SYSTEMS AND METHODS FOR COOLING INDUCTIVE CHARGING ASSEMBLIES
In some embodiments, a cooling system for an inductive charger includes a thermal conditioning assembly in fluid communication with an inductive charging assembly. The inductive charging assembly can include a dock and an inductive charging module. The dock can be configured to receive a portable electronic device, such as a cell phone, that is configured to accept inductive charging from the inductive charging module. The thermal conditioning assembly can include a fluid transfer device and a thermal conditioning module, such as a thermoelectric device. In various embodiments, heat (e.g., heat produced during inductive charging) can be transferred from the inductive charging assembly to the thermal conditioning module and/or to a fluid flow produced by the fluid transfer device, thereby cooling the inductive charging assembly and/or the portable electronic device.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS
Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are incorporated by reference under 37 CFR 1.57 and made a part of this specification.
BACKGROUND FieldThis application relates to a cooling device and, in some embodiments, to a thermoelectrically cooled inductive charging station, such as for charging a cell phone or other portable electronic devices, and components thereof.
Description of the Related ArtPortable electronic devices (PEDs), such as cell phones, music players, sound recorders, computers (e.g., laptops, tablets, etc.), radios, watches, and otherwise, generally require power for operation. As such, many PEDs include a rechargeable battery or other rechargeable power source, thereby allowing for the device to be powered and readily transported without being limited by the length of electrical power cords or the like. In some instances, the charging of PEDs is accomplished with a physical electrical connection, such as a plug or other electrical connection that is connected with the device during charging and then disconnected when charging is complete. However, such connections are inconvenient due to the requirement of connecting and disconnecting the physical electrical connection.
Some PEDs avoid the need for such a physical electrical connection by being configured to accept inductive charging. Inductive charging uses electromagnetic fields to transfer power from a base (e.g., a dock) to a receiver (e.g., the power source in the PED) that is in close proximity to the base. Because power is transferred via the electromagnetic fields, a physical electrical connection between the base and the receiver is not required, thus eliminating the inconvenience associated with connecting and disconnecting the physical electrical connection.
SUMMARY OF THE DISCLOSURERecently, it has been proposed to provide certain vehicles (e.g., cars, trucks, tractors, airplanes, boats, and otherwise) with an inductive charging assembly for PEDs. Such a design can allow users to place (e.g., insert) their PED in a dock (e.g., a pad, surface, recess, slot, or otherwise) that has inductive charging functionality, thereby providing inductive charging of the PED without the inconvenience associated with connecting and disconnecting an electrical cord. The dock can comprise an open structure. Alternatively, the dock can be at least partially enclosed, as desired or required.
One of the byproducts of inductive charging is heat, which can be unwanted in certain situations. For example, heat generated by inductive charging may place an additional load on the heating, ventilating, and air-conditioning system of the vehicle, which can result in decreased performance and/or reduced fuel economy. Further, heat produced by inductive charging may raise the temperature of the PED, which can degrade the performance of the PED and/or make the PED uncomfortable to use. For example, raising the temperature of a cell phone may make the phone uncomfortable to hold and/or to press against the user's ear. Some PEDs even have thermal limits, which shutdown or hinder the functionality of the PED when the PED becomes too hot.
Accordingly, for various reasons, it can be beneficial to cool the inductive charging assembly and/or the PED. In some embodiments, the inductive charging assembly is cooled by a thermal conditioning module (e.g., thermoelectric device (TED), heat sink, heat pipe, liquid loop, refrigeration circuit, swamp cooler, phase change material, or other type of cooling device), which has a hot side (also known as the waste side) and a cold side (also known as the main side). A waste side heat exchanger can be thermally coupled to the hot side of the TED. Certain embodiments include a conduction member (e.g., a plate, barrier, film, spacer, or otherwise) configured to promote conductive heat transfer from the cool side to the inductive charging station or the PED. Some embodiments include a fluid transfer device (e.g., a blower, pump, fan, etc.), which can selectively provide a fluid flow (e.g., a flow of air or another fluid). Certain embodiments are configured such that the fluid flow can promote convective heat transfer from the inductive charging station and/or the PED. In some implementations, the conduction member promotes conductive heat transfer from the inductive charging assembly and/or the PED to the cold side. In some embodiments, air exits the hot side of the thermal conditioning module into a space in which the thermal conditioning module resides. In other embodiments, air exits the hot side of the thermal conditioning module and is routed (e.g., through ducting) elsewhere, such as to the ambient environment or to outside a vehicle in which the system is located.
In some embodiments, a cooling system for an inductive charger includes a thermal conditioning assembly in fluid communication with an inductive charging assembly. The inductive charging assembly can be configured to partly or fully receive a PED, such as a cell phone, music player, sound recorder, computer (e.g., laptop or tablet), radio, watch, navigational aid, and otherwise. The inductive charging assembly can be configured to provide inductive charging to the PED. As a result and/or byproduct of the inductive charging, heat can be produced.
Certain implementations of thermal conditioning assembly include one or more of the following: a fluid transfer device, a thermal conditioning module, and a heat exchanger. In some implementations, ducting (e.g., piping, tubing, or other another structure that conveys fluid) fluidly connects at least two of the following: the fluid transfer device, the thermal conditioning module, and the inductive charging assembly.
In some variants, the fluid transfer device is configured to produce an air flow through the ducting. In some implementations, the fluid transfer device is configured to produce a liquid flow through the ducting. In some embodiments the thermal conditioning module is in conductive thermal communication with the inductive charging assembly and/or the heat exchanger. In some implementations, the heat exchanger is in convective thermal communication with the air or liquid flow. In some variants, the heat from the inductive charging is transferred to the air or liquid flow by conductive heat transfer from the inductive charging assembly to the heat exchanger via the thermal conditioning module and/or by convective heat transfer from the heat exchanger to the air flow.
In some implementations, the cooling system includes the inductive charging assembly. In some embodiments, the inductive charging assembly includes a dock, such as a pad, recess, slot, or otherwise. In some embodiments, the inductive charging assembly includes an inductive charging module, such as an inductive coil or circuit. In certain embodiments, the cooling system includes the PED. In several variants, the thermal conditioning module includes a thermoelectric device.
