SYSTEM AND METHOD FOR ENABLING REMOVAL OF A SECURITY TAG DURING A SELF-CHECKOUT PROCESS
A computer-implemented method for facilitating the removal of a security tag from an article includes the step of generating a visual template indicating a preferred position of a security tag and an article identification element within a viewing screen of an imaging device. With the imaging device, capturing at least one image of the security tag, the article identification element and the article, and processing the at least one image to determine whether or not the security tag and the article identification element are attached to the same article. Upon determining that the security tag and the article identification element are attached to the same article, storing in a database an identifier of the security tag, an identifier of the article, and an indication of their association with the same article.
None
FIELD OF INVENTIONThe present disclosure relates to systems and methods for electronically enabling removal of security tags on articles.
BACKGROUNDElectronic article surveillance (EAS) systems are often used to minimize theft. One common feature of these electronic systems aimed at minimizing theft is to attach a security tag to an article in an effort to detect an unauthorized removal thereof from a given area. In some applications, an alarm is generated in response to such electronic detection. For example, a security tag may be attached to an article offered for sale by a retail store, and an interrogating signal transmitted proximate the entrance and/or exit of the store. The interrogation signal causes an element (e.g. a magnetic element) of the security tag to produce a detectable response if an attempt is made to remove the article without first detaching the security tag therefrom. The EAS system is configured to detect this response, and generate an alarm (e.g., visual and or audible signal) in response thereto. In this way, the security tag must be detached from the article in order to prevent the alarm from being generated.
Various implementations of technological processes for security tags exist. For example, a security tag may take the form of a housing (e.g. a plastic body) which includes a tack or pin-like attachment means. A portion of the pin may be inserted through an article to be protected and engage with an aperture formed in the housing (e.g., via a clamping mechanism). A security tag may be removed or detached from the article using an external detachment means, such as a hand-held tool or counter-mounted device. Once the pin is released from the tag housing, the pin and tag housing may be removed from the article. Likewise, so called “smart security tags”, as referred to herein, include tags having a remotely-controllable internal locking mechanism as well as a means to receive one or more wireless control signals. A receiver and processing component arranged within the tag may be configured to generate a control signal for activating/deactivating a locking mechanism within the tag in response to the receipt of a valid code or PIN number associated with the particular security tag. In other embodiments, a security tag may not be fixedly attached to the article, but rather indirectly attached (e.g. via an adhesive) to another tag or label of the article. Rather than being physically removed, these passive tags may merely be deactivated by an EAS system during a checkout process such that an article and tag may be carried out of a retail store without triggering an alarm or alert. Security tags may also contain a radio frequency identification (RFID) element. The RFID element can be read by an RFID scanning device to obtain data therefrom.
While existing technological solutions of EAS systems and associated security tags help reduce theft, their implementation often causes undesirable delay. Current technological implementation requires customers to wait in lines to complete purchases, as the security tag must be removed from the purchased article so as not to trigger an EAS security alarm when leaving the store. A significant technical problem in the field involves how to enable a customer or user to remove a security tag in a self-checkout environment. Technical solutions that utilize smart security tags lack the ability to ensure that customers are only permitted to remove a particular security tag associated with or attached to an article or product that has been purchased (paid for), rather than that of a different (e.g. more expensive) article. This and other fraud-prevention tasks are typically carried manually by an agent (e.g. a retail associate/cashier) at the point of sale. Additional problems include the laborious and time consuming process of a store employee associating a particular security tag with a particular article prior to the article's placement on the sales floor. One current solution includes manually generating a database (e.g., at the time of tag attachment) identifying that a particular security tag is attached to a particular article or item, such that upon the later purchase of an article, a system having access to the database may indicate which security tag is permitted to be removed.
Accordingly, improvements to existing technological processes and systems for enabling the deactivation and/or detachment of security tags while improving anti-fraud provisions and minimizing labor and expense are desired.
SUMMARYIn one embodiment of the present disclosure, a computer-implemented method for facilitating the removal of a security tag from an article is provided. The method includes the step of generating a visual template indicating a preferred position of a security tag and an article identification element within a viewing screen of an imaging device. With the imaging device, at least one image of the security tag, the article identification element and the article is captured. The at least one image is subsequently analyzed for determining if the security tag and the article identification element are attached to the same article. Upon a determination that the security tag and the article identification element are attached to the same article, an identifier of the security tag, an identifier of the article, and an indication of their association with the same article is stored in a database.
