PULSE PHOTODYNAMIC TREATMENT OF ACNE

A pulse photodynamic therapy (or pulse PDT) treatment of acne is described herein.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the divisional of U.S. application Ser. No. 15/107,688, filed Jun. 23, 2016, which is the National Phase of International Patent Application No. PCT/EP2014/078931, filed Dec. 19, 2014, published on Jun. 25, 2015 as WO 2015/092060 A1, which claims priority to European Application No. 14162516.0, filed Mar. 28, 2014 and European Application No. 13306826.2, filed Dec. 20, 2013. The contents of these applications are herein incorporated by reference in their entirety.

FIELD OF THE INVENTION

The present invention is related to a pulse photodynamic therapy (or pulse PDT) treatment of acne.

BACKGROUND OF THE INVENTION

Photodynamic therapy (PDT), is a technique for the treatment of various abnormalities or disorders of the skin or other epithelial organs or mucosa, in particular for the treatment of acne. PDT involves the application of photosensitizing (photochemotherapeutic) agents to the affected area of the body, followed by exposure to photoactivating light in order to activate the photosensitizing agents and convert them into cytotoxic form, whereby the affected cells are killed (necrosis, apoptosis).

A range of photosensitizing agents is known, including the psoralens, the porphyrins (e.g. Photofrin (Registered trademark)), the chlorins and the phthalocyanins. Amongst the most clinically useful photosensitizing agents known in the art, however, are 5-aminolevulinic acid and its derivatives, for example esters such as 5-ALA esters.

The mechanism of action of PDT relies on intracellular porphyrins (including PpIX) that are photoactive, fluorescing compounds and, upon light activation in the presence of oxygen, singlet oxygen is formed which causes damage to cellular compartments, in particular the mitochondria.

Light activation of accumulated porphyrins leads to a photochemical reaction and thereby phototoxicity to the light-exposed target cells.

Although PDT is clinically useful in the treatment of a wide range of diseases, a major drawback of such treatment is the concomitant side-effects, particularly at the treatment site. These often include inflammation such as erythema, swelling, edema, burning, itching, exfoliation, hyperpigmentation and prolonged irritation and hypersensitivity after treatment. Such side-effects are particularly undesirable when the treatment site is the face, scalp or neck. This is frequently the case when the PDT is for the treatment of lesions, for example with acne.

The occurrence of such side effects is recognized in WO2006/051269 which discloses use of 5-ALA esters in PDT for the treatment of acne. WO2006/051269 describes a study wherein a cream comprising 16% wt. methyl ALA ester is applied to the faces of subjects for 3 hours followed by exposure of the subjects' faces to non-coherent red light (light dose 37 Jkm-2). The treatment was then repeated 2 weeks later. Although the results confirmed that PDT with methyl ALA ester is effective in the treatment of acne, the subjects also indicated that the treatment caused pain and induced severe inflammation.

WO02/13788 discloses a similar study on use of ALA acid in PDT for the treatment of acne. In this case 20% ALA acid was applied to the backs of the subjects for 3 hours and then the subjects were exposed to 150 J/cm2 broad band light. Again the results confirmed that PDT with ALA is effective for the treatment of acne, but the subjects also reported a plethora of undesirable side effects. For example, WO02/13788 reports that erythema, hyperpigmentation and exfoliation were often seen after PDT treatment and states that in some cases a subsequent treatment even had to be postponed. Reports of pain, burning and itching during and after treatment were also common. WO02/13788 discloses the above-described treatment regime as a “high dose, high energy” regime and it is said to provide a permanent improvement to acne. WO02/13788 additionally discloses a “low dose, low energy” regime that is said to be designed to provide relief from acne. In this treatment 0.1 to 10% wt. ALA acid is applied, and after waiting for the ALA acid to penetrate the skin, is followed by irradiation with a light dose of 1 to 20 J/cm2. WO02/13788 suggests that this regime be used in occasional multiple treatments to alleviate acne and be repeated as necessary to maintain diminishment thereof. Although it is recognized that use of such a regime may be pain free, the implication in WO02/13788 is that the therapeutic effect of this treatment regime is less than the high dose, high energy regime it describes and exemplifies.

A need still therefore exists for alternative PDT methods that are free from undesirable side effects (e.g. inflammation) but which have high therapeutic efficacy.

Inflammation and/or erythema is one of the main problems associated with PDT treatment. It is generally believed that inflammation is a necessary element/prerequisite in the cure of AK/BCC/BD by PDT but is not a so big issue for BCCs and BD as the lesions are often small and hidden by clothes. On the opposite acne is located on the face mainly where the need to decrease the downtime is key.

A previous, unpublished relation between inflammation and efficacy of PDT is shown in FIG. 1.

A need therefore exists for less inflammatory and still effective methods for treating acne. The present invention addresses that need.

SUMMARY OF THE INVENTION

The present invention relates to a PDT treatment of acne, comprising subjecting the skin of a subject in need thereof to a pre-treatment such as mechanical ones (like dermoabrasion (e.g. with sand paper) or microneeding (e.g. with a dermaroller)) or chemical ones like peeling. The inventors have surprisingly found that such mechanical pre-treatment is as efficient in cosmetically or therapeutically treating acne without, or with reduced, adverse effects observed with a pretreatment implemented with ablative fractional laser. The PDT then comprises applying onto said skin a photosensitizer, in particular 5-MAL. In a representative embodiment, the photosensitizer is applied for a duration comprised between 4 minutes to 4 hours, in particular between 15 minutes and 3 hours.

The present inventors have also surprisingly found that application of a photosensitizer for a shorter time period that is classically implemented in a PDT, allows the implementation of a PDT as efficient as in the case where the photosensitizer is used for a longer period of time, with greatly reduced side effects usually observed in the prior art PDT protocols.

Therefore, the invention also relates to a PDT treatment of acne, comprising administering to a subject in need thereof a photosensitizer, in particular 5-MAL, for a short duration and then removing the photosensitizer from the skin surface. This PDT protocol is alternatively designated pulse-PDT herein.

