OPTICAL SYSTEM FOR A LED LUMINAIRE
Single multidie LED light homogenizer source for an automated multiparmeter luminaire.
This utility application claims priority of and through the following:
- U.S. Utility application Ser. No. 15/024,129 filed 23 Mar. 2016,
- PCT Application PCT/US15/19748 filed 10 Mar. 2015, and
- U.S. Provisional Application 61/950,403 filed 10 Mar. 2014; and
- U.S. Utility application Ser. No. 14/682,834 filed 9 Apr. 2015, and
- U.S. Provisional 62/133,956 filed 16 Mar. 2015
The present invention generally relates to an automated luminaire, specifically to an optical system in an automated LED luminaire.
BACKGROUND OF THE INVENTIONLuminaires with automated and remotely controllable functionality are well known in the entertainment and architectural lighting markets. Such products are commonly used in theatres, television studios, concerts, theme parks, night clubs and other venues. A typical product will commonly provide control over the pan and tilt functions of the luminaire allowing the operator to control the direction the luminaire is pointing and thus the position of the light beam on the stage or in the studio. Typically this position control is done via control of the luminaire's position in two orthogonal rotational axes usually referred to as pan and tilt. Many products provide control over other parameters such as the intensity, color, focus, beam size, beam shape and beam pattern. The beam pattern is often provided by a stencil or slide called a gobo which may be a steel, aluminum or etched glass pattern. The products manufactured by Robe Show Lighting such as the Robin MMX Spot are typical of the art.
The optical systems of such automated luminaires may be designed such that a very narrow output beam is produced so that the units may be used with long throws or for almost parallel light laser like effects. These optics are often called ‘Beam’ optics. To form this narrow beam with the large light sources in the prior art the output lens either needed to be very large with a large separation between the lens and the gobos or of a short focal length and much closer to the gobos
In prior art luminaires lamps with extremely small light sources have been developed. These often use a very short arc gap, of the order of 1 mm, between two electrodes as the light producing means. These lamps may be used for producing a very narrow beam as their source etendue is low, and the size of the lenses and optical systems to collimate the light from such a small source can be substantially reduced. However, the short arc and small light source coupled with the short focal length, and thus large light beam angles, of the reflector also tend to produce substantial amounts of unwanted and objectionable spill light which can escape between gobos or around the dimming shutters. Further, arc lamps require very high voltages in order to ignite the lamp, and can produce dangerous amounts of heat and UV energy, which needs to be filtered out. In recent times LED emitters have become available that are small enough and powerful enough to be used in this kind of luminaire. However, they need improvements to their design to improve the homogenizing and collimation of their optical systems.
There is an increased need for an improved automated luminaire utilizing an LED light source capable of producing both very narrow output beams and of projecting images.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numerals indicate like features and wherein:
Preferred embodiments of the present invention are illustrated in the FIGUREs, like numerals being used to refer to like and corresponding parts of the various drawings.
The present invention generally relates to an automated luminaire, specifically to an optical system in an automated LED luminaire.
Light integrator 30 is a device utilizing internal reflection so as to homogenize and constrain the light from LED light source 24. Light integrator 30 may be a hollow tube with a reflective inner surface such that light impinging into the entry port may be reflected multiple times along the tube before leaving at the exit port. As the light is reflected down the tube in different directions from LED light source 24 the light beams will mix forming a composite beam where different colors of light are homogenized and an evenly colored beam is emitted. Light integrator 30 may be a square tube, a hexagonal tube, a circular tube, an octagonal tube or a tube of any cross section known in the art. In a further embodiment light integrator 30 may be a solid rod constructed of glass, transparent plastic or other optically transparent material where the reflection of the incident light beam within the rod is due to total internal reflection (TIR) from the interface between the material of the rod and the surrounding air. Such integrating rods are well known in the art from their use in video projection illumination systems and may be circular or other polygonal shape in cross section.
The homogenized light exits 42 from the light integrator 30 and may then be further controlled and directed by optical system 44 and 46. Optical system 44 and 46 may be condensing lenses designed to produce an even illumination for downstream optics, or may be lenses that are adjustable to control the beam of the resultant light.