In one embodiment, the step of analyzing the at least one image for determining if the security tag and the article identification element are attached to the same article includes the steps of identifying the security tag and the article identification element appearing in the at least one image, and determining one or more characteristics associated with the background of each image. The characteristics are then compared to one another for determining whether the security tag and the article identification element are attached to the same article. In an embodiment, upon determining that payment has been received for the article associated with the article identification element, the method further includes identifying a security tag associated with the purchased article, and generating and transmitting a control signal for enabling at least one of the detachment and deactivation of the identified security tag from the article.
In one embodiment, the step of generating a visual template indicating a preferred position of a security tag and an article identification element within a viewing screen of an imaging device comprises the steps of generating a first window indicating an area in which to position the security tag, and generating a second window indicating an area in which to position the article identification element.
In another embodiment of the present disclosure, a system for enabling the removal of a security tag from an article during a self-checkout process is provided. The system includes an imaging device configured to capture at least one image of a security tag, an article identification element or tag and an article, and a computer processor operatively connected to the imaging device. The processor is configured to analyze the at least one image for determining if the security tag and the article identification element are attached to the same article, and store in a database, upon a determination that the security tag and the article identification element are attached to the same article, an identifier of the security tag, an identifier of the article, and an indication of their association with the same article.
In still another embodiment, a mobile computing device is provided which includes an image capturing device, a wireless communication device and at least one processor operatively connected to the image capturing device and the wireless communication device. The processor is configured to utilize the image capturing device to obtain at least one image of a security tag, an article identification element and an article, and determine whether payment has been received for the purchase of the article associated with the article identification element. Upon confirmation of payment, the processor is further configured to identify a security tag associated with the purchased article, and generate and transmit a control signal for enabling at least one of the detachment and deactivation of the identified security tag from the article.
It is to be understood that the figures and descriptions of the present disclosure have been simplified to illustrate elements that are relevant for a clear understanding of the embodiments described herein, while eliminating, for purposes of clarity, many other elements found in retail sales systems, and more generally, computing systems and wireless communication devices, such as mobile telephones or smartphones communicating with one or more remote computers or servers via a local, internet, cellular or satellite networks, as well as computer systems or mobile telephones running native or web-based applications or other software. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein. The disclosure herein is directed to all such variations and modifications known to those skilled in the art.
As used herein, the term “processor” broadly refers to and is not limited to a single- or multi-core general purpose processor, a special purpose processor, a conventional processor, a Graphics Processing Unit (GPU), an Applications Processing Unit (APU), a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, one or more Application Specific Integrated Circuits (ASICs), one or more Field Programmable Gate Array (FPGA) circuits, any other type of integrated circuit (IC), a system-on-a-chip (SOC), and/or a state machine.
The term “security tag”, as used herein broadly refers to a device (such as a structure in a protective housing of a plastic or other radiofrequency transparent material) that is attached to an article for purchase. Security tags are regularly found in retail operations such as clothing and apparel stores. If a customer exits the store with an active security tag still attached to an article, a sensor (e.g. a magnetic or RFID sensor) positioned proximal the entrance/exit door will sense the encroaching tag and activate an alarm. Security tags generally do not contain any information about the associated articles, as they are desired to be interchangeable across multiple products. The term “paper tag”, as used herein, broadly refers to an identifying tag or other article identification element attached to an article for sale and including information thereabout, such as description and price, as well an identifier or bar code such as a universal product code (UPC) or electronic product code (EPC) as understood in the industry. The term “barcode”, as used herein, refers to a pattern or symbol that contains embedded data. Barcodes may be implemented as single or multi-dimensional barcodes. Barcodes and barcode reading applications and hardware are known in the art and therefore will not be described in detail herein.