Representative photosensitizers include preferably 5-aminolevulinic acid (5-ALA) and derivatives (e.g. an ester) of 5-ALA, more preferably 5-ALA methyl ester (or 5-MAL), or a pharmaceutically acceptable salt thereof. In the present uses and methods, photactivation is achieved by natural or artificial light. In a particular embodiment, the PDT comprises:

    • (a) optionally, preparing the area of skin to be treated with the appropriate pre-treatment, in particular a mechanical pretreatment such as a curettage, dermoabrasion or micro-needling (or micro perforation),
    • (b) administering to said animal a composition comprising said photosensitizer, in particular for a short duration; and
    • (c) photoactivating said photosensitizer.

In a particular embodiment, the invention implements a pulse-PDT treatment, comprising administering to a subject in need thereof a photosensitizer, in particular 5-MAL, for a short duration and then removing the photosensitizer from the skin surface. Photoactivation is then carried out as described throughout the present application. The pulse-PDT treatment of the invention ensures high intracellular PPIX and low extracellular PPIX. Excess amounts of PPIX formation during and after the end of the treatment are thus avoided. In particular, the inventors show that the pulse-PDT treatment of the invention shows less inflammation with unchanged efficacy.

According to an embodiment, the pulse time during which the photosensitizer is let on the skin is comprised between 5 and 120 minutes. According to a preferred embodiment, the pulse time during which the photosensitizer is let on the skin is comprised between 15 and 60 minutes, in particular between 20 and 40 minutes. In a further particular embodiment, the photosensitizer is administered for about 30 minutes (e.g. for 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or 35 minutes, more particularly during 30 minutes).

DETAILED DESCRIPTION OF THE INVENTION

By the term “animal” is meant herein any human or non-human being. Preferred animals for treatment in accordance with the invention are humans.

In a particular embodiment, the subject is a male or female human subject. In another particular embodiment, the subject is of the Fitzpatrick I, II, III, IV, V or VI skin type. In a further embodiment, the subject is of the I, II or III skin type, more particularly of the II or III skin type.

Acne vulgaris is a self-limited disease, seen primarily in adolescents, involving the sebaceous follicles. Most cases of acne are pleomorphic, presenting with a variety of lesions consisting of comedones, papules, pustules, nodules, and, as sequels to active lesions, pitted or hypertrophic scars. Although classically classified as a sebaceous gland disease, it is actually a process that involves the pilosebaceous unit.

Acne is sufficiently common that it often has been termed physiologic. Mild degrees of acne are often seen at birth, probably resulting from follicular stimulation by adrenal androgens and mild cases may continue in the neonatal period. However, it is not until puberty that acne becomes a common problem. Acne is often an early manifestation of puberty; in the very young patient the predominant lesions are comedones. The greatest number of cases is seen during the middle-to-late teenage period; subsequently, the incidence decreases. However, particularly in women, acne may persist through the third decade or even later.

Although the basic cause of acne is unknown, there is considerable information on the various factors concerned in its pathogenesis. Acne is a multifactorial disease, developing in the sebaceous follicles.

The primary change is an alteration in the pattern of keratinization within the follicle. Normally, the keratinous material in the follicle is loosely organized. The initial changes in comedones formation are observed in the lower portion of the follicular infundibulum. The keratinous material becomes more dense, the lamellar granules are less numerous, keratohyaline granules are increased, and some of the cells contain amorphous material, which is probably lipid generated during the process of keratinization.

Photosensitizers

Use of 5-ALA (5-amino-4-oxo-pentanoic acid, otherwise known as 5-aminolevulinic acid) and derivatives of 5-ALA in PDT is well known in the scientific and patent literature (see, for example, J. C. Kennedy et al., J. Clin. Laser Med. Surg. (1996) 14: 289-304, U.S. Pat. Nos. 5,079,262, 5,211,938, 5,234,940, 5,422,093, 6,034,267, WO91/01727, WO96/28412, WO2005/092838 and WO2006/051269). 5-ALA and all such derivatives of 5-ALA, as well as their pharmaceutically acceptable salts, are suitable for the uses and methods herein described.

The 5-ALA derivatives useful in accordance with the invention may be any derivative of 5-ALA capable of forming protoporphyrin IX (PpIX) or any other photosensitizer (e.g. a PpIX derivative) in vivo. Typically, such derivatives will be a precursor of PpIX or of a PpIX derivative (e.g. a PpIX ester) and which are therefore capable of inducing an accumulation of PpIX at the site to be treated following administration in vivo. Suitable precursors of PpIX or PpIX derivatives include 5-ALA prodrugs which might be able to form 5-ALA in vivo as an intermediate in the biosynthesis of PpIX or which may be converted (e.g. enzymatically) to porphyrins without forming 5-ALA as an intermediate. Esters of 5-aminolevulinic acid and N-substituted derivatives thereof are preferred photosensitizers for use in the invention. Those compounds in which the 5-amino group is unsubstituted (i.e. the ALA esters) are particularly preferred. Such compounds are generally known and described in the literature (see, for example, WO96/28412, WO02/10120 and WO2005/092838 to PhotoCure ASA). Esters of 5-aminolevulinic acid with substituted or unsubstituted alkanols, i.e. alkyl esters are especially preferred photosensitizers for use in the invention. In particular, 5-MAL and 5-MAL derivatives are particularly preferred. Examples of useful derivatives include those of general formula I:


R22N—CH2COCH2—CH2CO—OR1  (I)

Wherein:

R1 represents a substituted or unsubstituted straight, branched or cyclic alkyl group (e.g. a substituted or unsubstituted straight-chained alkyl group); and each R2 independently represents a hydrogen atom or an optionally substituted alkyl group, e.g. a group R1; and pharmaceutically acceptable salts thereof.

As used herein, the term “alkyl”, unless stated otherwise, includes any long or short chain, cyclic, straight-chained or branched aliphatic saturated or unsaturated hydrocarbon group. The unsaturated alkyl groups may be mono- or polyunsaturated and include both alkenyl and alkynyl groups. Unless stated otherwise, such groups may contain up to 40 atoms. However, alkyl groups containing up to 30, preferably up to 10, particularly preferably up to 8, especially preferably up to 6, e.g. up to 4 carbon atoms, for example 1, 2, 3 or 4 carbon atoms, are preferred.