In some implementations, the system includes a conduction member (e.g., a plate, barrier, film, spacer, heat pipe, or otherwise). Some embodiments of the conduction member are positioned between the inductive charging assembly and the thermal conditioning module. In some implementations, the conduction member has a first portion and a second portion. Some variants of the first portion are configured to partly or completely shield the thermal conditioning module from an electromagnetic field produced by the inductive charging assembly (e.g., by blocking and/or absorbing the field). Some variants of the second portion have a portion configured to partly or completely not shield (e.g. not block and/or absorb) the electromagnetic field produced by the inductive charging assembly. For example, the second portion can include an aperture configured to generally allow passage of the electromagnetic field.
In various embodiments, the ducting connects with a bottom of the dock, thereby providing fluid (e.g., air) to the bottom of the dock. In some embodiments, the fluid can flow toward the top (e.g., an upper or uppermost portion) of the dock along at least a portion of the PED device. In certain implementations, the ducting connects with a middle portion the dock, and the fluid is directed toward the bottom (e.g., a lower or lowest portion) of the dock before flowing toward the top of the dock along at least a portion of the PED.
In some embodiments, a cooling system for an inductive charger includes a thermal conditioning assembly in fluid communication with an inductive charging assembly. The inductive charging assembly can be configured to receive a PED. The inductive charging assembly can be configured to provide inductive charging to the PED, the inductive charging producing heat. The thermal conditioning assembly can include a fluid transfer device, a thermal conditioning module, and a heat exchanger. In some implementations, ducting fluidly connects the fluid transfer device, thermal conditioning module, and inductive charging assembly.
The fluid transfer device can be configured to produce an air flow through the ducting. The air flow can pass across (e.g., along, over, through, around, etc.) the heat exchanger. In some embodiments, an amount of heat from the air flow is transferred to the thermal conditioning device via the heat exchanger, thereby producing a cooled air flow. The cooled air flow can be provided to the inductive charging assembly. The heat from the inductive charging can be transferred to the cooled air flow. In some embodiments, at least a portion of the heat generated by the inductive charging is offset (e.g., dissipated, counteracted, negated, or the like).
According to some variants, a method of cooling an inductive charging assembly in a vehicle includes drawing air into a fluid transfer device and providing (e.g., via ducting) the air to a thermal conditioning device. The method can also include reducing the temperature of the air with the thermal conditioning device. Some embodiments of the method include providing the air to a dock. The dock can include a cavity (e.g., an interior) configured to partly or completely receive a PED. Some variants of the dock are positioned adjacent (e.g., near, in the vicinity of, immediately next to, or otherwise) to an inductive charging module. The inductive charging module can be configured to provide inductive charging to the PED in the dock. In some embodiments, the method includes passing the air along a channel of the dock and/or along at least along a portion of the PED. For example, the air can be passed along a longitudinal length of the PED. Certain implementations of the method include increasing the temperature of the air with heat generated by the inductive charging of the PED. The method can also include expelling the air into the ambient (e.g., an interior of a vehicle in which the system is located).
Some embodiments of the method also include securing the PED (e.g., by inhibiting movement, vibration, and/or unintentional removal of the PED from the dock). For example, one or more ribs can be used to secure the PED. In some variants, the channel is partially defined by the ribs, which can extend into a cavity (e.g., void or chamber) of the dock.
Certain embodiments of the method include providing the air to a bottom (e.g., lower or lowermost portion) of the dock. Some embodiments of the method include providing the air to a middle portion (e.g., a portion between the top and bottom of the dock, a portion at the longitudinal midpoint of the height of the dock, etc.) of the dock. In certain implementations, the method includes providing the air to the inductive charging module prior to providing the air to the dock.
In some implementations, a method of cooling a dock in preparation for receiving a PED in the dock includes receiving a signal from the PED. For example, the PED may wirelessly send a signal. Some implementations also include determining, based on the signal, whether cooling of the dock is desired. For example, the signal may indicate the position of the PED (e.g., relative to the dock) and/or the temperature of the PED. The method can also include activating a thermal conditioning module to produce a cold side of the thermal conditioning module. Some embodiments include encouraging an air flow with a fluid transfer device. The method can further include passing the air flow through ducting and across a heat exchanger. In some embodiments the method includes transferring heat from the dock to the air flow.
In some variants, transferring heat from the dock to the air flow includes conductively transferring heat from the dock to the cold side of the thermal conditioning module and/or from the thermal conditioning module to a heat exchanger. In some variants, the transferring heat from the dock to the air flow includes convectively transferring the heat from the heat exchanger to the air flow.
In some embodiments, transferring heat from the dock to the air flow includes transferring heat from the air flow to the cold side of the thermal conditioning module to produce a cooled air flow. The method can also include providing the cooled air flow to the dock. Some embodiments include transferring heat from the dock to the cooled air flow.
According to some embodiments, a method of inhibiting thermal shutdown of a PED includes detecting a temperature of a dock configured to receive the PED. The method can also include determining, based on the detected temperature, whether a PED placed into the dock would be in danger of thermal shutdown. For example, in some embodiments, a dock having a temperature of greater than or equal to about 60° C. may present an increased risk of causing the PED to shut down. Some embodiments of the method include activating a thermal conditioning module to produce a cold side of the thermal conditioning module. Certain embodiments include encouraging an air flow with a fluid transfer device. In some variants, the method includes passing the air flow through ducting and across a heat exchanger and transferring heat from the dock to the air flow.
In some embodiments, a thermally conditioned inductive charging system includes a dock having a portion (e.g., an interior), which can be configured to receive a portable electronic device. The system can also include a thermal conditioning assembly. The dock can be positioned adjacent an inductive charging module such that the portable electronic device received in the dock can be selectively inductively charged. In certain implementations, the thermal conditioning assembly is configured to selectively cool the portion of the dock.
In several embodiments, the thermal conditioning assembly also has a thermal conditioning module. Certain variants of the thermal conditioning module are configured to conductively cool the portion of the dock. Some variants of the thermal conditioning assembly also include a fluid transfer device configured to produce a fluid flow. The thermal conditioning module can be configured to cool the fluid flow and the cooled fluid flow can convectively cool the portion of the dock. In some embodiments, the thermal conditioning module is a thermoelectric device.
