HAPTIC NOTIFICATION COMMUNICATION SYSTEM

A system is provided that facilitates communication of haptic notification messages. The system receives a haptic notification message from a tool within a network, where the haptic notification message indicates that the tool has detected an event. The system further determines whether the haptic notification message is a haptic notification message that is required to be transmitted to at least one haptic notification device within the network. The system further transmits the haptic notification message to the at least one haptic notification device using the network in response to a determination that the haptic notification message is a haptic notification message that is required to be transmitted to at least one haptic notification device, where the at least one haptic notification device generates a haptic notification in response to receiving the haptic notification message.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
PRIORITY APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/739,002, filed on Jun. 15, 2015, which has been incorporated herein by reference in its entirety.

FIELD

One embodiment is directed generally to a system, and more particularly, to a system that communicates notification messages to a device.

BACKGROUND

In situations involving power tools, a power tool can have the capability of detecting an event within its environment and notifying a user of the power tool of the event. For example, an electric drill can detect that its battery is about to die, and can notify a user about the low battery using a visual notification (such as displaying a visual indication within a handle of the electric drill) or an audio notification (such as outputting an audible beeping noise). However, providing a notification to the user can be very specific to the user and the specific power tool currently in the hand of the user. Further, problems can arise when there are different user preferences, different tools, and different events that require a notification. It can be difficult to abstract the various notifications for delivery and output. Further, the problems can become more complex if it is necessary to notify multiple users simultaneously about an event detected by the power tool within its environment. Even further, there can be situations (e.g., a noisy or otherwise chaotic environment) where an audio notification or a visual notification is not useful to the user.

SUMMARY

One embodiment is a system that facilitates communication of haptic notification messages. The system receives a haptic notification message from a tool within a network, where the haptic notification message indicates that the tool has detected an event. The system further determines whether the haptic notification message is a haptic notification message that is required to be transmitted to at least one haptic notification device within the network. The system further transmits the haptic notification message to the at least one haptic notification device using the network in response to a determination that the haptic notification message is a haptic notification message that is required to be transmitted to at least one haptic notification device, where the at least one haptic notification device generates a haptic notification in response to receiving the haptic notification message.

BRIEF DESCRIPTION OF THE DRAWINGS

Further embodiments, details, advantages, and modifications will become apparent from the following detailed description of the preferred embodiments, which is to be taken in conjunction with the accompanying drawings.

FIG. 1 illustrates a diagram of a haptic notification communication system in accordance with one embodiment of the invention.

FIG. 2 illustrates a diagram of a communication between a power tool and a haptic notification device, according to an embodiment of the invention.

FIG. 3 illustrates a flow diagram of the functionality of a haptic notification communication module, according to an embodiment of the invention.

DETAILED DESCRIPTION

In one embodiment, a haptic notification communication system is provided, where the haptic notification communication system can provide a framework of interconnected power tools, where the power tools can communicate with one or more users of the power tools in order to provide haptic effects which can serve as notifications (i.e., “haptic notifications”) to the users. The haptic notifications can be provided to the users using haptic notification devices or the power tools themselves. The haptic notification communication system, the power tools and/or the haptic notification devices can be operably connected to each other via a network, such as a computer network or some other type of data network. The power tools can be “intelligent” power tools that can detect their environment and can further provide haptic notification messages to the haptic notification communication system via the network.

The haptic notification communication system can subsequently send the haptic notification messages to the haptic notification devices, where the haptic notification devices can generate haptic effects, such as vibrotactile haptic effects, deformation haptic effects, or electrostatic friction haptic effects. Alternatively, or additionally, the haptic notification communication system can send the haptic notification messages to the other power tools, where the other power tools can also generate haptic effects, such as vibrotactile haptic effects, deformation haptic effects, or electrostatic friction haptic effects. The haptic notification communication system can further determine whether a haptic notification message received from a power tool is a type of haptic notification message that should be propagated to the haptic notification devices and/or the power tools. The haptic notification communication system can also determine which haptic notification devices and/or power tools the haptic notification messages are propagated to.

Thus, in one embodiment, a first power tool detects an event that the first power tool should provide a notification to a first user and a second user. The first user and the second user each have a device registered with a network. As an example, the first user has a second power tool registered with a network, and the second user has a wearable device registered within the network. The first power tool sends a haptic notification message to the second power tool of the first user and the wearable device of the second user. The second power tool and the wearable device each receive the haptic notification message, identify a notification identifier included within the haptic notification message, and generate a haptic notification (e.g., a haptic effect), where the first user experiences the haptic notification through the second power tool, and the second user experiences the haptic notification through the wearable device.

For example, according to an example embodiment, a power tool (e.g., an electric drill) detects that its battery is about to run out of power. The power tool sends a haptic notification message to the haptic notification communication system via a network, where the haptic notification message notifies a user that the battery of the power tool is about to run out of power, and where the haptic notification message is intended to be sent to a first user and a second user. The haptic notification communication system can determine that the haptic notification message is a type of haptic notification message that should be propagated to the first user and the second user. The haptic notification communication system can further determine that the first user and second user each have a haptic notification device registered on the network, where the first user prefers to receive haptic notifications from a haptic notification device that is a wearable device, and the second user prefers to receive haptic notifications from a haptic notification device that is a mobile device.