Embodiments of the present disclosure include a user-accessible application, such as a software application running on a mobile phone (e.g., causing an application processing unit (APU) of the mobile phone to execute instructions) or an application running on a computer or process server arranged in a self-checkout area of a retail store. The application may also be integrated into, or work in conjunction with, a retail store's own digital or mobile checkout/payment application. During a self-checkout purchasing process of an article, the application is configured to access an imaging device (e.g., a mobile phone camera), and provide a user, such as by generating text and/or graphic image data on a screen display of a mobile phone, or by providing audio output, with instructions on how to scan or capture one or more images of a paper tag and a security tag attached to the article to be purchased (or a purchased article). In order to reduce fraud, the application utilizes image analysis or processing software (or transmits the image(s) to an external computing system implementing the same) for confirming that the security tag and the paper tag are indeed attached to the same article. Once the application confirms that the tags are attached to the same article, the application associates or matches the paper tag with the security tag. This may be achieved by associating a barcode or other individual identifier arranged on or associated with the security tag, with a barcode or product code arranged on the paper tag. This association or relationship may be saved in a data store for current or future reference.
If the article has yet to be purchased, a customer proceeds to pay for the article (e.g., via the mobile checkout application or at a self-checkout terminal). Upon determination by the application that payment for the article has been received, such as by receipt of data from a mobile checkout application or self-checkout terminal indicative of receipt of payment for the article, or accessing records in a data storage device storing records indicative of payment, the application is configured to enable the removal of only the specific security tag associated with the purchased article. This may be achieved by sending a wireless control signal (which may contain a unique PIN or other code for unlocking the tag) to a smart security tag attached to the article. The smart security tag then receives the PIN and releases itself from the article. In another embodiment, the self-checkout application is operatively connected to, or in wireless communication with, a discrete physical security tag removal device. The security tag removal device is associated with a scanner for reading a barcode or identifier on a security tag. In this way, by scanning the security tag identifier, the system may determine that the scanned barcode matches or is associated with an article that has been identified as properly purchased. Upon such a determination, the removal device is enabled and the customer may manually remove the security tag using the device.
Referring generally to
Security tag 108 forms part of a security system 110, such as an EAS system, implemented within retail store 100. Security system 110 includes hardware and software to monitor, for example, active security tags and alert store personnel if a security tag (e.g., security tag 108) has been removed from a perimeter or location (e.g. the bounds of the retail store floor) defined by security system 110 without authorization, by way of example only. In embodiments which do not utilize a remotely-controllable smart security tag, as described above, discrete security tag detachment or deactivation devices (which may include optical scanners or image capturing devices) may be provided, enabling a customer to manually remove a security tag after successful completion of a self-checkout process.
In the self-checkout environment, a customer may purchase an article (e.g., article 102) using a software-based retail sales application running on their personal computing or communication device 120. Personal computing device 120 may comprise, by way of example only, a cellular or smart phone, a portable computer, tablet or the like. While embodiments of the present disclosure will be described in the context of a customer utilizing a smart phone for performing embodiments of the present disclosure, it should be understood that a public computer and associated interface located within the retail store (e.g., a computer terminal installed in a self-checkout area) may replace the role of personal computing device 120.
Personal computing device 120 includes device input/output interface 224 configured to receive and output data and information to and/or from personal computing device 120 from and/or to peripheral devices and networks operatively coupled to the system. Such networks may include exemplary internet network 130, which manages communications among, for example, external computer systems, such as a retail computer system 204 facilitating retail transactions and associated databases 208. The I/O interface 224 may include a query interface configured to accept and parse requests from personal computing device 120 and any external systems, and pass those requests to CPU 222 for processing using instructions of device communication management program 236. Input/output interface 224 may include one or more radio frequency communication devices or near-field communication (NFC) facilitating communications as described herein. Protocols implemented by these devices may include wireless network protocols (IEEE, Bluetooth, NFC, etc.), and cellular communication protocols.
Program memory 230 may include one or more of any form of data storage device including but not limited to electronic, magnetic, optical recording mechanisms, combinations thereof or any other form of memory device capable of storing data. The CPU 222 may be in the form of one or more computer processors, or may be in such forms as a distributed computing system, a centralized computing system, a network server with communication modules and other processors, or nearly any other automated information processing system capable of executing instructions stored in program memory.