According to some embodiments, a cooling system for an inductive charger includes a thermal conditioning assembly, which can be in fluid communication with an inductive charging assembly. The inductive charging assembly can have a dock and an inductive charging module. The dock can include an interior that is configured to receive a portable electronic device. The inductive charging module can be configured to provide inductive charging to the portable electronic device. In some variants, the thermal conditioning assembly includes a fluid transfer device that is configured to produce a fluid flow. The fluid flow can be delivered to the interior of the dock, thereby cooling the portable electronic device.
In some implementations, the thermal conditioning assembly also includes a thermal conditioning module. Some variants of the thermal conditioning module are configured to cool the fluid flow. In certain embodiments, the thermal conditioning module is configured to cool a conduction member in conductive thermal communication with the dock. In some embodiments, the thermal conditioning module is configured to cool the fluid flow. For example, the fluid flow can be cooled prior to being delivered to the interior of the dock. In some embodiments, the thermal conditioning module comprises a thermoelectric device. Some implementations include ducting that fluidly connects the fluid transfer device and the thermal conditioning module.
Certain embodiments of the system include the inductive charging assembly. Other embodiments of the system do not include the inductive charging assembly. In some variants, the system is at least partly integrated into an automobile (e.g., a car or truck). For example, the dock can be integrated into a dashboard, console, armrest or other portion of the automobile. In some implementations, the portable electronic device comprises a cell phone. In some embodiments, the portable electronic device comprises a battery (e.g., a cell phone battery, camera battery, computer battery, or otherwise). In some variants, the portable electronic device comprises a tablet or laptop computer. In various embodiments, the heat from a waste side of the thermal conditioning module is convectively transferred away from the thermal conditioning module.
In some embodiments, a cooled inductive charging system includes a thermal conditioning assembly and a charging assembly. The charging assembly can be operatively integrated with the thermal conditioning assembly. The thermal conditioning assembly can be configured to provide a flow of air to selectively cool the charging assembly. In some embodiments, the charging assembly is configured to selectively charge a portable electronic device. In certain variants, the thermal conditioning assembly is further configured to selectively cool the portable electronic device. In some implementations, the thermal conditioning assembly includes a fluid transfer device configured to provide the flow of air and/or a thermoelectric device configured to cool the flow of air. In some embodiments, the thermal conditioning assembly includes a thermal conditioning module configured to conductively cool the portable electronic device.
In certain implementations, a method of cooling an inductive charging assembly in a vehicle includes drawing air into a fluid transfer device and providing the air to a dock. The dock can include a cavity that is configured to receive a portable electronic device. The dock can be positioned adjacent to an inductive charging module that is configured to provide inductive charging to the portable electronic device received in the dock. The method can also include passing the air along a channel in the cavity of the dock and at least along a portion of the portable electronic device. In certain embodiments, the method includes cooling the portable electronic device with the air, such as by convection. In some implementations, the method includes expelling the air into the ambient interior of the vehicle.
In certain embodiments, the method also includes providing the air to a thermal conditioning module configured to cool the air. For example, the air can be provided to the bottom of the dock. As another example, the air can be provided to a middle portion of the dock. In some embodiments, the method includes providing the air to the inductive charging module prior to providing the air to the dock. In some embodiments, the method includes providing the air to the inductive charging module substantially simultaneous with providing the air to the dock. In some variants, the channel is partially defined by ribs. For example, ribs that extend into the cavity.
According to some embodiments, a method of cooling a dock in preparation for receiving a portable electronic device in the dock includes receiving a signal from the portable electronic device and encouraging an air flow with a fluid transfer device. Some implementations also include delivering the air flow to the dock and conditioning the dock. In certain variants, the method can also include determining, based on the signal, whether cooling of the dock is desired. Some embodiments of the method also include passing the air flow through ducting and across a heat exchanger. In some implementations, conditioning the dock includes conductively transferring heat from the dock to a thermal conditioning module. In certain embodiments, conditioning the dock includes, prior to delivering the air to the dock, transferring heat from the air flow to a thermal conditioning module. In some variants, receiving a signal from the portable electronic device includes receiving a signal indicating a proximity of the portable electronic device to the dock.
Some embodiments of a method of inhibiting thermal shutdown of a portable electronic device include detecting a temperature of a dock that is configured to receive the portable electronic device and encouraging an air flow with a fluid transfer device. The method can further include conditioning the dock. In some implementations, the method includes passing the air flow through ducting and across a heat exchanger. Certain embodiments of the method also include determining, based on the detected temperature, whether a portable electronic device placed into the dock would be in danger of thermal shutdown. In some implementations, conditioning the dock includes conductively transferring heat from the dock to a thermal conditioning module. In some embodiments, conditioning the dock comprises providing the air flow to the dock. In several variants, the method includes, prior to providing the air flow to the dock, cooling the air flow with a thermal conditioning module, such as a thermoelectric device.
With reference to
In certain implementations, the thermal conditioning assembly 12 includes one more of the following: a fluid transfer device 17 (such as, e.g., a pump, blower, or fan), ducting 18 (e.g., a fluid line, coupling, piping, tubing, etc.) thermal conditioning module 20 (e.g., thermoelectric devices (TEDs), conductive heat transfer devices, refrigeration device, ventilation device that uses no active cooling, other cooling or ventilation devices, etc.), sensors (e.g., temperature sensors, humidity sensors, condensation sensors, etc.), timers and/or the like. As used herein, the term thermal conditioning module has the same meaning as the term thermal conditioning device, which has the same meaning as the term thermal module. In some embodiments, the thermal conditioning assembly 12 comprises a fluid transfer device 17 and no active cooling components or features.
Certain implementations of the inductive charging assembly 13 include a dock 14 and/or an inductive charging module 16. In various embodiments, the dock 14 is a space configured to support, hold, and/or receive some or all of a PED (e.g., a smartphone, other mobile phone, music playing device, laptop or tablet computer, personal digital assistant (PDAs), navigational aid, etc.). For example, the dock 14 can be a pad, recess, slot, opening, and/or otherwise. In some embodiments, the dock comprises a generally open structure (e.g., without any enclosed or partially enclosed spaced), such as a planar surface. In other embodiments, the dock is at least partially enclosed and comprises an interior space. In some implementations, the dock 14 includes padding or other shock and/or vibration dampening structures. The inductive charging module can be integrated into the assembly or can be separate and district from it, as desired or required.