The haptic notification communication system subsequently sends the haptic notification message via the network to the first user, where the first user receives a haptic notification via the haptic notification device that is a wearable device. More specifically, the wearable device receives the haptic notification message and generates a haptic effect based on the received haptic notification message, where the haptic effect notifies the first user of the detected event. The haptic notification communication system further sends the haptic notification message via the network to the second user, where the second user receives a haptic notification via the haptic notification device that is a mobile device. More specifically, the mobile device receives the haptic notification message and generates a haptic effect based on the received haptic notification message, where the haptic effect notifies the second user of the detected event.

As another example, according to another example embodiment, a power tool (e.g., an electric pan) detects that a pre-determined amount of time (e.g., 10 minutes) has elapsed since the power tool was initiated. The power tool sends a haptic notification message to the haptic notification communication system via a network, where the haptic notification message notifies a user that the pre-determined amount of time has expired, and further indicates that food may burn if the power tool is not turned off, where the haptic notification message is intended to be sent to a first user and a second user.

The haptic notification communication system can further determine that the haptic notification message is a type of haptic notification message that should be propagated to the first user and the second user. The haptic notification communication system sends the haptic notification message via the network to the first user, where the first user receives a haptic notification via the haptic notification device that is a wearable device. More specifically, the wearable device receives the haptic notification message and generates a haptic effect based on the received haptic notification message, where the haptic effect notifies the first user of the detected event. The haptic notification communication system further sends the haptic notification message via the network to the second user, where the second user receives a haptic notification via another power tool (e.g., an electric knife). More specifically, the power tool receives the haptic notification message and generates a haptic effect based on the received haptic notification message, where the haptic effect notifies the second user of the detected event.

As another example, according to another example embodiment, a first worker is using a power tool (e.g., electric drill) to create a hole within a piece of wood. The wood is not as thick as anticipated, and a component of the power tool (e.g., a drill bit of the electrical drill) is about to penetrate the piece of wood. Further, a second worker is standing behind the piece of wood. The power tool sends a haptic notification message to a network to cause the power tool and a wearable haptic notification device of the second user to generate a haptic notification. Both the first worker and the second worker receive haptic notifications. The first worker receives a haptic notification via the power tool. The second worker receives a haptic notification via the wearable haptic notification device.

FIG. 1 illustrates a diagram of a haptic notification communication system 10, in accordance with one embodiment of the invention. Haptic notification communication system 10 can be any type of computer system, such as a server, that provides functionality for facilitating communication of haptic notification messages, as described below in greater detail. Although shown as a single system, the functionality of haptic notification communication system 10 can be implemented as a distributed system. Haptic notification communication system 10 includes a processor 11 configured to process information, where processor 11 can be coupled to a bus or other communication mechanism (not illustrated in FIG. 1) that is configured to communicate information. Processor 11 may be any type of general or specific purpose processor. Haptic notification communication system 10 further includes a memory 14 for storing information and instructions to be executed by processor 11. Memory 14 can be comprised of any combination of random access memory (“RAM”), read only memory (“ROM”), static storage such as a magnetic or optical disk, or any other type of computer-readable medium.

A computer-readable medium may be any available medium that can be accessed by processor 11 and may include both a volatile and nonvolatile medium, a removable and non-removable medium, a communication medium, and a storage medium. A communication medium may include computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any other form of an information delivery medium known in the art. A storage medium may include RAM, flash memory, ROM, erasable programmable read-only memory (“EPROM”), electrically erasable programmable read-only memory (“EEPROM”), registers, hard disk, a removable disk, a compact disk read-only memory (“CD-ROM”), or any other form of a storage medium known in the art.

In one embodiment, memory 14 stores software modules that provide functionality when executed by processor 11. The modules include a haptic notification communication module 16 that facilitates communication of haptic notification messages, as disclosed in more detail below. In certain embodiments, haptic notification communication module 16 can comprise a plurality of modules, where each module provides specific individual functionality for facilitating communication of haptic notification messages. Haptic notification communication system 10 will typically include one or more additional application modules 18 to include additional functionality, such as Integrator™ software by Immersion Corporation.

Haptic notification communication system 10 further includes a communication device 19, such as a network interface card, to provide mobile wireless network communication, such as infrared, radio, Wi-Fi, or cellular network communication. In other embodiments, communication device 19 provides a wired network connection, such as an Ethernet connection or a modem.

Haptic notification communication system 10 is further operably coupled to network 20. Network 20 is a computer network that can be directly connected to the Internet, indirectly connected to the Internet, or not connected to the Internet at all. Network 20 can be local access network (“LAN”), a wide access network (“WAN”), a personal area network (“PAN”), a home area network (“HAN”), a campus area network (“CAN”), a metropolitan area network (“MAN”), a global area network (“GAN”), a storage area network (“SAN”), a virtual private network (“VPN”), a wireless network, a wireless LAN, a HomePNA, a power line communication network, a G.hn network, a Bluetooth network, an optical fiber network, an Ethernet network, an active networking network, a client-server network, a peer-to-peer network, a bus network, a star network, a ring network, a mesh network, a star-bus network, a tree network, a hierarchical topology network, or any other type of computer network that is known in the art.

According to the illustrated embodiment, power tools 30, 40, and 50 are also operably coupled to network 20. Power tools 30, 40, and 50 are power tools that are configured to be actuated by a non-manual power source or mechanism, such as an electrical power source or electrical mechanism, and are further configured to detect an external or internal event. Power tools 30, 40, and 50 can be further configured to send haptic notification messages within network 20. Examples of power tools can include: electric drills, electric saws, electric nail guns, electric knives, electric hammers, electric pans, etc. A power tool can also be identified as a “tool” or a “device.” Power tools are further described below in greater detail in conjunction with FIG. 2. One of ordinary skill in the art would readily appreciate that the number of power tools operably coupled to network 20 is an example number according to the example embodiment, and that in alternate embodiments, any number of power tools can be operably coupled to network 20.