Each or any combination of the modules and components shown in
Referring again to
Generally, retail transactions may include communicating information regarding an article intended to be purchased from mobile or personal computing device 120 (e.g., communicating a barcode captured by the devices camera) to retail computer system 204 via network 130. It should be understood that network 130 is merely representative, and may comprise one or more interconnected communications networks (e.g., a LAN and/or a wireless cellular accessing the internet). The retail transactions enabled by the illustrated system may further include the use of one of any number of payment systems in order to facilitate the remote payment and confirmation thereof of the article in question (i.e., the article associated with the captured barcode). Payments systems include, but are not limited to credit or debit card payment systems, automatic clearing house (ACH) payment systems, or any other suitable form of electronic payment.
Referring now to
After obtaining identifying information regarding the article to be purchased, data exchanges may be performed between the application and a retail computer system (see
After an article has been successfully purchased, a security tag detaching/deactivation process can be initiated, wherein the customer detaches 308 a security tag from the article. In one instance, the customer may initiate the security tag detaching/deactivation process after being prompted by the application on their mobile device. The mobile device may be used to capture security tag identification information, such as via a barcode or other identifier arranged on the security tag, or via an NFC data exchange between the mobile device and the security tag. This identification may be used to facilitate the unlocking and detachment, or deactivation of the security tag. For example, in the case of a smart security tag, the application may access a database (e.g. database 208 of
As set forth above, the self-checkout process of
Embodiments of the present disclosure remedy the above-described technical problem by requiring the customer to perform a paper tag and security tag association operation aided by processing operations in accordance with embodiments of the present disclosure and performed at least in part by their mobile device (as well as a retail computer system and/or a computer system associated with the stores security system). Referring generally to
As will be set forth in greater detail with respect to
Once the application confirms (or receives said confirmation from a remote computing system) that the tags are attached to the same article, the customer may perform 408 purchase operations via, for example, the above-described payment operations. After the payment receives data indicative of payment, the security tag may be automatically unlocked by the application via wireless transmission of an unlock code to the security tag. Once unlocked, a user may remove 412 the security tag from the article. Likewise, in the case of a passive (e.g., non-permanently affixed) security tag, the application may facilitate its deactivation. In embodiments which do not utilize a smart security tag with an on-board controllable locking mechanism or passive tag, a user may scan 410 the security tag with an optical scanning element associated with an external security tag removal device. The device or control system associated therewith may access one or more databases to confirm that the scanned security tag has been associated with an article or item that has been successfully paid for. Upon confirmation of the same, the device will enable itself, allowing the user to manually detach the security tag.
Referring now to
After obtaining identifying information regarding the article to be purchased, data exchanges 506 may be performed between the application and a retail computer system (see
The application may prompt 508 a customer to begin tag association operations in accordance with embodiments of the present disclosure. The application is configured to launch 510 a camera of the mobile device, and generate a visual template or tag positioning aid on a screen of the device (i.e., generate a visual template on the view finding screen associated with the running camera application). As described herein in reference to
If the result of the image analyses is a determination that the tags are not attached to the same article, or if the association cannot be determined with adequate confidence, the application may repeat 515 the operation, again prompting 508 the customer to begin the tag association process (or cancel the transaction entirely). If the image analysis results in a determination that the paper tag and security tag are attached to the same article, the application is configured to store 516 (e.g., in database(s) 208) data indicating the association between the two tags. This association may comprise storing an identifier of the paper tag (e.g., its barcode) with an identifier of the security tag (e.g., its barcode) confirmed to be associated therewith. Upon confirmation of a successful pairing of the security tag and the paper tag, the application may prompt 518 the customer to begin payment operations, and upon completion thereof, and receipt of data indicative of payment, initiate 520 security tag detachment or deactivation operations for the tag associated with the paper tag/purchased article as described in detail above.
In one exemplary image analysis process, image segmentation and object recognition processing techniques may be utilized. More specifically, the image processing software may be configured to analyze the image in order to identify or confirm the presence and location of paper tag 604 within window 620 and security tag 608 within window 630. Once identified, the application may analyze portions of the image immediately surrounding, or more generally in the background of, each of the identified tags. The application may compare background characteristics surrounding each tag, and determine if the backgrounds surrounding each tag sufficiently match so as to indicate that the tags share a common background, and thus are attached to the same article. In alternate embodiments, or in addition to the above-described embodiments, the image processing may include processing configured to identify the article itself as a third discrete object, and determine if the identified tags are in sufficient proximity to, or lie within the bounds of, the article without any discontinuities appearing therebetween. It should be understood, however, that numerous other image processing techniques and operations may be implemented without departing from the scope of the present disclosure. The detailed description of these and other useful image analysis techniques are known, and not included herein for the purpose of brevity.