The substituted alkyl R1 and R2 groups may be mono or poly-substituted.

Suitable substituents may be selected from hydroxy, alkoxy, acyloxy, alkoxycarbonyloxy, amino, aryl, nitro, oxo, fluoro, —SR3, —NR32 and —PR32 groups, and each alkyl group may be optionally interrupted by one or more —O—, —NR3—, —S— or —PR3— groups, in which R3 is a hydrogen atom or a C1-6 alkyl group).

Preferred substituted alkyl R1 groups include those carrying one or more oxo groups, preferably straight-chained C4-12 alkyl (e.g. C8-10 alkyl) groups substituted by one, two or three (preferably two or three) oxo groups. Examples of such groups include 3,6-dioxa-1-octyl and 3,6,9-trioxa-1-decyl groups.

Particularly preferred for use in the invention are those compounds of formula I in which at least one R2 represents a hydrogen atom. In especially preferred compounds each R2 represents a hydrogen atom.

Compounds of formula I in which R1 represents an unsubstituted alkyl group (preferably C1-8 alkyl, e.g. C1-8 alkyl) or an alkyl group (e.g. C1-2 alkyl, especially C1 alkyl) substituted by a substituent as hereinbefore defined (e.g. by an aryl group such as phenyl or by an alkoxy group such as methoxy) are also preferred.

Unsubstituted alkyl groups which may be used in the invention include both branched and straight-chained hydrocarbon groups. Compounds of formula I in which R1 is a C4-8, preferably a C5-8, straight chain alkyl group which is branched by one or more C1-6 (e.g. C1-2 alkyl) groups are preferred. Representative examples of suitable unsubstituted branched alkyl groups include 2-methylpentyl, 4-methylpentyl, 1-ethylbutyl and 3,3-dimethyl-1-butyl. 4-methylpentyl is particularly preferred.

Compounds of formula I in which R1 is a C1-10 straight-chained alkyl group are also preferred. Representative examples of suitable unsubstituted alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl and octyl (e.g. n-propyl, n-butyl, n-pentyl, n-hexyl and n-octyl). Hexyl, especially n-hexyl, is a particularly preferred group. Methyl is also particularly preferred.

Also preferred for use in the invention are those compounds of formula I in which R1 represents a C1-2 alkyl group (preferably a C1 alkyl group) optionally substituted by an aryl group.

Still further preferred for use in the invention are those compounds of formula I in which R1 represents an alkyl group (e.g. C1-2 alkyl, especially C1 alkyl) substituted by an aryl group (e.g. phenyl). Preferred substituted alkyl R1 groups which may be present in compounds of formula I include C1-8 alkyl, preferably C1-4 alkyl, particularly preferably C1 or C2 alkyl (e.g. C1 alkyl) substituted (preferably terminally substituted) by an optionally substituted aryl group.

By an “aryl group” is meant a group which is aromatic. Preferred aryl groups comprise up to 20 carbon atoms, more preferably up to 12 carbon atoms, for example, 10 or 6 carbon atoms.

Aryl groups which may be present in the compounds of the invention may be heteroaromatic (e.g. 5-7 membered heteroaromatics) but are preferably nonheteroaromatic. By “non-heteroaromatic” is meant an aryl group having an aromatic system comprising electrons originating solely from carbon atoms. Preferred aryl groups include phenyl and napthyl, especially phenyl. In preferred compounds for use in the invention one or two aryl groups may be present, preferably one.

Aryl groups which may be present in the compounds of the invention may optionally be substituted by one or more (e.g. 1 to 5), more preferably one or two, groups (e.g. one group). Preferably the aryl group is substituted at the meta or para position, most preferably the para position. Suitable substituent groups may include haloalkyl (e.g. trifluoromethyl), alkoxy (i.e. —OR groups wherein R is preferably a C1-6 alkyl group), halo (e.g. iodo, bromo, more especially chloro and fluoro), nitro and C1-6 alkyl (preferably C1-4 alkyl). Preferred C1-6 alkyl groups include methyl, isopropyl and t-butyl, particularly methyl. Particularly preferred substituent groups include chloro and nitro. Still more preferably the aryl group is unsubstituted.

In a further preferred aspect the invention provides the use of a photosensitiser which is a compound of formula I wherein R1 represents an aryl substituted C1-4 alkyl group (preferably C1-2, e.g. C1), preferably wherein said aryl group comprises up to 20 carbon atoms (e.g. up to 12 carbon atoms, especially 6 carbon atoms) and is itself optionally substituted, and each R2 is as hereinbefore described.

Preferred compounds for use in the invention include methyl ALA ester, ethyl ALA ester, propyl ALA ester, butyl ALA ester, pentyl ALA ester, hexyl ALA ester, octyl ALA ester, 2-methoxyethyl ALA ester, 2-methylpentyl ALA ester, 4-methylpentyl ALA ester, 1-ethylbutyl ALA ester, 3,3-dimethyl-1-butyl ALA ester, benzyl ALA ester, 4-isopropylbenzyl ALA ester, 4-methylbenzyl ALA ester, 2-methylbenzyl ALA ester, 3-methylbenzyl ALA ester, 4-[t-butyl]benzyl ALA ester, 4-[trifluoromethyl]benzyl ALA ester, 4-methoxybenzyl ALA ester, 3,4-[dichloro]benzyl ALA ester, 4-chlorobenzyl ALA ester, 4-fluorobenzyl ALA ester, 2-fluorobenzyl ALA ester, 3-fluorobenzyl ALA ester, 2,3,4,5,6-pentafluorobenzyl ALA ester, 3-nitrobenzyl ALA ester, 4-nitrobenzyl ALA ester, 2-phenylethyl ALA ester, 4-phenylbutyl ALA ester, 3-pyridinyl-methyl ALA ester, 4-diphenyl-methyl ALA ester and benzyl-5-[(1-acetyloxyethoxy)-carbonyl]amino levulinate.