The inductive charging module 16 can be configured to provide inductive charging functionality to a PED that is configured to accept inductive charging and is placed in and/or on the dock 14. For example, the inductive charging module 16 can be configured to generate an electromagnetic field to transfer power to a PED mounted in the dock 14. Certain variants of the inductive charging module 16 (e.g., an inductive coil, circuit, or otherwise) are positioned in, on, adjacent, or near the dock 14. In some embodiments, the inductive charging module 16 can receive electrical power from an electrical system, such as a power bus, battery, or otherwise.
As illustrated in
Some embodiments include ducting 18 (e.g., duct, coupling, or other fluid passage) that is in fluid communication with the fluid transfer device 17. The ducting 18 can also be in fluid communication with a thermal conditioning module 20 (e.g., TED), the dock 14, one or more sensors, and/or any other components or devices, as desired or required. In some variants, the ducting 18 is in fluid communication with the dock 14 via an opening 28 (see, e.g.,
As noted above, the thermal conditioning module 20 can comprise a TED, such as a Peltier device. In some embodiments, the TED includes at least one pair of dissimilar materials (e.g., a series of n-type and p-type semiconductor elements) that are connected electrically in series and thermally in parallel. An electrical circuit can be configured to pass current through the dissimilar materials so as to selectively create a cooled side and an oppositely oriented heated side, depending on the direction of electrical current passing through the TED. In some embodiments, the dissimilar materials are mounted between a pair of plates positioned on the cold and hot sides of the TED. The plates can provide for heat conduction and electrical insulation.
A heat exchanger 21, which can include fins or the like, can be conductively coupled to the TED. In certain implementations, the heat exchanger 21 is conductively coupled with the hot (waste) side of the TED. In some embodiments, fluid (e.g., air) from the fluid transfer device 17 can be passed over the heat exchanger 21 to transfer waste heat away from the heat exchanger 21 by convection. In other embodiments, liquid in a liquid loop is passed over the heat exchanger 21 and carries heat away from the heat exchanger 21. In some alternate embodiments, as discussed in more detail below, fluid can be convectively cooled across a cold side plate of the heat exchanger 21 then routed toward the dock 14 so as to cool the dock 14 (and/or from a PED located therein).
With continued reference to
In some embodiments, the conduction member 25 is configured to reduce the potential for interference due to the electromagnetic field produced by the inductive charging module 16. For example, as shown in
However, because electromagnetic communication (e.g., passage of the electromagnetic field) between the inductive charging module 16 and the dock 14 and/or PED can be important for wirelessly transferring power, certain variants of the conduction member 25 comprise a second portion 27″ that is configured to allow such communication. For example the second portion 27″ can include a window, recess, slot, or otherwise. The second portion 27″ (e.g., window) can be configured to partly or completely align with at least some of the inductive charging module 16. In various implementations, the first portion 27′ does not block or absorb the electromagnetic field that passes through the second portion 27″. Because it can be beneficial to position the battery (or other component that wirelessly receives the power) of the PED with the second portion 27″ to facilitate the power transfer, some embodiments of the dock 14 include one or more orientation features. For example, the dock 14 can include a shape or other indicia indicating to a user the recommended orientation of the battery for the power transfer.
In some embodiments, the first portion 27′ comprises or is made of a material that generally or completely blocks or absorbs the electromagnetic field from the inductive charging module 16, such as a metal (e.g., steel, aluminum, copper, or otherwise), metalized plastic, or otherwise. In some embodiments, the second portion 27″ is made of a material that generally allows passage of (e.g., does not block or absorb) the electromagnetic field produced by the inductive charging module 16, such as certain plastics and fabrics. In some embodiments, the second portion 27″ comprises an area in which the material of the first portion 27′ is not present (e.g., has been removed or was not included in the formation of the first portion 27′). In various implementations, the first portion 27′ and/or the second portion 27″ are configured to facilitate conductive heat transfer between the thermal conditioning module 20 and the dock 14.
In some embodiments, a controller (not shown) controls the operation of the thermal conditioning assembly 12. For example, the controller can allow the user to regulate when the thermal conditioning assembly 12 is activated and deactivated. In some embodiments, the controller receives an input from a sensor (e.g., a temperature sensor, a humidity sensor, a condensation sensor, a device detection sensor, etc.), which can be used in a control algorithm that helps regulate the operation (e.g., on or off, duty cycle, etc.) of the thermal conditioning module 20 (e.g., TED). Such an algorithm can be configured to provide for a desired cooling effect for the module, for fault protection, safety reasons, and/or the like.
In certain variants, the controller is configured to communicate with, or receive signals from, other systems of the vehicle. For example, the controller can be in data communication with a signal that is indicative of whether the vehicle is in operation (e.g., the ignition has been activated), an occupant is positioned in the vehicle, and/or the like. Thus, in some such embodiments, the controller can be configured to allow the thermal conditioning module 20 to operate only if certain conditions are met (e.g., the vehicle is operating, an occupant is positioned in an adjacent seat, temperature/humidity levels are within a specific range, etc.). Electrical power from the vehicle's electrical system can be provided to the controller, fluid transfer device 17 (e.g., fan or blower), TED or other thermal conditioning module 20, sensors, and/or any other components via electrical wires and/or some other direct or indirect electrical connection (not shown). In various embodiments, the controller can receive a signal from a sensor, such as a sensor configured to determine the temperature of the dock 14.
Various embodiments of the system 10 can be configured to advantageously cool (e.g., transfer heat away from) the dock, and thus a PED positioned therein or thereon. In several embodiments, the system 10 is configured to cool (transfer heat from) the dock 14 and/or from a PED in the dock 14. Certain embodiments of the system 10 are additionally or alternatively configured to cool other heat generating components. For example, the system 10 can additionally or alternatively be configured to cool an entertainment system (e.g., radio, CD player, DVD player, and the like), navigation system, climate control (HVAC) system, and/or otherwise. In vehicles, because the inductive charging module 16 and other electrical components are often grouped together (such as in a dashboard, console, armrest, or otherwise), certain embodiments of the system 10 can beneficially provide cooling to one or more of those components.