According to the illustrated embodiment, haptic notification devices 60 and 70 are also operably coupled to network 20. Haptic notification devices 60 and 70 are devices that are “haptically enabled,” meaning they include a mechanism to generate haptic effects which can serve as haptic notifications to a user. Haptic notification devices 60 and 70 can be further configured to receive haptic notification messages from power tools 30, 40, and 50 via network 20, and to generate haptic notifications in response to, and based on, the haptic notification messages. One type of a haptic notification device can be a mobile device. Examples of mobile devices can include: smartphones; tablets; laptop computers; personal computers; personal digital assistants (“PDAs”), etc. Another type of haptic notification device can be a wearable device. Examples of wearable devices can include: wrist bands, headbands, eyeglasses, rings, leg bands, arrays integrated into clothing, other types of device that a user may wear on a body or that can be held by a user, etc. Haptic notification devices are further described below in greater detail in conjunction with FIG. 2. One of ordinary skill in the art would readily appreciate that the number of haptic notification devices operably coupled to network 20 is an example number according to the example embodiment, and that, in alternate embodiments, any number of haptic notification devices can be operably coupled to network 20. Further, in an alternate embodiment, a haptic notification device can be replaced by a power tool, where the power tool is configured to receive haptic notification messages from power tools 30, 40, and 50 via network 20, and to generate haptic notifications in response to, and based on, the haptic notification messages.

According to an embodiment, haptic notification communication system 10 can register power tools 30, 40, and 50 with network 20 by assigning a unique power tool identifier to power tools 30, 40, and 50. In one embodiment, the unique power tool identifier can be an Internet protocol (“IP”) address of a power tool. Further, according to the embodiment, haptic notification communication system 10 can further register haptic notification devices 60 and 70 with network 20 by assigning a unique haptic notification device identifier to haptic notification devices 60 and 70. In one embodiment, the unique haptic notification device identifier can be an IP address of the haptic notification device.

Further, according to an embodiment, haptic notification communication system 10 can facilitate communication of haptic notification messages between power tools 30, 40, and 50, and haptic notification devices 60 and 70. More specifically, haptic notification communication system 10 can receive haptic notifications messages that are sent by power tools 30, 40, and 50 via network 20. Haptic notification communication system 10 can further determine whether the haptic notification messages are required to be propagated, or otherwise transmitted, to other entities within network 20 (e.g., any of power tools 30, 40, and 50, and haptic notification devices 60 and 70). In one embodiment, each haptic notification message includes a notification type, and haptic notification communication system 10 can determine the notification type of each haptic notification message. Haptic notification communication system 10 can further compare the determined notification type of each haptic notification message with a pre-defined set of notification types, where the pre-defined set of notification types defines a set of haptic notification messages that are required to be transmitted to one, some, or all of the other entities within network 20 (e.g., any of power tools 30, 40, and 50, and haptic notification devices 60 and 70) via network 20. In response to a determination that the haptic notification messages are required to be transmitted, haptic notification communication system 10 can further send the haptic notification messages to any of the other entities within network 20 (e.g., any of power tools 30, 40, and 50, and haptic notification devices 60 and 70) via network 20. The communication of haptic notification messages is further described below in greater detail in conjunction with FIG. 2.

In accordance with the embodiment, haptic notification communication system can establish a communication protocol via a format of the haptic notification messages. In one embodiment, a format of a haptic notification message can include a notification identifier that is a unique identifier that uniquely identifies the haptic notification message. Further, according to the embodiment, the notification identifier can include a notification type identifier that identifies a notification type of the haptic notification message. Further, in one embodiment, the format of the haptic notification message can further include one or more haptic notification device identifiers that identify intended recipients of the haptic notification message, where the intended recipients are haptic notification devices. Additionally, or alternatively, the format of the haptic notification message can further include one or more power tool identifiers that identify intended recipients of the haptic notification message, where the intended receipts are other power tools. A format of a haptic notification message is further described below in greater detail in conjunction with FIG. 2.

In one embodiment, as previously described, haptic notification communication system 10 can compare a determined notification type of each haptic notification message with a pre-defined set of notification types. According to the embodiment, haptic notification communication system 10 can define the set of notification types to include types of notifications that notify a user of an event involving a power tool that could require a user's attention. An example set of notification type that can be defined by haptic notification communication system 10 as a pre-defined set of notification types can include the following notifications in one example embodiment: a notification of a status of a power tool (e.g., battery dying, power tool overheating etc.); a notification to stop drilling, or performing some other action, after an electric drill, or some other power tool, has reached a target distance; a notification to prevent the user from performing an action with a power tool (e.g., stripping a screw, etc.); a safety-based notification (e.g., the power tool is about to break, a user's thumb is too close to the power tool, etc.); a notification that a component of a power tool (e.g., bit, saw, etc.) is dull, or otherwise needs to be replaced; a notification that a component of a power tool (e.g., screw, etc.), is not a correct size (e.g., too long, etc.) for an intended action; a notification that an obstruction (e.g., a knot, a nail, etc.) has been detected by a power tool; or a notification that a component of a power tool (e.g., bit, screw, saw, etc.) is overheating. A pre-defined set of notification types is further described below in greater detail in conjunction with FIG. 2.