Still further preferred compounds for use in the invention include methyl ALA ester, ethyl ALA ester, 2-methoxyethyl ALA ester, benzyl ALA ester, 4-isopropylbenzyl ALA ester, 4-methylbenzyl ALA ester, 2-methylbenzyl ALA ester, 3-methylbenzyl ALA ester, 4[t-butyl]benzyl ALA ester, 4-[trifluoromethyl]benzyl ALA ester, 4-methoxybenzyl ALA ester, 3,4[di-chloro]benzyl ALA ester, 4-chlorobenzyl ALA ester, 4-fluorobenzyl ALA ester, 2-fluorobenzyl ALA ester, 3-fluorobenzyl ALA ester, 4-nitrobenzyl ALA ester, 2-phenylethyl ALA ester, 4-phenylbutyl ALA ester, 3-pyridinyl-methyl ALA ester, 4-diphenyl-methyl ALA ester and benzyl-5-[(1-acetyloxyethoxy)-carbonyl]amino levulinate.

Particularly preferred compounds for use in the invention include methyl ALA ester, hexyl ALA ester and benzyl ALA ester, especially methyl ALA ester.

The compounds for use in the invention may be prepared by any conventional procedure available in the art (e.g. as described in WO02/10120 to PhotoCure ASA). For example, esters of 5-ALA may be prepared by reaction of 5-ALA with the appropriate alcohol in the presence of acid. Alternatively compounds for use in the invention may be available commercially (e.g. from Photocure ASA, Norway).

Other photosensitizers that can be used in the field of the present invention can be 1, 1′ bis (2 ethyl 1, 3 dioxolan 2 yl) cryptocyanine, 3 carbethoxypsoralen, 4, 4′, 6 trimethylangelicin, 4′ aminomethyl 4, 5′, 8 trimethylpsoralen, 4′ hydroxymethyl 4, 5′, 8 trimethylpsoralen, 5 methylangelicin, aminolevulinic acid hexyl ester, aminolevulinic acid methyl ester, amotosalen, angelicin, bacteriochlorin, benzoporphyrin derivative, bergapten, chloroaluminum phthalocyanine, etiopurpurin, fimaporfin, gadolinium texaphyrin, hematoporphyrin derivative, hypocrellin A, hypocrellin B, lemuteporfin, lutetium texaphyrin, merocyanine, methoxsalen, motexafin, musk ambrette, padeliporfin, padoporfin, photofrin, photofrin I, photofrin II, phthalocyanine, phthalocyanine aluminum, phthalocyanine derivative, phthalocyanine zinc, psoralen, psoralen derivative, rostaporfin, talaporfin, temoporfin, tetrakis (3 hydroxyphenyl) chlorin, tetrakis (4 sulfophenyl) porphine, tetraphenylporphyrin, tetraphenylporphyrin derivative, tetrasulfophthalocyanine, tetrasulfophthalocyanine aluminum, tetrasulfophthalocyanine chloroaluminum, trimethylpsoralen, trioxysalen, verdin derivative, verteporfin.

Photoactivation

According to the present invention, photoactivation is achieved by either an artificial or natural light source. In a preferred embodiment, photoactivation of the photosensitizer is achieve by LED or sunlight.

Penetrations Enhancers or Pre-Treatment

Skin penetration enhancers as well as skin pre-treatment for enhancing penetration of drugs and chemicals have been developed to improve bioavailability. One action among others of these enhancers or pre-treatment procedures is to decrease the skin barrier resistance. These enhancing penetration procedures can be classified as mechanical, physical and chemical pre-treatments.

The table below is a non-limitative list of such pre-treatment/penetration enhancers that may be used according to the invention.

Mechanical Physical Chemical Skin preparation pad Ablative (carbon dioxide) and Superficial peelings (sandpaper) non-ablative lasers (fractional (alfa-hydroxy acids, Microdermabration non ablative carbon dioxide, trichloracetic acid, microneedling erbiumdoped Jessner solution) yttrium aluminium garnet (Er:YAG), IPL) Curettage Retinoids (tretinoin, tape-stripping adapalene, pan-scrubber tazarotene) exfoliating scrub Acid azelaic compress rubbing Vitamin D3 derivates

Light Sources—Artificial

Electroluminescence (EL) is an optical and electrical phenomenon in which a material emits light in response to the passage of an electric current or to a strong electric field. This is distinct from black body light emission resulting from heat (incandescence), from a chemical reaction (chemiluminescence), sound (sonoluminescence), or other mechanical action (mechanoluminescence).

Among the electroluminescence sources, LED (Light emitting diodes) lamps are well known and preferred as artificial light source in the present invention. A LED lamp (LED light bulb) is a solid-state lamp that uses light-emitting diodes (LEDs) as the source of light. The LEDs involved may be conventional semiconductor light-emitting diodes, organic LEDs (OLED), or polymer light-emitting diodes (PLED) devices.

The LED lamps used in the examples hereafter are defined by some characteristics like wavelength (in nm), power of the LED (irradiance in mW/cm2) energy of the LED (in J/cm2). Such particular features are provided below.

Light Sources—Natural

This aspect of the invention includes photoactivation with either natural sunlight or any light source which provides artificial sunlight (i.e. the entire range from UV to IR). Use of natural sunlight as the light source has the advantage that the animal being treated is free to leave the clinical environment where treatment is normally conducted.

Light Sources—Intensity

In the uses and methods of the invention, photoactivation may be achieved using light sources known in the art. Methods for the irradiation of different areas of the body, e.g. by lamps or lasers are well known in the art (see for example Van den Bergh, Chemistry in Britain, May 1986 p. 430-439). The wavelength of light used for irradiation may be selected to achieve a more efficacious photosensitizing effect. The most effective light is light in the wavelength range 300-800 nm, typically within the 400-700 nm range.