As shown in
In some embodiments, the fluid transfer device 17 can encourage a flow of fluid (e.g., air) through the ducting 18, which can be in fluid communication with the heat exchanger 21. The hot side of the thermal conditioning module 20 can be in convective thermal communication with the fluid passing through the ducting 18. Thus, the hot side of the thermal conditioning module 20 can be cooled by convectively transferring heat from the heat exchanger 21 to the fluid. The heat can then be carried away and/or disposed of. For example, in embodiments of the system 10 that are located in a vehicle, the heated fluid can be ejected from the vehicle and/or provided to the vehicle's climate control (e.g., HVAC) system. In some alternate embodiments, the dock 14 is in conductive thermal communication with the cold side of the thermal conditioning module 20 without an intervening conduction member 25 (e.g., the dock 14 is in direct contact with the thermal conditioning module 20).
In some embodiments, the inductive charging module 16 is cooled, either continuously or intermittently. For example, certain variants of the inductive charging module 16 are cooled by conductively transferring heat to the heat exchanger 21. In some implementations, the inductive charging module 16 is cooled by conductively transferring heat to the conduction member 25, which can transfer the heat to the thermal conditioning module 20. In certain alternate embodiments, the inductive charging module 16 is configured for conductive heat transfer to the thermal conditioning module 20, which, in some embodiments, can conductively transfer heat to the heat exchanger 21. Some other variants of the inductive charging module 16 are configured to convectively transfer heat directly to the fluid. For example, at least a portion (e.g., some, most, or or all) of the inductive charging module 16 can be positioned in or near the ducting 18 or can otherwise be in fluid communication with the fluid. In some implementations, the fluid is cooled prior to reaching the inductive charging module 16.
In some embodiments, such as shown in
As illustrated in
Certain implementations are configured to additionally or alternately cool other electrical components, such as an entertainment system (e.g., radio, CD player, DVD player, and the like), navigation system, climate control (HVAC) system, and/or otherwise. In some embodiments, the other electrical components can be cooled by providing fluid (e.g., cooled air) to one or more of the other electrical components for convective heat transfer. In some embodiments, one or more of the other electrical components can be cooled by conductively transferring heat (e.g., via the conduction member 25 of
In some embodiments, the inductive charging module 16 and one or more of the other electrical components are positioned in a common location. For example, the inductive charging module 16 and one or more of the other electrical components can be positioned in a dashboard, center or rear console, armrest, floor, or door of a vehicle. Grouping the inductive charging module 16 and the one or more of the other electrical components in a common location can facilitate cooling of these components, increase efficiency, simplify maintenance, or otherwise. In some embodiments, the dock 14 is also positioned in the common location.
Although the embodiments of the dock 14 shown in
As discussed previously, some implementations of the dock 14 include one or more apertures for communicating with the ducting 18. Some implementations of the dock 14 have apertures on one side, two sides, three sides, four sides, or more. In certain variants, the ducting 18 includes a channel 18′ around some, substantially all, or all of the perimeter of the dock 14. As shown in
In various embodiments, the dock 14 is sized, shaped, and otherwise configured to accept a PED. For example, the dock 14 can be configured to contain, hold, and/or embrace the PED. Such a configuration can provide a place to store the PED, which can be helpful in restricting, partially or completely, inadvertent movement of the PED during operation of the vehicle (e.g., while driving). In certain embodiments, the dock 14 is configured such that a cell phone or other PED can be slidingly inserted into and removed from the dock 14. Some implementations have the dock 14 positioned in a dashboard or center console of an automobile, although various other locations are contemplated as well (e.g., in or near a door, a glove box or other storage container, an armrest, a rear seat console and/or the like).
In some embodiments, the cavity 22 of the dock 14 can be configured to receive all or a substantial portion of the longitudinal length of a cell phone or other PED. Such a configuration can, for example, facilitate securing and/or concealing (e.g., partially or completely) the cell phone or other PED. Certain embodiments of the cavity 22 have a height H of at least about: 3.0 inches, 3.5 inches, 4.0 inches, 4.5 inches, 5.0 inches, values in between, or otherwise. See
Some embodiments of the dock 14 include an aperture 23 through which a cell phone or other PED can be inserted. In some embodiments, the aperture 23 has a depth D and a width W that are sized and otherwise configured such that a cell phone or other PED can be inserted through the aperture 23 and at least partially into the cavity 22. See
In some embodiments, such as is illustrated in
In various implementations, the cooled fluid travels through a portion of the dock 14. For example, the cooled fluid can travel along some, substantially all, or all of the height H of the cavity 22 of the dock 14. In some implementations, the cooled fluid can travel along some, substantially all, or all of the height of the PED positioned within the dock. In some embodiments, the fluid can emerge from the dock 14 into the ambient environment, such as into a passenger cabin of a vehicle. In some embodiments, the fluid can be routed to one or more portions of the vehicle (e.g., the exterior of the vehicle, below or away from the console or seat assembly, etc.), as desired or required.
In certain embodiments, the system 10 is configured to transfer sufficient heat from the PED to maintain the PED below a threshold temperature. For example, some embodiments of the system 10 can adjust the temperature, rate, and/or volume of fluid to maintain the temperature of the dock 14 and/or the PED below a setpoint temperature, such as less than or equal to about: 15° C., 21° C., 26° C., 32° C., 38° C., 43° C., 49° C., values between the aforementioned values, and otherwise. Some such embodiments include a controller or switch configured to control operation of the fluid transfer device 17 and/or the thermal conditioning module 20. Certain implementations of the system 10 are configured to at least offset the heat generated by the inductive charging module 16 and/or the PED located in the dock 14.
As illustrated in
As noted above, in some embodiments, the dock 14 comprises one or more protruding members 24. In some implementations, the protruding members 24 can be configured to promote fluid flow even when the PED is positioned in the dock 14. For example, protruding members 24 can be positioned and otherwise configured to at least partially define and/or maintain one or more channels 30. Such a design can be beneficial because, when a PED is positioned in the dock 14, a substantial volume of the cavity 22 may be occupied by the PED and thus restrict fluid flow. The protruding members 24 can be configured to space an edge of the PED away from a wall of the dock 14, thereby providing a passage for fluid flow via the channels 30.