In a further embodiment, the image processing software may be further configured to analyze paper tag 604 and security tag 608 and capture their respective barcodes or identifiers 606,609. In this way, separate scanning or image capturing operations (e.g., steps 404 and 504 of
Referring now to
The process flow may then proceed to comparing 750 the at least a first characteristic and the at least a second characteristic. By way of example, the characteristics may be histograms of pixel characteristics, such as color, of a portion of the image, and the histograms may be compared. The process flow then proceeds to, referring to
While the above describes an embodiment wherein a single image is captured and processed, further advantageous embodiments of the present disclosure include capturing multiple images or video(s), and performing similar image processing techniques thereon in order to confirm a security tag's association with an article and/or paper tag. More specifically, in one embodiment, a camera or imaging device may be used to capture a video, wherein the security tag, the paper tag or article identification element and the article each appear within frames of the video. The video may be analyzed to recognize, for example, continuity of the background between frames which contain the article, the security tag and the paper tag. Likewise, in other embodiments, an application may prompt a user guide the camera from a location of one tag, to the location of the other tag, wherein the camera may capture a plurality of images as it is moved (such that each of the paper tag and the security tag appear in at least one of the images of the plurality of images). Image processing software, and in particular, panoramic software, may be used to combine (or “stitch”) overlapping fields of the images to generate a panoramic image. This panoramic image may be analyzed in accordance with the above-described embodiments, for example, to confirm an association between a paper tag and a security tag captured therein.
The flow charts described herein do not imply a fixed order to the steps, and embodiments of the present invention may be practiced in any order that is practicable. In embodiments, one or more steps of the methods may be omitted, and one or more additional steps interpolated between described steps. Note that any of the methods described herein may be performed by hardware, software, or any combination of these approaches. For example, a non-transitory computer-readable storage medium may store thereon instructions that when executed by a processor result in performance according to any of the embodiments described herein. In embodiments, each of the steps of the methods may be performed by a single computer processor or CPU, or performance of the steps may be distributed among two or more computer processors or CPU's of two or more computer systems. In embodiments, each of the steps of the methods described with reference to
The embodiments described herein are solely for the purpose of illustration. Those in the art will recognize that other embodiments may be practiced with modifications and alterations limited only by the claims.
While the foregoing invention has been described with reference to the above-described embodiment, various modifications and changes can be made without departing from the spirit of the invention. Accordingly, all such modifications and changes are considered to be within the scope of the appended claims. Accordingly, the specification and the drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof, show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations of variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
Claims
1. A computer-implemented method for enabling the removal of a security tag from an article during a self-checkout process comprising:
- with an imaging device, capturing at least one image of a security tag, an article identification element and an article;
- analyzing, by at least one computer processor, the at least one image for determining if the security tag and the article identification element are attached to the same article;
- upon a determination that the security tag and the article identification element are attached to the same article, storing in a database an identifier of the security tag, an identifier of the article, and an indication of their association with the same article.
2. The method of claim 1, wherein the step of analyzing the at least one image for determining if the security tag and the article identification element are attached to the same article comprises the steps of:
- identifying the security tag appearing in the at least one image;
- identifying the article identification element appearing in the at least one image;
- determining at least one first characteristic associated with a background surrounding the identified security tag;
- determining at least one second characteristic associated with a background surrounding the identified article identification element; and comparing the at least one first characteristic and the at least one second characteristic for determining if the security tag and the article identification element are attached to the same article.
3. The method of claim 1, further comprising the step of generating a visual template indicating a preferred position of the security tag and the article identification element within a viewing screen of the imaging device.
4. The method of claim 3, wherein the step of generating a visual template indicating a preferred position of a security tag and an article identification element within a viewing screen of an imaging device comprises the steps of:
- generating a first window indicating an area in which to position the security tag; and
- generating a second window indicating an area in which to position the article identification element.