Irradiation with an artificial light is preferably performed for 1 to 30 minutes, preferably for 1 to 15 minutes, more preferably from 5 to 10 minutes, preferably for 5 minutes, depending on the light dose and fluence rate. A single irradiation may be used or alternatively a light split dose in which the light dose is delivered in a number of fractions, e.g. a 1 to 10 minutes between irradiations, may be used.

Photoactivation with natural light is preferably done for a duration between 5 minutes and 4 hours, in particular for a duration of 2 hours. In a particular embodiment, a sunscreen is applied to the sun-exposed area including the treatment area in both groups during natural daylight-PDT, to avoid sunburn.

Treatment of the Skin According to the Invention

The methods and uses of the invention may involve pretreatment of the skin. As the stratum corneum acts as a barrier that limits the penetration of substances through the skin, the purpose of a pretreatment (enhancer) is to favor the absorption of the photosensitizer to the target tissue and thus a higher efficacy. Enhancers may comprise mechanical, physical or chemical preparation of the skin e.g. microdermabrasion (particularly with an adapted skin preparation pad, sandpaper), microneedling, tape-stripping, pan-scrubber, exfoliating scrub, compress rubbing, non ablative lasers at a low-energy delivery and chemical procedures such as superficial peelings (Retinoids tretinoin, adapalene, tazarotene), Acid azelaic, Vitamin D3 derivates). For example, the pretreatment may comprise a mechanical pretreatment of the skin. Representative mechanical treatments include curettage, dermoabrasion (in particular with an adapted sandpaper or micro-needling (or micro-perforation) before application of the photosensitizer. In a particular embodiment, the pretreatment includes perforation of the skin using an adapted device such as a micro-needle device, for example a dermaroller.

The fact that PDT with artificial light sources for photorejuvenation can be a painful procedure and therefore often requires specific pain management is a real issue.

Daylight mediated PDT appears as the ideal procedure addressing to all signs of epidermal and dermal actinic damage with lack of discomfort, lack of pain during therapy, possibility to treat large areas (as demonstrated by several trials showing the same efficacy level of both procedures, using daylight or an artificial source for clearing actinic keratosis with significantly lower pain score, leading to fewer related adverse (Wiegell JEADV 2011).

The use of an enhancer, such as a skin pretreatment as described above, in particular a mechanical pretreatment, more particularly the use of dermabrasion or microneedling, and more particularly using a sandpaper, associating natural light could provide better effects in treating acne with lower side effects.

The methods and uses of the invention may also be carried out with or without occlusion, more preferably with occlusion.

The photosensitizer may be applied for a duration of between 5 minutes to 4 hours, in particular between 15 minutes to 3 hours, in particular between 30 minutes and 2 hours. In a particular embodiment, the photosensitizer may be applied as a pulse therapy for the time periods provided above, for example for a duration of about 30 minutes. The inventors herein show that such a pulse therapy has the advantage of being as efficient as therapy with longer exposures, but with less PPIX produced, thereby preventing side effects associated with PPIX.

In a particular embodiment, the treatment comprises:

    • (a) optionally, preparing the area of skin to be treated with the appropriate pre-treatment, for example a curettage, a dermoabration or microneedling (micro perforation), in particular a perforation with an adapted micro-needling device such as a dermaroller;
    • (b) administering to said animal a composition comprising said photosensitizer, in particular for a short period of time;
    • (c) photoactivating said photosensitizer; and
    • (d) optionally, removing the photosensitizer.

In an embodiment of the invention, the natural daylight photodynamic therapy (PDT) on an animal comprises:

    • a) optionally, preparing the area of skin to be treated with the appropriate pre-treatment, for example a curettage, a dermoabration or microneedling (micro perforation), in particular a perforation with an adapted micro-needling device such as a dermaroller;
    • b) administering to said animal a composition comprising said photosensitizer for a duration between 5 min to 240 minutes;
    • c) photoactivating said photosensitizer for a duration between 1 to 15 minutes with artificial light or 0.5 hour to 3 hours with natural light; and
    • d) Optionally, removing the photosensitizer.

In a more preferred embodiment of the invention the use of a photosensitizer in natural daylight photodynamic therapy (PDT) on an animal comprises:

    • a) optionally, preparing the area of skin to be treated with the appropriate pre-treatment, for example a curettage, a dermoabration or microneedling (micro perforation), in particular a perforation with an adapted micro-needling device such as a dermaroller;
    • b) administering to said animal a composition comprising said photosensitizer for a duration between 15 min to 180 minutes;
    • c) photoactivating said photosensitizer for a duration between 0.5 hour to 2 hours with natural light; and
    • d) optionally, removing the photosensitizer.

In a more preferred embodiment of the invention the photosensitizer for use in photodynamic therapy (PDT) on an animal comprises

    • a) optionally, preparing the area of skin to be treated with the appropriate pre-treatment, for example a dermoabration (sand-paper) or microneedling (micro perforation), in particular a dermoabration with an adapted sand-paper device such as silicone carbide sand paper;
    • b) administering to said animal a composition comprising said photosensitizer for a duration of 30 minutes; and
    • xc) photoactivating said for a duration of at least 2 hours with natural light; and
    • d) optionally, removing the photosensitizer.

Any of the above particular or preferred embodiments may comprise a step of mechanically pretreating the skin as described above, before the step of applying the photosensitizer on the skin.

According to another aspect, the invention relates to a kit comprising a device for implementing a pretreatment as provided above, and a composition comprising a photosensitizer as described above. This kit is useful for the implementation of the methods and uses of the present invention. In a particular embodiment, the kit comprises an adapted sandpaper or an adapted micro-perforation device such as a dermaroller and a composition comprising ALA or esters of ALA such as the methyl ALA ester, hexyl ALA ester and benzyl ALA ester, especially methyl ALA ester. In addition, the kit according to the invention may comprise a sunscreen. The kit of the invention may further comprises instructions to follow for implementing the methods and uses of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph showing the inflammation vs. response rate (3 months) of AK on the face.

FIG. 2 is a graph showing the mean increased redness the day after PDT.