In some embodiments, a bottom end 32 of the dock 14 (e.g., the portion which is adjacent or near a lower portion of the PED that is positioned within the dock 14) comprises one or more support members (not shown), such as ribs, dimples, grooves, and/or other features. In some embodiments, the support members are configured to support the weight of some, substantially all, or all of the PED located in the dock 14. The support members can be configured to promote fluid flow between the bottom of the PED and the bottom end 32 of the dock 14. For example, some embodiments of the support members space the bottom of the PED from the bottom end 32 of the 14, which can promote cooling on the PED when the system 10 is in use. Thus, in certain respects, the support members can function similarly to the protruding members 24 discussed above, such as by defining and/or maintaining a passage for fluid flow between the PED and the dock 14.
As illustrated in
In certain embodiments, the dock 14 include sculpted or recessed features, such as shoulders 26, which can be configured to facilitate stabilization and/or securement (e.g., grasping) of a PED that is inserted into the cavity 22. Some variants of the shoulders 26 include curves or angles so as to direct a PED into general alignment with the dock 14 during installation of the PED into the dock 14. For example, the shoulders 26 can be positioned at or near an upper edge of the dock 14 and can include a curve or chamfer to facilitate guiding a PED into the dock 14.
According to some embodiments, the system 10a includes one or more of the following: an inductive charging module 16a, a fluid transfer device 17a, and a thermal conditioning module 20a. In certain variants, air or other fluid enters a dock 14a via an opening 28a positioned on a wall of the dock 14a. The fluid can then pass into a cavity 22a in the dock 14a, which can be configured to receive some or all of the PED.
In certain implementations, the opening 28a is disposed a distance away from a bottom end 32a of the dock 14a. Such a design can reduce the likelihood of spilled liquids or debris migrating into the fluid transfer device 17a, ducting 18a, thermal conditioning module 20a (e.g., TED), other electrical and/or other sensitive components. For example, in certain embodiments, the opening 28a is spaced a sufficient distance above the bottom end 32a such that spilled liquid (such as water, coffee, soft drinks, etc.) or debris (such as crumbs, other food items, dust, dirt, lint, etc.) can be contained in the bottom end 32a, thereby facilitating clean-up and/or inhibiting such spills from entering the fluid transfer device 17a, ducting 18a, and/or thermal conditioning module 20a. According to certain embodiments, the opening 28a is spaced apart from the bottom end 32a of the dock 14a by at least about: 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, values between the aforementioned values, and otherwise. In some implementations, the opening 28a is located between a vertical top end and the bottom end 32a of the dock 14a. In certain variants, the opening 28a is located about half-way along the height H of the dock 14a.
As illustrated in
In various embodiments, the system 10b includes one or more of the following: an inductive charging module 16b, a fluid transfer device 17b, ducting 18b, and a thermal conditioning module 20b. In some implementations, air or other fluid can be directed (e.g., via the fluid transfer device 17b and ducting 18b) along and/or through a portion of the inductive charging module 16b in order to cool the inductive charging module 16b, a dock 14b, and/or a PED positioned in the dock. As illustrated, certain implementations of the inductive charging module 16b are located between the dock 14b and the fluid transfer device 17b and/or the thermal conditioning module 20b. Such a configuration can provide a compact design that can, for example, facilitate installation of the system 10b, allow the system 10b to be employed in tight quarters, and/or reduce the space occupied by the system 10b in comparison to some other designs.
With reference to
In some embodiments, the ducting 18b is configured to enhance the heat dissipation from the inductive charging module 16b. For example, in some embodiments, the ducting 18b is configured to direct fluid over and/or through convective heat transfer facilitating structures, such as fins 38b, of the inductive charging module 16b. In certain embodiments, the fins 38b are positioned in the interior portion 40b. In other implementations, the fins 38b are positioned on an external surface of the inductive charging module 16b.
In certain variants, the interior portion 40b is divided from another portion of the inductive charging module 16b by one or more barriers 42b (e.g., walls, baffles, or other dividing members). The barriers 42b can be configured to prevent, inhibit, or reduce the likelihood of the migration of dirt, dust, other particles, or other undesirable substances from reaching the electronic components of the inductive charging module 16b. In some embodiments, such a barrier 42b is configured to direct the flow of fluid, for example, toward a front wall of the inductive charging module 16b.
As illustrated in
In certain embodiments, at least some of the conditioned fluid can be configured for conductive heat transfer. For example, a portion of the fluid can be directed along or through a heat exchanger (not shown), which can be in conductive thermal communication with the dock 14b, a PED disposed in the dock 14b, and/or the inductive charging module 16b, thereby transferring heat from one or more of those components to the conditioned fluid.
Various embodiments of the systems 10, 10a, 10b are configured to operate with an ambient air temperature of less than or equal to about 85° C. In some implementations, the systems 10, 10a, 10b are configured to provide at least about: 4 watts, 5, watts, 6 watts, 7 watts, 8 watts, 9 watts, values in between the foregoing values, and/or otherwise of heat dissipation. In other embodiments, the cooling system is configured to provide at least about 4 watts and/or less than or equal to about 9 watts of heat dissipation.
In some embodiments, the systems 10, 10a, 10b are configured to compensate for (e.g., dissipate, offset, negate, or otherwise) at least some of the heat produced by the inductive charging module and/or the PED. Certain embodiments are configured to dissipate at least about 4 watts generated by the inductive charging module 16, 16a, 16b and at least about 3 watts generated by the PED. In certain embodiments, the systems 10, 10a, 10b are configured to offset at least about: 50%, 60%, 70%, 80%, 85%, 90%, 95%, 99%, 100%, values in between the aforementioned values, or otherwise, of the heat generated by the inductive charging module during inductive charging of the PED. In certain variants, the systems 10, 10a, 10b are configured to offset all or substantially all of the heat generated by the inductive charging module during inductive charging of the PED. In some implementations, the systems 10, 10a, 10b are configured to offset more than the heat generated by the inductive charging module during inductive charging of the PED.
Various embodiments of the system 10, 10a, 10b are configured to compensate for an environmental heat load, such as heat from the ambient in which the dock 14 is located. For example, for embodiments of the system that are located in a vehicle, the temperature inside that vehicle may be substantially higher than the temperature outside the vehicle, such as when that vehicle is parked in the sun. These elevated temperature can increase not only the temperature of the dock 14, but also the temperature of the air that is present in the cavity 22 of the dock 14. Some embodiments of the system 10, 10a, 10b are configured to compensate for such environmental heat loads. For example, the system 10, 10a, 10b can be configured to compensate for (e.g., offset, dissipate, negate, or otherwise) an elevated temperature of the dock 14, such as at least about: 39° C., 43° C., 49° C., values in between the aforementioned values, or otherwise. Some embodiments are configured to compensate for an elevated temperature of the air in the cavity 22, such as at least about: 38° C., 49° C., 59° C., values in between the aforementioned values, or otherwise.