Light integrator 32 is a device utilizing internal reflection so as to homogenize and constrain the light from LED light source 24. Light integrator 32 may be a hollow tube with a reflective inner surface such that light impinging into the entry port may be reflected multiple times along the tube before leaving at the exit port. As the light is reflected down the tube in different directions from LED light source 24 the light beams will mix forming a composite beam where different colors of light are homogenized and an evenly colored beam is emitted. Light integrator 32 may be a square tube, a hexagonal tube, a circular tube, an octagonal tube or a tube of any cross section known in the art. In a further embodiment light integrator 32 may be a solid rod constructed of glass, transparent plastic or other optically transparent material where the reflection of the incident light beam within the rod is due to total internal reflection (TIR) from the interface between the material of the rod and the surrounding air. Such integrating rods are well known in the art from their use in video projection illumination systems and may be circular or other polygonal shape in cross section. Light integrator 32 may be tapered as shown here or may have parallel sides. Entry port 41 of light integrator 32 may be of a first cross section and exit port 43 may be of a second cross section. Entry cross section 41 and exit cross section 43 may be different shapes. In one embodiment entry cross section 41 is square and exit cross section 43 is octagonal. However entry cross section 41 and exit cross section 43 may be of any shape.
The homogenized light exits from the light integrator 32 and may then be further controlled and directed by optical system 44 and 46. Optical system 44 and 46 may be condensing lenses designed to produce an even illumination for downstream optics, or may be lenses that are adjustable to control the beam of the resultant light.
Static gobo system 50, rotating gobo system 48, and prism system may be driven by motors 52 that may be stepper motors, servo motors. Linear actuators, or other motor systems as well known in the art. The luminaire may contain any number or combination of these optical effect systems as well as others such as framing systems, and diffusion systems.
Lenses 56, 58, and 60 may be chosen such that the output light beam from the automated luminaire is adjustable for both zoom and focus by moving any or all of lenses 56, 58, and 60 along the optical axis of the luminaire. In one embodiment of the invention the lenses and system are designed such that the beam is close to parallel and variable from 1° to 10° in angle. In the 10° position the luminaire will be suitable for gobo projection, while in the 1° position the luminaire will be suitable to be a beam effect projector.
The optical system 100 in
Head 72 is fitted with an optical system as described and illustrated in
The light exiting integrator 144 will be well homogenized with all the colors of LED 142 mixed together into a single colored light beam. In various embodiments of the invention each LED emitter 142 may comprise a single LED die of a single color or a group of LED dies of the same or differing colors. For example in one embodiment LED emitter 142 may comprise one each of a Red, Green, Blue and White LED die. In further embodiments LED emitter 142 may comprise a single LED chip or package while in yet further embodiments LED emitter 142 may comprise multiple LED chips or packages either under a single primary optic or each package with its own primary optic. In some embodiments these LED die(s) may be paired with optical lens element(s) as part of the LED light-emitting module. In a further embodiment LED emitter 142 may comprise more than four colors of LEDs. For example seven colors may be used, one each of a Red, Green, Blue, White, Amber, Cyan, and Deep Blue/UV LED die.
Integrator 144 may advantageously have an aspect ratio where its length is much greater than its diameter. The greater the ratio between length and diameter, the better the resultant mixing and homogenization will be. The precise length is dependent on the placement of LED color dies in the LED array served by the Integrator 144 to get Homogenization. One configuration may require a greater ratio of length to diameter to another and different configurations may require different input cross-sectional areas. and thus more length to get well mixed output. the shape of the cross sections and changes in the cross section also effect the length of integrator required. Integrator 144 may be enclosed in a tube or sleeve 140 that provides mechanical protection against damage, scratches, and dust.