FIG. 3 is a graph reporting the visual redness 1 day after PDT with different treatment protocols.

FIG. 4 is a graph showing the pain scale after different treatments.

FIG. 5 is a graph showing the cure rate after different treatments.

FIG. 6 is a graph showing the increase in erythema percentage one day after treatment with different protocols.

FIG. 7 is a graph showing erythema scale after treatment with different protocols.

FIG. 8 is a graph showing the mean photobleaching in the standard treatment and a different “pulse” treatment.

FIG. 9 is a graph showing the inflammation (erythema)/PpIX formation relationship.

FIG. 10 is a graph showing the values of fluorescence by IMP and pre-treatment at 405 nm

FIG. 11 is a graph showing the values of fluorescence by IMP and pre-treatment at 632 nm

FIG. 12 is a graph showing TEWL detailed by occlusion and pre-treatment

EXAMPLES Example 1—Comparison of Mechanical Penetration Enhancers on Photosensitizer Skin Penetration

The effect on the product skin penetration of different mechanical penetration enhancement techniques (occlusion, microneedles, ablative fractional laser) has been evaluated.

10 healthy volunteers have been treated according to the following protocol:

    • pretreatment with either micro-needles (Dermaroller) or ablative fractional laser (CO2 laser fraxel repair (SOLTA)), or no pretreatment;
    • application of Metvix;
    • 3 hours of incubation with or without occlusion.
    • Penetration was quantified during incubation using measurement of photo fluorescence of PpIX at 30 minutes, 1 hour, 2 hours, and 3 hours after product application.

Both Dermaroller and laser similarly increased Metvix penetration in surface and deeper skin as measured by blue (405 nm) (see FIG. 10) and red (632 nm) (see FIG. 11) photo fluorescence as compared to no pretreatment without occlusion and no pretreatment with occlusion.

No difference was observed with or with occlusion before 3 hours.

In addition, laser pretreatment was found to be more painful and more irritant than Dermaroller, and laser pretreatment has more impact in lowering skin barrier function as observed by measuring transepidermal water loss. (see FIG. 12)

Therefore, the inventors have surprisingly shown that mechanical pretreatment with a device such as micro-needle device is as efficient as a laser pretreatment to increase product skin penetration but with less adverse events and is therefore more adapted to the PDT treatment of acne.

Example 2—PDT Procedure Change to Minimize Inflammation in PDT

According to the just mentioned theory it would be preferable to keep PPIX and cellular enzymes away from the extracellular compartment, thereby avoiding inflammation.

The purpose of this project is therefore to keep the PPIX formation within the mitochondria and avoid excess amounts of PPIX to be formed. Simultaneously PPIX should be allowed to be formed for such a long time that most unnormal cells will be affected.

So the purpose of PDT is to kill unnormal cells, preferably by apoptosis. The ideal situation would be to keep PPIX inside the cell and to destroy the mitochondria only, thereby inhibiting the ATP formation necessary for cell functions. That should result in cell death by apoptosis.

One possible way to achieve this would be to give a short 5-MAL pulse treatment to get a high concentration of 5-MAL in the cells initially and then diminish further access to 5-MAL by removing 5-MAL from the skin surface.

This could be done by only exposing the skin to 5-MAL for a short time, after which all 5-MAL is removed from the skin surface. If the right “pulse time” can be found it might ensure high cellular PPIX and low extracellular PPIX. Excess amounts of PPIX formation during and after the end of the treatment would thus be avoided.

The result shows less inflammation with unchanged efficacy and thus mitochondria destruction seems to be the most important factor in PDT.

To estimate the preferable Metvix “pulse time” a separate investigation was performed (Method B) on 24 healthy volunteers. The pulse time was 20 min., 40 min., 60 min., and the conventional 180 min, after which excess amounts of Metvix was removed from the skin.

The formation of PPIX after 3 hours is seen in FIG. 8, and the relation to inflammation is seen in FIG. 9. It is seen that PPIX concentration speeds up between 20-40 min. of “pulse exposure”, and so we have chosen 30 min. as the minimum “pulse exposure” time in the following (Method A) investigation of efficacy and inflammation by this method change. The results are illustrated in Column 3 in FIGS. 4, 5, 6, and 7. The procedure change clearly diminishes inflammation (erythema), without affecting the cure rate (FIG. 5). Pain level is not changed. PPIX concentration is clearly lower than for the conventional 3-hour exposure to Metvix (FIG. 8).

Methods

Healthy Volunteers

Twenty-four healthy male volunteers of Scandinavian ancestry were included in the study (mean age 30 years, range 20-51). A treatment area was selected on the inside of both forearms of the volunteer. Each treatment area was divided into four minor treatment fields of the size 2×5 cm with at least 3 cm between each field using a prefabricated flexible template. In order to imitate skin lesions all fields were tape stripped 10 times with occlusive dressing before treatment (Tegaderm™ Roll, 3M, Glostrup, Denmark).

On the left forearm vehicle Unguentum M was applied to the treatment field.

On the right forearm excess amounts of 5-MAL 16% (Metvix®, Photocure, Oslo, Norway) were applied to all four fields of treatment. All fields were covered with light-impermeable, occlusive dressing. After 20 minutes the dressing was removed from the first field and the excess cream gently wiped off. The field was covered again with a thin piece of gauze and light impermeable dressing. After additional 20 and 40 min same procedure was followed with the second and third field. 180 min after application of 5-MAL and vehicle was removed from all five fields, and the excess cream was gently wiped of the last field. All fields were illuminated with red light. Illumination was performed with red LED light 630 nm peak (Aktilite™ 128; Photocure ASA, Oslo Norway) using a total light dose of 37 J/cm2 given over 9 min. During and after illumination pain was recorded. The volunteers were equipped with a special diary for recording pain in the days after treatment. Four follow-up visits were performed at day 1, 2, 3 and 8 after treatment.

PpIX Fluorescence

5-MAL-induced PpIX fluorescence was depicted non-invasively using a fluorescence camera (Medeikonos AB, Gothenburg, Sweden). The amount of PpIX fluorescence was calculated from the photographs by the program MatLab® (MatLab®, MathWorks, Natic, US). The amount of fluorescence was measured before tape stripping and cream application (baseline) and before and after illumination.