Because some PEDs will shutdown or enter a decreased functionality mode after reaching a temperature limit (e.g., between about 60° C. and about 70° C.), some implementations of the system 10, 10a, 10b are configured to bring and/or maintain the temperature of the dock 14 and/or the PED in the dock 14 below an upper temperature limit. For example, some embodiments are configured to provide sufficient heat transfer such that the temperature of the dock 14 and/or the PED in the dock 14 is below about: 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., values in between the aforementioned values, or otherwise.
In certain implementations, the system 10, 10a, 10b is configured to bring the temperature of a PED placed in the dock 14 down to a desired temperature within a certain amount of time. For example, some variants are configured such that, from the time the PED is placed in the dock 14 and the system 10, 10a, 10b is operating, the temperature of the PED can be brought down to a temperature of less than about 60° C. within about: 5 minutes, 10 minutes, 15 minutes, values in between the aforementioned values, or otherwise. Other variants are configured such that, from the time the PED is placed in the dock 14 and the system 10, 10a, 10b is operating, the temperature of the PED can be brought down to a temperature such that the PED is comfortable for a person to hold and/or use (such as less than or equal to about 43° C.) within about: 5 minutes, 10 minutes, 15 minutes, values in between the aforementioned values, or otherwise.
Various implementations of the system 10, 10a, 10b are configured to interact, engage with, signal, or otherwise coordinate with other systems of the vehicle. For example, some or all of the system 10, 10a, 10b can be configured to operate only during operation of the vehicle, such as after the ignition switch has been activated. In some embodiments, some or all of the system 10, 10a, 10b operates only when a PED is determined to be in the dock 14, such as via a contact or proximity switch. For example, the inductive charging module 16 can be configured to operate only when a PED is determined to be in the dock 14. In some variants, the inductive charging module 16 is configured to operate only if the temperature of the dock 14 is determined to be below a certain threshold, such as less than about 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., values in between the aforementioned values, or otherwise.
In some embodiments, the vehicle can communicate with the PED to determine whether the PED is in or near the vehicle. In some such embodiments, if the PED is determined to be in or near the vehicle, then some or all of the system 10, 10a, 10b can be signaled to begin operation, such as by the controller. For example, the fluid transfer device 17 and/or the thermal conditioning module 20 can start operating in order to cool the dock 14. In certain such instances, the cooling may occur even before the PED is placed into the dock 14. Such pre-PED-insertion cooling of the dock 14 can reduce the likelihood of the PED going into thermal shutdown after insertion into the dock 14 due to the temperature of the dock 14 (e.g., due to solar loading).
In some embodiments, the fluid transfer device 17 and/or the thermal conditioning module 20 are configured to operate only if a condition is met. In some variants, the condition is that the inductive charging module 16 is operating. In certain implementations, the condition is that a period of time has elapsed, such as greater than or equal to about: 30 seconds, 1 minute, 2 minutes, 5 minutes, values therebetween, and otherwise. In some embodiments, the condition is the detection that a temperature (e.g., the temperature of the dock 14, PED in the dock 14, inductive charging module 16, and/or vehicle ambient temperature) is greater than or equal to a threshold, such as at least about: 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., values in between the aforementioned values, or otherwise. In certain variants, the condition is that the inductive charging module 16 is operating.
Similarly, certain implementations of the inductive charging module 16 are configured to operate only after a condition is met. For example, some embodiments of the inductive charging module 16 are configured to operate only when the vehicle is in operation (e.g., the vehicle ignition has been activated, the fluid transfer device 17 and/or the thermal conditioning module 20 are operating, or otherwise). Several variants are configured to operate only after a temperature (e.g., of the dock 14) has been determined to be at or below a temperature value (e.g., about: 80° C., 70° C., 60° C., 50° C., 40° C., values in between the aforementioned values, or otherwise). Certain implementations use such a postponement of the operation of the inductive charging module 16—and its attendant heat production—to decrease the temperature of the dock 14 and/or the PED before engaging the inductive charging function. In certain designs, by decreasing the temperature (e.g., of the dock 14) and subsequently operating the inductive charging functionality, the PED can be charged generally immediately upon being engaged with the dock 14 and/or the risk of thermal shutdown of, or damage to, the PED can be reduced. Some variants of the inductive charging module 16 are configured to operate only after a period of time has elapsed. For example, a period (e.g., of at least about 5 seconds, 10, seconds, 30 seconds, 1 minute, 2 minutes, values therebetween, and otherwise) that elapses between an initiating action (e.g., activation of the vehicle ignition, insertion of the PED into the dock 14, determination that the PED is within a vicinity (e.g., of the dock 14), receipt of an activation signal from the controller or a user, or otherwise) and the initiation of inductive charging.
With reference to
In some embodiments, the console 50 includes a container 52 (e.g., a bin, cubby, reservoir, box, or otherwise) that can be used for storage of various items. In some instances, the container 52 is configured to store items such as maps and other navigational aids, entertainment media, writing instruments, coinage and other currency, and other items that do not require cooling in addition to the normal climate control provided by the vehicle. In other instances, the container 52 is configured to store items for which supplemental conditioning (e.g., cooling) is desired or required, such as certain foods or drinks. In this regard, certain embodiments of the systems 10, 10a, 10b are configured to cool the container 52, such as by providing cooled fluid to an interior of the container 52. Some embodiments are configured to cool the interior of the container 52 by conduction, such as with a thermal conditioning member and/or a conduction member in conductive thermal communication with the container 52. Various embodiments of the systems 10, 10a, 10b are configured to simultaneously provide cooling or other conditioning to the dock 14 and the container 52. However, some variants are configured to cool only one or the other of the dock 14 and the container 52. In some embodiments, the systems 10, 10a, 10b are configured to control the amount of cooling provided to the dock 14 and the container 52. For example, if the temperature of the dock 14 or the container 52 is determined to be at or above a certain temperature (e.g., greater than or equal to about: 5° C., 10° C., 15° C., 37° C., 43° C., 49° C., 55° C., values in between the aforementioned values, or otherwise), then additional cooling can be supplied to that component by temporarily stopping cooling to the other of the dock 14 and the container 52.