In further embodiments the light integrator 144, whether solid or hollow, and with any number of sides, may have entry ports and exit ports that differ in shape. For example, a square entry port and an octagonal exit port 146. Further light integrator 144 may have sides which are tapered so that the entrance aperture is smaller than the exit aperture. The advantage of such a structure is that the divergence angle of light exiting the integrator 144 at exit port 146 will be smaller than the divergence angle for light entering the integrator 144. The combination of a smaller divergence angle from a larger aperture serves to conserve the etendue of the system. Thus a tapered integrator 144 may provide similar functionality to a condensing optical system.
Light exiting integrator 144 is directed towards and through first lens 136 and second lens 138 that serve to further control the angle of the emitted light beam. First lens 136 and second lens 138 may be moved as a pair towards and away from light integrator 144 as described above in the direction along the optical axis of the system as shown by arrow 132. In the position shown in
In further embodiments lenses 136 and 138 may move separately and independently to provide varying beam angle or focus adjustment of the light beam.
Lenses 136 and 138 may be meniscus lenses, plano convex lenses, bi-convex lenses, holographic lenses, or other lenses as well known in the art. Lenses 136 and 138 may be manufactured from glass, acrylic, polycarbonate, or any other material known to be used for optical lenses. Lenses 136 and 138 may be single elements or may each be lenses comprising a plurality of elements. Such elements may be cemented together or air spaced as is well known in the art. Lenses 136 and 138 may be constructed so as to form an achromatic combination. Such a configuration may be desirable such that the differing wavelengths of light from the associated LED light emitting module do not diverge or converge from each other and remain mixed. The design of such achromatic lenses or lens assemblies is well known in the art.
The light exiting integrator 144 will be well homogenized with all the colors of LED 142 mixed together into a single colored light beam. In various embodiments of the invention each LED emitter 142 may comprise a single LED die of a single color or a group of LED dies of the same or differing colors. For example in one embodiment LED emitter 142 may comprise one each of a Red, Green, Blue and White LED die or one each of a Red, Green, Blue and Amber LED die. In further embodiments LED emitter 142 may comprise a single LED chip or package while in yet further embodiments LED emitter 142 may comprise multiple LED chips or packages either under a single primary optic or each package with its own primary optic. In some embodiments these LED die(s) may be paired with optical lens element(s) as part of the LED light-emitting module. In a further embodiment LED emitter 142 may comprise more than four colors of LEDs. For example seven colors may be used, one each of a Red, Green, Blue, White, Amber, Cyan, and Deep Blue/UV LED die.
Integrator 144 may advantageously have an aspect ratio where its length is much greater than its diameter. The greater the ratio between length and diameter, the better the resultant mixing and homogenization will be. Integrator 144 may be enclosed in a tube or sleeve 140 that provides mechanical protection against damage, scratches, and dust.
In further embodiments the light integrator 144, whether solid or hollow, and with any number of sides, may have entry ports and exit ports that differ in shape. For example, a square entry port and an octagonal exit port 146. Further light integrator 144 may have sides which are tapered so that the entrance aperture is smaller than the exit aperture. The advantage of such a structure is that the divergence angle of light exiting the integrator 144 at exit port 146 will be smaller than the divergence angle for light entering the integrator 144. The combination of a smaller divergence angle from a larger aperture serves to conserve the etendue of the system. Thus a tapered integrator 144 may provide similar functionality to a condensing optical system.
Light exiting integrator 144 is directed towards and through effect 162 and then through first lens 136 and second lens 138 that serve to further control the angle of the emitted light beam. First lens 136 and second lens 138 may be moved as a pair towards and away from light integrator 144 as described above in the direction along the optical axis of the system as shown by arrow 132. In the position shown in
The introduction of effect 162 may limit how close first lens 136 and second lens 138 may move towards integrator 144. This, in turn, may limit the maximum output angle of the optical system when effect 162 is being utilized.
In further embodiments lenses 136 and 138 may move separately and independently to provide varying beam angle or focus adjustment of the light beam.
