The auto-injector according to claim 13, further comprising a flexible tube interconnecting the dispensing needle with the injection needle.
15. The auto-injector according to claim 13, wherein the medicament dispensing system further comprises a spring, a retainer, and a locking mechanism such that when the locking mechanism is released, the spring displaces the retainer and forces the dispensing needle to pierce the plunger to provide fluidic communication with the dose.
16. The auto-injector according to claim 15, wherein the cover comprises a second trigger to release the retainer and the locking mechanism.
17. The auto-injector according to claim 15, wherein the spring further displaces the plunger to pump the dose out of the vial and through the dispensing needle to the injection needle.
18. The auto-injector according to claim 15, wherein the spring comprises a compression spring.
19. The auto-injector according to claim 1, wherein the needle extension mechanism further comprises a needle barrel for supporting the curved injection needle, a spring coupled to the barrel for rotating the barrel to uncoil the curved injection needle, and a barrel locking mechanism to prevent inadvertent rotation of the barrel.
20. The auto-injector according to claim 19, wherein the spring comprises a torsion spring.
21. The auto-injector according to claim 19, wherein the cover forms an aperture aligned with the needle guide through which a distal end of the injection needle passes during rotation of the barrel.
22. The auto-injector according to claim 21, wherein release of the barrel locking mechanism permits the spring to rotate the barrel and deploy the injection needle.
23. The auto-injector according to claim 22, wherein the cover comprises a first trigger to release the needle barrel locking mechanism.
24. The auto-injector according to claim 19, wherein the needle extension mechanism further comprises a needle barrel cap to secure a proximal end of the injection needle to the needle barrel.
25. A method of operating a compact, high aspect ratio auto-injector for delivering a medicament dose subcutaneously or intramuscularly, the auto-injector comprising a housing, a medicament dispensing system comprising a medicament reservoir adapted to contain the dose, and a needle extension mechanism coupled to the medicament reservoir, the needle extension mechanism comprising a curved injection needle and a needle guide, the method comprising the steps of:
- triggering deployment of a distal end of the curved injection needle through an aperture in a cover of the housing aligned with the needle guide to straighten the injection needle;
- triggering piercing of the medicament reservoir to provide fluidic communication between the reservoir and the injection needle;
- dispensing the dose through the injection needle at a desired injection location; and
- thereafter, retracting the distal end of the injection needle into the auto-injector.
26. The method according to claim 25, wherein the auto-injector further comprises an interlock, such that the housing cannot be rotated relative to the cover or displaced axially relative to the cover without removal of the interlock.
27. The method according to claim 25, wherein the housing comprises a sealed housing rotatably retained in the cover, the method further comprising the steps of:
- manually rotating the housing relative to the cover from a first locked position to a second unlocked position, in which the sealed housing is automatically displaced axially relative to the cover to an armed position, increasing a height of the auto-injector.
28. The method according to claim 27, further comprising the step of determining the locked position, the unlocked position, and the armed position based on indicia on at least one of the housing, the cover, a label, and a component directly visible to the user.
29. The method according to claim 27, further comprising the step of adhering the cover to the desired injection location prior to triggering of the auto-injector.
30. The method according to claim 25, wherein the step of triggering piercing of the medicament reservoir comprises manually compressing the auto-injector when the auto-injector is in the armed position, which comprises activating the medicament dispensing mechanism triggering piercing of a plunger within the medicament reservoir with a distal end of a dispensing needle.
31.-38. (canceled)
Type: Application
Filed: Feb 11, 2019
Publication Date: Jun 6, 2019
Patent Grant number: 10449296
Inventors: Elijah Kapas (Medford, MA), Matthew Kane (Somerville, MA), Conor Cullinane (Hampton, NH)
Application Number: 16/272,628