5. The method of claim 1, further comprising the steps of:
- determining whether payment has been received for the purchase of the article associated with the article identification element;
- responsive to determining that payment has been received, identifying a security tag associated with the purchased article; and
- generating and transmitting a control signal for enabling at least one of the detachment and deactivation of the identified security tag from the article.
6. The method of claim 1, wherein the step of capturing at least one image of the security tag, the article identification element and the article comprises capturing a video, wherein the security tag, the article identification element and the article each appear within the video.
7. The method of claim 1, wherein the step of capturing at least one image of the security tag, the article identification element and the article comprises capturing a plurality of images, wherein each of the security tag, the article identification element and the article appear in at least one of the images of the plurality of images.
8. The method of claim 7, wherein the plurality of images have overlapping fields of view, and wherein the step of analyzing the at least one image further comprises generating a panoramic image by combining the plurality of images together.
9. A system for enabling the removal of a security tag from an article during a self-checkout process comprising:
- an imaging device configured to capture at least one image;
- a computer processor operatively connected to the imaging device and configured to: analyze the at least one image for detecting a security tag and an article identification element; responsive to detecting the security tag and the article identification element in the image, determine if the security tag and the article identification element are attached to the same article; and store in a database, upon a determination that the security tag and the article identification element are attached to the same article, an identifier of the security tag, an identifier of the article, and an indication of their association with the same article.
10. The system of claim 9, wherein the computer processor is further configured to:
- determine that payment has been received for the purchase of the article associated with the article identification element;
- upon determination that payment has been received, identify an unlock code of the security tag associated with the purchased article; and
- generate and enable the transmission of a control signal including the unlock code for enabling at least one of the detachment and deactivation of the identified security tag from the article.
11. The system of claim 10, wherein the security tag comprises a receiver and a detachment mechanism operatively connected thereto, wherein the detachment mechanism is configured to unlock and permit the detachment of the security tag from the article in response to the receipt of the control signal including the unlock code.
12. The system of claim 9, wherein the computer processor is further configured to:
- identify the security tag appearing in the at least one image;
- identify the article identification element appearing in the at least one image;
- determine at least one first characteristic associated with a background surrounding the identified security tag;
- determine at least one second characteristic associated with a background surrounding the identified article identification element; and
- compare the at least one first characteristic and the at least one second characteristic for determining if the security tag and the article identification element are attached to the same article.
13. The system of claim 9, wherein the imaging device is further configured to generate a visual template indicating a preferred position of the security tag and the article identification element within a viewing screen of the imaging device.
14. The system of claim 13, wherein the step of generating a visual template indicating a preferred position of a security tag and an article identification element within a viewing screen of an imaging device further comprises the steps of:
- generating a first window indicating an area in which to position the security tag; and
- generating a second window indicating an area in which to position the article identification element.
15. The system of claim 9, wherein the step of capturing at least one image of the security tag, the article identification element and the article comprises capturing a video, wherein the security tag, the article identification element and the article each appear within the video.
16. The system of claim 9, wherein the step of capturing at least one image of the security tag, the article identification element and the article comprises capturing a plurality of images, wherein at least one of each of the security tag, the article identification element and the article appear in at least one of the images of the plurality of images.
17. The system of claim 16, wherein the plurality of images have overlapping fields of view, and wherein step of analyzing the at least one image further comprises generating a panoramic image by combining the plurality of images together.
18. A mobile computing device comprising:
- an image capturing device;
- a wireless communication device; and
- at least one processor operatively connected to the image capturing device and the wireless communication device and configured to: with the image capturing device, capture at least one image of a security tag, an article identification element and an article; receive data indicative that payment has been received for the purchase of the article associated with the article identification element; upon receipt of data indicative that payment has been received, identify a security tag associated with the purchased article; and generate and transmit a control signal for enabling at least one of the detachment and deactivation of the identified security tag from the article.
19. The device of claim 18, wherein the at least one processor is further configured to receive an unlock code for detaching or deactivating the identified security tag.
20. The device of claim 18, wherein the at least one processor is further configured to generate a visual template indicating a preferred position of the security tag and the article identification element within a viewing screen of the image capturing device.
Type: Application
Filed: Jan 2, 2018
Publication Date: Jul 4, 2019
Inventor: Camila Lercari (New York, NY)
Application Number: 15/859,935