Lenses 136 and 138 may be meniscus lenses, plano convex lenses, bi-convex lenses, holographic lenses, or other lenses as well known in the art. Lenses 136 and 138 may be manufactured from glass, acrylic, polycarbonate, or any other material known to be used for optical lenses. Lenses 136 and 138 may be single elements or may each be lenses comprising a plurality of elements. Such elements may be cemented together or air spaced as is well known in the art. Lenses 136 and 138 may be constructed so as to form an achromatic combination. Such a configuration may be desirable such that the differing wavelengths of light from the associated LED light emitting module do not diverge or converge from each other and remain mixed. The design of such achromatic lenses or lens assemblies is well known in the art.
Effect 162 may be a prism, effects glass, gobo, gobo wheel, color, frost, iris or any other optical effect as well known in the art. Effect 162 may comprise a gobo wheel, all or any of which may be individually or cooperatively controlled. In further embodiments the gobo wheel may not be a complete circle, but may be a portion of a disc, or a flag so as to save space and provide a more limited number of gobo options. The gobo patterns may be of any shape and may include colored images or transparencies. In yet further embodiments individual gobo patterns may be further rotated about their axes by supplementary motors in order to provide a moving rotating image. Such rotating gobo wheels are well known in the art.
In further embodiments lenses 136 and 138 may move separately and independently to provide varying beam angle or focus adjustment of the light beam.
Lenses 136 and 138 may be meniscus lenses, plano convex lenses, bi-convex lenses, holographic lenses, or other lenses as well known in the art. Lenses 136 and 138 may be manufactured from glass, acrylic, polycarbonate, or any other material known to be used for optical lenses. Lenses 136 and 138 may be single elements or may each be lenses comprising a plurality of elements. Such elements may be cemented together or air spaced as is well known in the art. Lenses 136 and 138 may be constructed so as to form an achromatic combination. Such a configuration may be desirable such that the differing wavelengths of light from the associated LED light emitting module do not diverge or converge from each other and remain mixed. The design of such achromatic lenses or lens assemblies is well known in the art.
Static gobo system 50, rotating gobo system 48, and prism system may be driven by motors 52 that may be stepper motors, servo motors. Linear actuators, or other motor systems as well known in the art. The luminaire may contain any number or combination of these optical effect systems as well as others such as framing systems, and diffusion systems.
Lenses 56, 58, and 60 may be chosen such that the output light beam from the automated luminaire is adjustable for both zoom and focus by moving any or all of lenses 56, 58, and 60 along the optical axis of the luminaire. Lenses 56, 58 and 60 may be comprised of meniscus lenses, plano convex lenses, bi-convex lenses, holographic lenses, or other lenses as well known in the art. Lenses 56, 58 and 60 may be manufactured from glass, acrylic, polycarbonate, or any other material known to be used for optical lenses. Lenses 56, 58 and 60 may be single elements or may each be lenses comprising a plurality of elements. Such elements may be cemented together or air spaced as is well known in the art. Lenses 56, 58 and 60 may be constructed so as to form an achromatic combination. Such a configuration may be desirable such that the differing wavelengths of light from the associated LED light emitting module do not diverge or converge from each other and remain mixed. The design of such achromatic lenses or lens assemblies is well known in the art.
In one embodiment of the invention the lenses and system are designed such that the beam is close to parallel and variable from 1° to 10° in angle. In the 10° position the luminaire will be suitable for gobo projection, while in the 1° position the luminaire will be suitable to be a beam effect projector.
The optical system 200 in
While the disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as disclosed herein. The disclosure has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the disclosure.
Claims
1. An automated mulitparameter luminaire with a light engine comprising:
- a single multiple LED light source mounted in a collimator directing light to an elongated TIR homogenizer
- a light condenser transforming the homogenized beam from the homogenizer into a focused light beam
- gobo and prism, or gobo, or prism light modulators; and
- a zoom lens system to alter the focus or beam angle or zoom of the light beam.
Type: Application
Filed: Mar 23, 2016
Publication Date: Jun 27, 2019
Patent Grant number: 10408402
Inventors: Pavel JURIK (Prostredni Becva), Josef VALCHAR (Prostredni Becva)
Application Number: 15/078,805