As shown in
For purposes of summarizing the inventions disclosed herein and the advantages achieved over the prior art, certain objects and advantages of the inventions are described herein. Of course, not all such objects or advantages need to be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the inventions may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving or optimizing other objects or advantages as may be taught or suggested herein.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. For example, various embodiments are described herein than can include a fluid transfer device. However, other embodiments within the scope of this disclosure do not include a fluid transfer device. As another example, some embodiments are discussed herein that can include a thermal conditioning module. However, several other embodiments do not include a thermal conditioning module. Certain embodiments are configured for cooling with generally unconditioned fluid, such as generally uncooled air. In some such embodiments, the dock and/or inductive charging module are convectively cooled by the fluid. In certain embodiments, heat is conductively transferred away from the dock and/or inductive charging and then transferred to the generally unconditioned fluid.
The terms “approximately”, “about”, “generally”, and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally”, and “substantially” may refer to a value, amount, or characteristic that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated value, amount, or characteristic.
Many variations and modifications may be made to the herein-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included within the scope of this disclosure. For example, the system of
Additionally, as noted above, any features and/or components of the disclosed embodiments can be combined or used interchangeably. For example, although
Claims
1-20. (canceled)
21. A cooling system for an induction charging module, the cooling system comprising:
- a dock configured to connect to an induction charging module on a first side, the dock comprising: walls defining a cavity; a first opening at a first end of the dock; a second opening at a second end opposite the first end, the cavity configured to receive a portable electronic device; and a protrusion extending from one of the walls on the first side for spacing the portable electronic device away from the one of the walls and promoting fluid flow along the portable electronic device; and
- a thermal conditioning assembly comprising an air moving device and ducting fluidly connecting the air moving device to the dock via both the first opening and the second opening,
- wherein the thermal conditioning assembly is configured to supply a flow of air through the dock using the first opening and the second opening for cooling the portable electronic device.
22. The cooling system of claim 21, wherein the thermal conditioning assembly moves air via the air moving device and the ducting through the dock by the air moving at least partially about the protrusion in the spacing between the one of the walls and the portable electronic device.
23. The cooling system of claim 21, wherein the first end of the dock corresponds to a top of the dock and the second end of the dock corresponds to a bottom of the dock.
24. The cooling system of claim 21, wherein the ducting connects to and directs air proximate to a top of the dock.
25. The cooling system of claim 21, wherein the thermal conditioning assembly further comprises a thermoelectric device configured to cool the flow of air in the ducting supplied to the dock.
26. The cooling system of claim 25, wherein the thermoelectric device is configured to cool the flow of air in the ducting prior to being delivered to the dock.
27. The cooling system of claim 25, further comprising a heat exchanger conductively coupled to a waste side of the thermoelectric device to transfer waste heat away.
28. The cooling system of claim 27, wherein the thermal conditioning assembly is configured to pass air over the heat exchanger to transfer waste heat away from the heat exchanger by convection.
29. The cooling system of claim 21, wherein the cavity is configured to receive all of a longitudinal length of the portable electronic device.
30. The cooling system of claim 21, wherein at least a part of the flow of air emerges into ambient environment from the cavity.
31. The cooling system of claim 21, wherein at least a part of the flow of air enters the thermal conditioning assembly from ambient environment.
32. The cooling system of claim 21, wherein the dock is configured to be included in a center console of a vehicle.
33. A thermal conditioning system for an induction charging module, the cooling system comprising:
- a dock configured to connect to an induction charging module on a first side, the dock comprising: a wall at least partially defining a cavity, the cavity configured to fully receive a portable electronic device; a first end of the cavity; a second end opposite the first end; and a protrusion extending from the wall on the first side for spacing the portable electronic device away from the wall and promoting fluid flow along the portable electronic device; and
- a thermal conditioning assembly comprising an air moving device and ducting fluidly connecting the air moving device to the dock via both the first end and the second end,
- wherein the thermal conditioning assembly is configured to supply a flow of air through the dock via the first end and the second end for cooling the portable electronic device.
34. The thermal conditioning system of claim 33, further comprising a vane adjacent the ducting, the vane configured to direct at least a portion of the flow of air from the ducting toward the second end of the dock.
35. The thermal conditioning system of claim 33, wherein at least a portion of the flow of air is directed toward the second end of the dock to be circulated through the dock.
36. The thermal conditioning system of claim 33, wherein the ducting fluidly connects to the dock a distance above the second end to direct the flow of air toward the second end of the dock.
37. The thermal conditioning system of claim 33, wherein the ducting comprises a fluid passage fluidly connected to the air moving device, wherein the fluid passage fluidly connects to the dock above a location where the dock is configured to connect to the induction charging module.
38. The thermal conditioning system of claim 33, further comprising a support member or a rib configured to position the portable electronic device relative to the first or second end.
39. The thermal conditioning system of claim 38, wherein the support member or the rib is configured to promote air flow relative to the first or second end.
40. The thermal conditioning system of claim 33, wherein at least a part of the flow of air enters the thermal conditioning assembly from ambient environment.
41. A method of cooling for an inductive charging module, the method comprising:
- directing an airflow through a thermal conditioning assembly comprising ducting;
- directing the airflow through the ducting toward at least one of a first end of a dock or a second end of the dock, the second end opposite the first end;
- directing at least a part of the airflow along a protrusion in the dock, the protrusion extending from a wall of the dock, the wall at least partially defining the dock, and the wall connected to an inductive charging module configured to charge a portable electronic device; and
- wherein the protrusion is configured to space the portable electronic device from the wall of the dock for the airflow to flow at least along a portion of the portable electronic device to cool the portable electronic device.
42. The method of claim 41, further comprising cooling the airflow via a thermoelectric device before directing the airflow to the dock.
43. The method of claim 41, further comprising directing at least a portion of the airflow toward the second end of the dock and circulating the airflow through the dock.
44. The method of claim 41, further comprising directing at least a portion of the airflow through the dock via both the first end and the second end.
Type: Application
Filed: Feb 22, 2019
Publication Date: Aug 22, 2019
Inventors: John Lofy (Claremont, CA), David Marquette (Farmington Hills, MI)
Application Number: 16/283,630