The photo bleaching is then the difference in PpIX fluorescence (AU) calculated from the pre and post illumination images.

Erythema and Pigmentation

As an indicator of inflammation erythema was measured. The erythema was assessed by an expert evaluator and measured objectively.

The objective measurements of erythema and pigmentation were performed using a skin reflectance meter (Optimize Scientific 558, Chromo-Light, Espergaerde, Denmark).

Erythema % and pigmentation % were measured before treatment, immediately before illumination, immediately after illumination, and at the four follow-up visits.

Pain Score

The volunteers scored their pain every minute during illumination, and recorded their pain in the diary every hour after illumination on the treatment day, twice per day the next three days and once a day on the following five days. Since PDT was performed at different times of the day the number of evaluations differed from 3 to 11 the first day. Pain was assessed using a numerical scale ranging from 0 to 10, where 0 is no pain and 10 is worst imaginable pain. To make it easier for the patients to identify the different treated fields, the dairy was supplied with numbered drawings of the fields.

Randomizing

The study was designed as an open randomised trial. A statistical adviser made the randomisation. Since the sequence of treatment duration was predefined, randomization was only determining which of the four treatment fields should be the first.

Statistics

The sample size was calculated on the bases of data from the literature. We set the minimal clinical relevant difference to 8.8% (50% of the earlier found 17.6%) and choose a power of 0.80 and a significance level of 0.05, 22 volunteers should be included.

To identify differences in pain score, erythema % and pigmentation % between the treatment fields we used Wilcoxon Signed Ranked Test, since all results were paired.

For all calculations a p-value <0.05 was considered statistical significant. All analyses were performed with PASW Statistics 19.0 for Windows (SPSS Inc, Chicago, Ill., USA).

Example 3—Evaluation of Efficacy of 5-Mal in Daylight (DL)-PDT in Subjects with Moderate to Severe Acne

1. Study Objectives and Clinical Hypothesis

Study Objectives:

The primary objective of this study is to evaluate the efficacy of 5-MAL cream combined with DL PDT compared to its vehicle in patients with moderate to severe facial acne vulgaris using a randomized, controlled and investigator-blinded study design.

The secondary objective of this study is to assess the local tolerance of CD06809-41 cream.

Clinical Hypothesis:

The hypothesis of the study is that 5-MAL is more efficacious than its vehicle in moderate to severe acne when combined with DL-PDT. In this study, 5-MAL combined with DL-PDT is expected to reduce the total number of inflammatory lesions, which are major symptoms of moderate to severe acne, and also to be associated with less pain.

2. Study Design

This is an exploratory, single-center, randomized, placebo-controlled, investigator-blinded, intra-individual (left versus right comparison) study, involving approximately 16 subjects with moderate to severe acne, meeting specific inclusion/exclusion criteria.

This study consists of:

    • An up to 4-week screening period (within 3 to 30 days prior to Baseline) except for women of childbearing potential for whom a minimum of 2 weeks between the screening visit and the Day 1 visit (Baseline) is required;
    • A treatment session with DL-PDT during which each subject will receive 5-MAL on one side of the face versus vehicle on the other side, on pre-treated skin using Homecare Dermaroller (expected hole depth about 0.2 mm).
    • A 3-month follow-up period (endpoint) and an optional second session with DL-PDT during which the side of the face treated by 5-MAL cream will receive placebo and vice-versa.
    • A 1 week follow-up period.

The second treatment session is not mandatory: it will only be performed on subjects who request it, and according to Investigator's judgment.

3. Results

As revealed in the tables below the acne lesions (inflammatory and non-inflammatory) in the DL-PDT treated area with Metvix (5-MAL, otherwise referred to as Metvixia) showed better results comparing to the placebo, with a progressive regression observed to 3 months concerning the non-inflammatory lesions. The reduction from baseline was about 59% regarding the inflammatory lesions after one month of treatment and 56% of the non-inflammatory lesions at the 3-month follow-up. The total lesion reduction was around 50%.

TABLE 9_2_4_1_2 Percent reduction from Baseline in Inflammatory lesion at each evaluation visit METVIXIA PLACEBO METVIXIA − PLACEBO p* Week 4/ITT n 15   15   15   Mean +/− sd 54.1 +/− 25.4 35.2 +/− 34.2 18.9 +/− 36.2 Median 58.8 35.3 20.3 0.063 (Min, Max) (−13.3, 76.5) (−50.0, 90.5)  (−31.7, 114.7) Week 8/ITT n 14   14   14   Mean +/− sd 51.8 +/− 30.1 32.4 +/− 32.5 19.4 +/− 32.8 Median 55.9 37.1 24.6 0.068 (Min, Max) (−26.7, 88.2) (−33.3, 81.0) (−43.3, 80.4) Week 12/ITT n 7  7  7  Mean +/− sd 35.3 +/− 30.9 22.7 +/− 37.5 12.6 +/− 47.0 Median 33.3 28.6 26.5 0.678 (Min, Max)  (−3.3, 76.5) (−36.7, 69.2) (−60.9, 51.5) *p-value by two-sided Wilcoxon rank signed test

TABLE 9_2_4_1_6 Percent reduction from Baseline in Non inflammatory lesion at each evaluation visit METVIXIA PLACEBO METVIXIA − PLACEBO p* Week 4 TT n 15   15   15   Mean +/− sd 37.4 +/− 27.2 30.1 +/− 32.0 7.3 +/− 34.5 Median 38.6 26.7 13.3 0.661 (Min, Max) (−25.0, 87.5) (−40.0, 81.8) (−45.0, 94.5) Week 8 TT n 14   14   14   Mean +/− sd 34.6 +/− 35.0 17.9 +/− 33.1 16.7 +/− 30.4 Median 32.1 19.4 19.4 0.078 (Min, Max) (−45.0, 84.6) (−60.9, 61.6) (−36.0, 64.8) Week 1 TT n 7  7  7  Mean +/− sd 39.7 +/− 37.6 26.4 +/− 40.8 13.4 +/− 9.5 Median 56.3 38.5 11.8 0.031 (Min, Max) (−18.2, 64.6) (−30.0, 84.6)  (0.0, 30.0) *p-value by two-sided Wilcoxon rank signed test indicates data missing or illegible when filed