Further, in accordance with the embodiment, an entity within network 20 (e.g., any of power tools 30, 40, and 50, and haptic notification devices 60 and 70) can generate an appropriate haptic notification (e.g., an appropriate haptic effect) to a user based on the received haptic notification message. The entity can receive the haptic notification message and determine a notification identifier of the haptic notification message. The entity can further determine a notification type of the haptic notification message, where the notification type can be included within the notification identifier. The entity can then select an appropriate haptic notification (e.g., an appropriate haptic effect) based on the determined notification type, and can then generate the selected haptic notification (e.g., the selected haptic effect) to the user. The generation of the haptic notification is further described below in greater detail in conjunction with FIG. 2.

FIG. 2 illustrates a diagram of a communication between a power tool 210 and a haptic notification device 220, according to an embodiment of the invention. Power tool 210 is a power tool as previously described in conjunction with FIG. 1. In one embodiment, power tool 210 can be identical to one of power tools 30, 40, or 50 of FIG. 1. Power tool 210 includes a processor 211 configured to process information, where processor 211 can be coupled to a bus or other communication mechanism (not illustrated in FIG. 2) that is configured to communicate information. Processor 211 may be any type of general or specific purpose processor. Power tool 210 further includes a communication device 212, such as a network interface card, to provide mobile wireless network communication, such as infrared, radio, Wi-Fi, or cellular network communication. In other embodiments, communication device 212 provides a wired network connection, such as an Ethernet connection or a modem.

Power tool 210 further includes a sensor 213. Sensor 213 can be configured to detect a form of energy, or other physical property, such as, but not limited to, sound, movement, acceleration, bio signals, distance, flow, force/pressure/strain/bend, humidity, linear position, orientation/inclination, radio frequency, rotary position, rotary velocity, manipulation of a switch, temperature, vibration, or visible light intensity. Sensor 213 can further be configured to convert the detected energy, or other physical property, into an electrical signal, or any signal that represents virtual sensor information. Sensor 213 can be any device, such as, but not limited to, an accelerometer, an electrocardiogram, an electroencephalogram, an electromyograph, an electrooculogram, an electropalatograph, a galvanic skin response sensor, a capacitive sensor, a hall effect sensor, an infrared sensor, an ultrasonic sensor, a pressure sensor, a fiber optic sensor, a flexion sensor (or bend sensor), a force-sensitive resistor, a load cell, a LuSense CPS2 155, a miniature pressure transducer, a piezo sensor, a strain gage, a hygrometer, a linear position touch sensor, a linear potentiometer (or slider), a linear variable differential transformer, a compass, an inclinometer, a magnetic tag (or radio frequency identification tag), a rotary encoder, a rotary potentiometer, a gyroscope, an on-off switch, a temperature sensor (such as a thermometer, thermocouple, resistance temperature detector, thermistor, or temperature-transducing integrated circuit), microphone, photometer, altimeter, bio monitor, camera, or a light-dependent resistor. In alternate embodiments, tool 210 can include one or more additional sensors, in addition to sensor 213 (not illustrated in FIG. 2). In some of these embodiments, sensor 213 and the one or more additional sensors may be part of a sensor array, or some other type of collection of sensors.

In one embodiment, power tool 210 can further include an actuator 214. Processor 211 may transmit a haptic signal associated with a generated haptic effect to actuator 214, which in turn outputs haptic effects such as vibrotactile haptic effects, electrostatic friction haptic effects, or deformation haptic effects. Actuator 214 includes an actuator drive circuit. Actuator 214 may be, for example, an electric motor, an electro-magnetic actuator, a voice coil, a shape memory alloy, an electro-active polymer, a solenoid, an eccentric rotating mass motor (“ERM”), a linear resonant actuator (“LRA”), a piezoelectric actuator, a high bandwidth actuator, an electroactive polymer actuator (“EAP actuator”), a macro fiber composite actuator (“MFC actuator”), an electrostatic friction display, or an ultrasonic vibration generator. In alternate embodiments, tool 210 can include one or more additional actuators, in addition to actuator 214 (not illustrated in FIG. 2). Actuator 214 is an example of a haptic output device, where a haptic output device is a device configured to output haptic effects, such as vibrotactile haptic effects, electrostatic friction haptic effects, or deformation haptic effects, in response to a drive signal. In alternate embodiments, actuator 214 can be replaced by some other type of haptic output device.

Haptic notification device 220 is a device that is haptically enabled and that generates haptic notifications in response to, and based on, received haptic notification messages as previously described in conjunction with FIG. 1. In one embodiment, haptic notification device 220 can be identical to one of haptic notification devices 60 or 70 of FIG. 1. Haptic notification device 220 includes a processor 221 configured to process information, where processor 221 can be coupled to a bus or other communication mechanism (not illustrated in FIG. 2) that is configured to communicate information. Processor 221 may be any type of general or specific purpose processor. Haptic notification device 220 further includes a communication device 222, such as a network interface card, to provide mobile wireless network communication, such as infrared, radio, Wi-Fi, or cellular network communication. In other embodiments, communication device 222 provides a wired network connection, such as an Ethernet connection or a modem.

In one embodiment, haptic notification device 220 can include a display 223 such as a Liquid Crystal Display (“LCD”), for displaying a graphical representation or user interface to a user. The display 223 may be a touch-sensitive input device, such as a touch screen, configured to send and receive signals from processor 221, and may be a multi-touch touch screen.

Haptic notification device 220 further includes an actuator 224. Processor 221 may transmit a haptic signal associated with a generated haptic effect to actuator 224, which in turn outputs haptic effects such as vibrotactile haptic effects, electrostatic friction haptic effects, or deformation haptic effects. In alternate embodiments, haptic notification device 220 can include one or more additional actuators, in addition to actuator 224 (not illustrated in FIG. 2). Actuator 224 is an example of a haptic output device, where a haptic output device is a device configured to output haptic effects, such as vibrotactile haptic effects, electrostatic friction haptic effects, or deformation haptic effects, in response to a drive signal. In alternate embodiments, actuator 224 can be replaced by some other type of haptic output device.

According to an embodiment, sensor 213 of power tool 210 can be configured to detect an event. More specifically, sensor 213 can be configured to detect an environment of power tool 210 and can further be configured to detect an event that occurs within the environment. The event can be external to power tool 210 or internal to power tool 210. A list of example events that can be detected by sensor 213 of power tool 210 can include the following events, in one example embodiment: a change in one or more characteristics of power tool 210 or a component of power tool 210 (e.g., a battery of power tool 210 dying, power tool 210 overheating, power tool 210 is about to break, etc.); a movement of power tool 210 to a target distance; an occurrence of an object within a pre-determined distance of power tool 210; a disparity in size of a component of power tool 210 in relation to an intended action of power tool 210; or an occurrence of a user within a pre-determined distance of power tool 210.

An expanded list of example events is provided below, in accordance with an example embodiment:

Novice Problem Professional solution Solutions Degree/source of frustration Drilling a Maintain the drill in a Drilling a You have to align on x and y straight line straight line. This skill straight line is axis while moving forward in the (hole) increases with practice a big problem z axis. Bubble and laser solution for novice only align the drill on the y-axis. users, most Some drills are not ninety likely they will degrees by nature, which not get it from complicates alignment. the first time If the hole is not straight, this (they would could cause problems when probably aligning two holes together need more than one try) Drilling a Align bit with screw Same as The screw will not go in straight. straight line horizontally (or above It might cause damages and it (screw) vertically depending on might not go in completely, it will the direction of where be tilted. the drilling is required) Stripping a screw into the wood Drilling to a Place tape on the bit, Rely mostly Dust could impair vision. certain point and drill fast at the on vision. Will Moreover the tape on the screw (e.g. 2 inches beginning slower near not be able to might fly off. deep) the end. get precise measurement Stripping the Make sure the bit is Go with a Difficult to get the screw out screw completely inside the slower once it is in. screw and that it is speed. Stop straight. Rely on noise and check and jitter of the drill to constantly see when to stop. (High quality bits and screws reduce damaging the screws). Drill slips out of Align bit with screw N/A Injuries mainly. The drill could the screw while Make sure the bit is cause damage to the wood operating. completely inside the (when it drills in a different screw. place). Use sharp bits. Going slower sometimes Screw (or bit) For studs, when hitting N/A N/A is too long and a concrete wall, the it penetrates drill stops going through the through and they have wood (or stud) to remove it and start fresh (new hole). Sometimes they see the screw going out the other side (when it is not a stud). Dull bits or Change the bit or Usually they Good bit fitted perfectly there is blades blade. Sometimes this would not do less vibrations, it is more could be detected anything comfortable, and it screws easily visually, other times because they (for holes). For screws dull bits from the extra force own one set will strip the screw faster they have to apply (this of With an electric saw, dull blades could also lead to accessories make it jitters or vibrates causing breaking the bit). the cut to become difficult. Missing the When the drill rotates Novice users The intended place to drill is the stud location continuously without are stud, not the empty space and drilling in resistance, they would sometimes between them. A stud finder gyprock know it's a wrong unaware they would help but it is an extra place and should have to drill device they have to carry on change the location in the stud. them. They use plastic housing for the screws. Overdriving Requires a really low Probably not The screw goes inside the wall screw in speed setting (clutch) a real causing a slight damage in the drywall to prevent the concern for wall overdrive. On the other novice users. hand ply wood needs a high clutch setting Centering bit Nice when the chuck N/A Definitely a problem for novice into a chuck blocks making a users. sound. They rotate the chuck until they here the click. Breaking the Replace the bit after it Placing the Sometimes a bit is not as strong bit while drilling is broken. bit into the as it should be, especially when Professionals usually chuck digging through concrete. have separate drill with incorrectly by bit set for drilling into novice users concrete. Bur for a increases the hole or two and for chances of convenience, they use breaking the the regular set. Hence bit. some will break. Encountering a No easy way to check Same as The drill could hit the nail solid nail in the for nails. Visual professionals causing injuries. wood while alertness sometimes drilling help Forgetting to They hear or feel the N/A If they don't hear the vibrations lock the drill vibration when of the drill, this could drain the switch inserting the drill on battery their belt then turn it off Battery dying There is no Novice users The one that dies workaround for this, usually instantaneously provide batteries eventually acquire two maximum power up until it dies. die. There are two batteries with The maximum power is useful types, however, one their drill to for certain jobs. The other type that dies gradually and replace one reduces the power gradually so one that dies when the the drill will not be as powerful instantaneously. Some other dies. throughout, but if you need a professionals prefer small push like drilling half a the former, while screw it will be useful. others prefer the latter. Heated screws You need to go slower N/A When drilling through metal, or and bits. at the beginning then using metal screws, the end of gradually increase the the bit becomes too hot and it speed (metal screws could get ruined. heat the bit). LED light Some drills have better N/A LED is placed near the chuck location for LED light sometimes rendering it to view working areas ineffective. It is better if it is in dark places placed near the battery. Drilling Replace a bit with Probably will Knot in the wood difficult to go (screwing) a stronger one. keep trying through knot in the with the It'll be harder on the saw and wood same bit. If a harder on the drill battery dies while operating rotating replace and keep going. Safety Use goggles and Some uses There are some dangerous Concerns precautions for e.g. goggles situation that could be avoided when operating the with experience. Most novice electrical saw. users are afraid to operate a Gloves are NOT saw, for safety reasons. recommended Cutting Comes almost natural Few novice Too much deviation will ruin the Straight with a with practice. Always users operate wood or metal they are cutting. circular saw mark the wood with a the saw for While deviation the circular saw chalk or pencil. There big cuts. For will jump back at you. Without a are also alignment small cuts, guide it is very hard to cut a markers that you put cutting straight line. on the wood. Some straight is not professionals use T- a big Square, ply wood concern. straight peace for alignment with clamps on the wood. Some hobbyists use saws with straight laser beams. Encountering a No easy way to check Same as The blades are intended for solid nail in the for nails. Visual professionals wood (There are other blades wood while alertness sometimes designed to cut metal). The sawing help metal nail will ruin the blade. The spark produced from cutting the nail is dangerous to the eyes. Cutting shapes N/A N/A N/A with jigsaw Nail gun: After each jobs Novice users The nail will go through the forgetting to professionals should use the wood if it is long, the nail could change nail change the nails hammer injure the worker if his/her hand size for the according to the new mainly, not is behind the wood current job job the nail gun Nail gun hitting The worker should pay Novice users The nail would break the knot a knot in the visual attention for use the and could injure the worker wood knots in the wood hammer mainly, not the nail gun Biometric N/A N/A N/A signal related to user of power tool Environment signal related to environment of user of power tool (e.g., carbon dioxide, heat generated from fire, etc.)