TABLE 9_2_4_1_8 Percent reduction from Baseline in Total lesion at each evaluation visit METVIXIA PLACEBO METVIXIA − PLACEBO p* Week 4 TT n 15   15   15   Mean +/− sd 47.3 +/− 19.8 34.2 +/− 22.4 13.1 +/− 25.1 Median 52.0 34.5 6.0 0.073 (Min, Max) (0.0, 72.7)  (−9.5, 78.8) (−26.1, 66.0) Week 8 TT n 14   14   14   Mean +/− sd 43.6 +/− 26.9 25.0 +/−28.5 18.6 +/−27.0 Median 48.0 23.4 20.6 0.030 (Min, Max) (0.0, 87.5) (−24.3, 67.9) (−15.7, 66.6) Week 12 TT n 7  7  7  Mean +/− sd 38.3 +/− 27.9 25.7 +/− 38.2 12.8 +/−24.9 Median 60.0 32.7 17.3 0.219 (Min, Max) (2.9, 71.9) (−24.3, 78.6) (−28.6, 37.7) *p-value by two sided Wilcoxon rank signed test indicates data missing or illegible when filed

Claims

1. A method of treating acne in an animal, the method comprising treating the acne by photodynamic therapy (PDT), wherein a photosensitizer is applied to the skin of the animal after a pretreatment of the skin.

2. The method according to claim 1, wherein the photosensitizer is applied for a duration of from 4 minutes to 4 hours.

3. The method according to claim 2, wherein the duration is from 15 minutes to 3 hours.

4. The method according to claim 1, wherein the photosensitizer is applied for a short period of time.

5. The method according to claim 4, wherein the short period of time is from 5 minutes to 120 minutes.

6. The method according to claim 4, wherein the short period of time is from 15 minutes to 60 minutes.

7. The method according to claim 4, wherein the short period of time is from 20 minutes to 40 minutes.

8. The method according to claim 4, wherein the short period of time is selected from the group consisting of 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 and 35 minutes.

9. A method of treating acne in an animal, the method comprising treating the acne by photodynamic therapy (PDT), wherein a photosensitizer is applied for a short period of time.

10. The method according to claim 9, wherein the short period of time is from 5 minutes to 120 minutes.

11. The method according to claim 9, wherein the short period of time is from 15 minutes to 60 minutes.

12. The method according to claim 9, wherein the short period of time is from 20 minutes to 40 minutes.

13. The method according to claim 9, wherein the short period of time is selected from the group consisting of 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 and 35 minutes.

14. The method according to claim 1, wherein the method reduces side effects associated with PDT.

15. The method according to claim 1, wherein the PDT includes a photoactivation achieved by a natural light source.

16. The method according to claim 15, wherein the PDT includes a photoactivation for a duration of from 0.5 hour to 3 hours with the natural light source.

17. The method according to claim 15, wherein the natural light source is sunlight.

18. The method according to claim 1, wherein the PDT comprises:

a) subjecting the skin of the animal to a pretreatment;
b) administering to the animal a composition comprising the photosensitizer for a duration of from 5 minutes to 120 minutes; and
c) photoactivating the photosensitizer for a duration of from 0.5 hour to 3 hours with natural light.

19. The method according to claim 18, wherein the pretreatment is mechanical or chemical pretreatment.

20. The method according to claim 1, wherein the PDT comprises:

a) subjecting the skin of the animal to a pretreatment;
b) administering to the animal a composition comprising the photosensitizer for a duration of about 30 minutes;
c) removing the photosensitizer; and
d) photoactivating the photosensitizer 2.5 hours later for a duration of at least 2 hours with natural light.

21. The method according to claim 20, wherein the pretreatment is mechanical or chemical pretreatment.

22. The method according to claim 21, wherein the pretreatment is sandpaper.

23. The method according to claim 20, wherein the photosensitizer is administered for a duration selected from the group consisting of 27, 28, 29, 30, 31 and 32 minutes.

24. The method according to claim 23, wherein the duration is 30 minutes.

25. The method according to claim 1, wherein the photosensitizer is selected from the group consisting of 5-ALA, 5-ALA derivatives, 5-MAL derivatives, and compounds covered by general formula I:

R22N—CH2COCH2—CH2CO—OR1  (I)
wherein:
R1 represents a substituted or unsubstituted straight, branched or cyclic alkyl group; and each R2 independently represents a hydrogen atom or an optionally substituted alkyl group; and pharmaceutically acceptable salts thereof.

26. The method according to claim 25, wherein R1 is a substituted or unsubstituted straight-chained alkyl group.

27. The method according to claim 1, wherein the photosensitizer is 5-ALA or 5-methyl ALA ester.

28. The method according to claim 1, wherein administering to the animal of a composition comprising the photosensitizer is carried out with or without occlusion.

29. The method according to claim 28, wherein the administration of the photosensitizer is carried out with occlusion.

30. The method according to claim 1, wherein the pretreatment is selected from the group consisting of mechanical pretreatment and chemical pretreatment.

31. The method according to claim 30, wherein the mechanical pretreatment is dermoabrasion or microneedling.

32. The method according to claim 30, wherein the chemical pretreatment is peeling.

Patent History
Publication number: 20190209686
Type: Application
Filed: Jan 2, 2019
Publication Date: Jul 11, 2019
Applicant: GALDERMA RESEARCH & DEVELOPMENT (Biot)
Inventor: Hans Christian WULF (Espergaerde)
Application Number: 16/238,044
Classifications
International Classification: A61K 41/00 (20060101); A61K 31/22 (20060101); A61N 5/06 (20060101); A61K 31/197 (20060101); A61M 37/00 (20060101);