In response to the event detected by sensor 213, power tool 210 can generate haptic notification message 230. Haptic notification message 230 is a message that indicates that sensor 213 of power tool 210 has detected the specific event. In accordance with an embodiment, haptic notification message 230 can include a notification identifier that uniquely identifies haptic notification message 230. According to the embodiment, the notification identifier can include a notification type identifier that identifies a notification type of haptic notification message 230, where a notification type identifies a type of event detected by power tool 210, and where the notification type further identifies the type of notification that is to be communicated to a user. Further, in accordance with an embodiment, haptic notification message 230 can include one or more haptic notification device identifiers that uniquely identify one or more haptic notification devices that are intended recipients. Additionally, or alternatively, haptic notification message 230 can include one or more power tool identifiers that uniquely identify one or more power tools that are intended recipients. An example format of haptic notification message 230 is provided below, in accordance with an example embodiment: [notification identifier (including notification type identifier)

haptic notification device identifier 1

haptic notification device identifier 2

haptic notification device identifier x

power tool identifier 1

power tool identifier 2

power tool identifier x]

In the illustrated embodiment, haptic notification message 230 can include a haptic notification device identifier that uniquely identifies haptic notification device 220.

After generating haptic notification message 230, communication device 212 of power tool 210 can send haptic notification message 230 to a haptic notification communication system (not illustrated in FIG. 2) via a network (also not illustrated in FIG. 2), where power tool 210 and haptic notification device 220 are registered with the network. After receiving haptic notification message 230, the haptic notification communication system can determine whether haptic notification message 230 should be transmitted to one or more devices that are registered within the network, such as haptic notification device 220.

In one embodiment, the haptic notification communication system can retrieve a notification type identifier from a notification identifier of haptic notification message 230, and can further determine a notification type of haptic notification message 230 based on the received notification type identifier. The haptic notification communication system can further compare the determined notification type of haptic notification message 230 with a pre-defined set of notification types, where the pre-defined set of notification types defines a set of haptic notification messages that should be transmitted to a haptic notification device (such as haptic notification device 220) via the network. In one embodiment, the set of haptic notification messages that should be transmitted to a haptic notification device can include haptic notification messages that notify users of events detected by a sensor of a power tool (e.g., sensor 213 of power tool 210) that are deemed to be significant events that require a haptic notification be sent to one or more users. Such significant events can include the example events previously described above, and thus, the set of haptic notification messages can include haptic notification messages that notify users of the example events previously described above. If the determined notification type is within the pre-defined set of notification types, the haptic notification communication system can determine that haptic notification message 230 should be transmitted to one or more devices. If the determined notification type is not within the pre-defined set of notification types, the haptic notification communication system can determine that haptic notification message 230 should not be transmitted to one or more devices.

Further, if haptic notification message 230 should be transmitted to one or more devices, the haptic notification communication system can also determine which device (or devices) that is (or are) registered within the network should receive haptic notification message 230. In certain embodiments, the haptic notification communication system can retrieve one or more haptic notification device identifiers included within haptic notification message 230 and can further determine to send haptic notification message 230 to one or more haptic notification devices uniquely identified by the one or more haptic notification device identifiers. In the illustrated embodiment, the haptic notification communication system can retrieve a haptic notification device identifier from haptic notification message 230 that uniquely identifies haptic notification device 220 and can determine to send haptic notification message 230 to haptic notification device 220. Additionally, or alternatively, the haptic notification communication system can retrieve one or more power tool identifiers included within haptic notification message 230 and can further determine to send haptic notification message 230 to one or more power tools uniquely identified by the one or more power tool identifiers. In alternate embodiments, the haptic notification communication system can further determine a notification type of haptic notification message 230 based on a received notification type identifier, and can further determine to send haptic notification message 230 to one or more haptic notification devices and/or one or more power tools based on the notification type of haptic notification message. In the illustrated embodiment, the haptic notification communication system can retrieve a notification type identifier from haptic notification message 230 that identifies a notification type of haptic notification message, can further determine that the notification type indicates that haptic notification message should be transmitted to haptic notification device 220, and can further determine to send haptic notification message 230 to haptic notification device 220.

Once the haptic notification communication system determines that haptic notification message 230 should be transmitted to haptic notification device 220, the haptic notification communication system sends haptic notification message 230 to haptic notification device 220 via the network. Upon receiving haptic notification message 230 via communication device 222, haptic notification device 220 generates a haptic notification that can be experienced by a user. More specifically, processor 221 of haptic notification device 220 generates a haptic signal, sends the haptic signal to actuator 224, and causes actuator 224 to generate one or more haptic effects. Example haptic effects include: a vibrotactile haptic effect that causes a vibration within haptic notification device 220; a deformation haptic effect that causes a deformation within haptic notification device 220; or an electrostatic friction haptic effect that causes a force to be applied to haptic notification device 200. In one embodiment, processor 221 can cause actuator 224 to generate one or more specific haptic effects based on a notification type of haptic notification message 230.

In an alternate embodiment, power tool 210 can receive, rather than send, haptic notification message 230 via communication device 212. In this alternate embodiment, power tool 210 can generate a haptic notification that can be experienced by a user. More specifically, processor 211 of power tool 210 generates a haptic signal, sends the haptic signal to actuator 214, and causes actuator 214 to generate one or more haptic effects. Example haptic effects include: a vibrotactile haptic effect that causes a vibration within power tool 210 (e.g., within a motor or handle of power tool 210); a deformation haptic effect that causes a deformation within power tool 210 (e.g., within a handle of power tool 210); or an electrostatic friction haptic effect that causes a force to be applied to power tool 210 (e.g., within a handle of power tool 210). In one embodiment, processor 211 can cause actuator 214 to generate one or more specific haptic effects based on a notification type of haptic notification message 230.

Thus, according to an example embodiment, a plurality of users are registered with a specific network. The registration can be done based on a presence of the users within a specified coverage of the network. More specifically, each user can be registered through his or her preferred haptic notification device (e.g., mobile device, wearable device, etc.), where each user possesses the corresponding haptic notification device, and where each haptic notification device is registered with the network using a unique haptic notification device identifier. As the users are working, a safety hazard that is caused by a power tool (e.g., a jackhammer) is also detected by the power tool. The power tool can send haptic notification messages that alert the users regarding the safety hazard to the users registered with the network. Each user registered within the network can receive a haptic notification informing the user of the safety hazard on his or her preferred haptic notification device.

According to another example embodiment, a first user, a second user, and a third user can share a single power tool (e.g., an electric saw) within a construction site. The first, second, and third users each also possess a haptic notification device registered with a network. Upon a detection of the power tool that its battery is dying, the power tool can send a haptic notification message to the haptic notification devices of the first, second, and third users within the network. Each haptic notification device can generate a haptic notification that is experienced by the first user, the second user, and the third user.

According to another example embodiment, a first user is using a power tool (e.g. an electric drill) to power drill through a wood piece, and the second user is painting the wood piece from the other side, where the power tool, the first user, and the second user are connected within a network. The power tool can detect a thickness of the wood piece, and can determine when the end of the wood piece would be reached before a component (e.g., a drill bit) of the power tool penetrates to the other side of the wood piece. Based on the proximity of the two users to the power tool, the power tool can decide to send a haptic notification message to the two users when it is about to penetrate to the other side of the wood piece. The power tool can determine there is no need to send the haptic notification message to other users on the network, because the proximity of the other users, in relation to the power tool, is such that the other users will not be affected by the power tool penetrating the other side of the wood piece. Based on the haptic notification message, the first user can receive a haptic notification via a handle of the power tool, and the second user can receive a separate haptic notification via a wearable device. In this example embodiment, the first user can stop the drilling in response to receiving the haptic notification, and the second user can take precautions in case the drill bit reaches the other side of the wood piece in response to receiving the haptic notification.

FIG. 3 illustrates a flow diagram of the functionality of a haptic notification communication module (such as haptic notification communication module 16 of FIG. 1), according to an embodiment of the invention. In one embodiment, the functionality of FIG. 3 is implemented by software stored in memory or other computer-readable or tangible media, and executed by a processor. In other embodiments, the functionality may be performed by hardware (e.g., through the use of an application specific integrated circuit (“ASIC”), a programmable gate array (“PGA”), a field programmable gate array (“FPGA”), etc.), or any combination of hardware and software. In certain embodiments, some of the functionality can be omitted.

The flow begins and proceeds to 310. At 310, one or more power tools are registered with a network. In certain embodiments, one or more unique power tool identifiers can be assigned to the one or more power tools. Further, in some of these embodiments, a power tool identifier can be an IP address of a power tool. Even further, in some of these embodiments, a power tool can be one of: an electric drill; an electric saw; an electric nail gun; an electric knife; or an electric hammer. The flow then proceeds to 320.

At 320, one or more haptic notification devices are registered with the network. In certain embodiments, one or more unique haptic notification device identifiers can be assigned to the one or more haptic notification devices. Further, in some of these embodiments, a haptic notification device identifier can be an IP address of a haptic notification device. Even further, in some of these embodiments, a haptic notification device can be one of: a mobile device configured to generate haptic effects, a wearable device configured to generate haptic effects, or another power tool. The flow then proceeds to 330.

At 330, a haptic notification message is received from a power tool of the one or more power tools within the network, where the haptic notification message indicates that the power tool has detected an event. In certain embodiments, the haptic notification message can include a notification identifier. Further, in some of those embodiments, the haptic notification message can further include at least one haptic notification device identifier. Even further, in certain embodiments, the power tool can also generate a haptic notification in response to the power tool detecting the event. In some embodiments, the event can be one of: a change in one or more characteristics of the power tool or a component of the power tool; a movement of the power tool to a target distance; an occurrence of an object within a pre-determined distance of the power tool; a disparity in size of a component of the power tool in relation to an intended action of the power tool; or an occurrence of a user within a pre-determined distance of the power tool. The flow then proceeds to 340.

At 340, it is determined whether the haptic notification message is a haptic notification message that is required to be transmitted to at least one haptic notification device of the one or more haptic notification devices within the network. In certain embodiments, a notification type of the haptic notification message can be determined based on the notification identifier included within the haptic notification message. Further, it can be determined whether the notification type is within a pre-defined set of one or more notification types. Event further, in some embodiments, it can be determined whether the at least one haptic notification device is registered with the network based on the at least one haptic notification device identifier included within the haptic notification message. The flow then proceeds to 350.

At 350, the haptic notification message is transmitted to the at least one haptic notification device using the network in response to a determination that the haptic notification message is a haptic notification message that is required to be transmitted to at least one haptic notification device. The at least one haptic notification device generates a haptic notification in response to receiving the haptic notification message. In certain embodiments, the haptic notification includes a haptic effect. Further, in some of these embodiments, the haptic effect can be based on the notification type. Even further, in some of these embodiments, the haptic effect can be one of: a vibrotactile haptic effect; a deformation haptic effect; or an electrostatic friction haptic effect. Further, in some embodiments, the haptic notification message can be transmitted to at least one other power tool of the one or more power tools using the network. In these embodiments, the at least one other power tool can generate a haptic notification in response to receiving the haptic notification message. The flow then ends.

Thus, in accordance with an embodiment, a haptic notification communication system can provide a framework that facilitates communication of haptic notification messages generated by one or more power tools via a network to one or more devices, and that facilitates haptic notifications that are experienced by one or more users using the one or more devices. The haptic notification communication system can further control the propagation of haptic notification messages to specific devices based on detection of specific events by the one or more power tools. In one embodiment, the haptic notification communication system can allow users of power tools to collaborate more easily. For example, different users that are working on the same project, but that are located a significant distance apart from each other, can collaborate and to each other when to start or stop a task, even when their work environment is noisy and verbal communication is not feasible. Further, multiple power tools can be used with ease by users because every new power tool can be connected to the network and associated with a specific user. Thus, the haptic notification communication system can facilitate the use of multiple power tools in separate and distinct locations.

The features, structures, or characteristics of the invention described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, the usage of “one embodiment,” “some embodiments,” “certain embodiment,” “certain embodiments,” or other similar language, throughout this specification refers to the fact that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present invention. Thus, appearances of the phrases “one embodiment,” “some embodiments,” “a certain embodiment,” “certain embodiments,” or other similar language, throughout this specification do not necessarily all refer to the same group of embodiments, and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

One having ordinary skill in the art will readily understand that the invention as discussed above may be practiced with steps in a different order, and/or with elements in configurations which are different than those which are disclosed. Therefore, although the invention has been described based upon these preferred embodiments, it would be apparent to those of skill in the art that certain modifications, variations, and alternative constructions would be apparent, while remaining within the spirit and scope of the invention. In order to determine the metes and bounds of the invention, therefore, reference should be made to the appended claims.

Claims

1. A computer-readable medium having instructions stored thereon that, when executed by a processor, cause the processor to facilitate communication of haptic notification messages, the facilitating comprising:

receiving a haptic notification message from a tool of one or more tools within a network, wherein the haptic notification message indicates that the tool has detected an event;
determining whether the haptic notification message is a haptic notification message that is required to be transmitted to at least one haptic notification device of one or more haptic notification devices within the network; and
transmitting the haptic notification message to the at least one haptic notification device using the network in response to a determination that the haptic notification message is a haptic notification message that is required to be transmitted to at least one haptic notification device;
wherein the at least one haptic notification device generates a haptic notification in response to receiving the haptic notification message.
Patent History
Publication number: 20190221086
Type: Application
Filed: Dec 20, 2018
Publication Date: Jul 18, 2019
Inventors: Juan Manuel CRUZ-HERNANDEZ (Westmount), Abdelwahab HAMAM (Montreal), Robert LACROIX (Saint-Lambert)
Application Number: 16/227,423
Classifications
International Classification: G08B 6/00 (20060101); G05B 23/02 (20060101); G05B 19/00 (20060101); H04L 29/08 (20060101); B25F 5/00 (20060101);