Multifaced 3-D Puzzle Building Blocks

Our invention provides an improved set of multi-faced building blocks with the following characteristics: 1) softer edges designed to increase friction of the blocks during the construction process; 2) faces that allow mounting different tiles with variety of designs which provide hints guiding construction of solutions, allowing player to complete puzzles; and 3) mountable tiles that code each face of the building block in order to increase the number of visible solutions within one set of blocks, making the puzzle more versatile. Our invention lets players create and code their own new unique solutions using the mountable tiles. Our invention also allows the player to recognize and track each new solution using the design elements depicted on the mountable tiles. The proposed invention can develop spatial reasoning skills of players and can be used for education or entertainment.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

REFERENCE TO SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISC APPENDIX

Not Applicable

BACKGROUND OF THE INVENTION

Creating 3-dimensional geometric structures or puzzles using different building blocks, such as cubes, polycubes (GB420349A; U.S. Pat. No. 3,638,949; GB2143139A; U.S. Pat. Nos. 4,153,254; 4,662,638; 4,844,466; 6,910,691B2; 8,632,072,B2; 5,823,533; 5,393,063; 3,065,970) is well known. The purpose of this invention is to provide an improved set of multi-faced building blocks with the following characteristics: 1) faces that allow mounting different tiles with variety of designs, which provide hints guiding construction of solutions; and 2) edges designed to increase friction of the blocks during the construction process. The multi-faced building blocks can be used to create 3 by 3 by 3 cube puzzle (GB420349A; U.S. Pat. No. 3,638,949; GB2143139A), or any N by N by N cube design (U.S. Pat. No. 4,153,254; 4,662,638; 4,844,466; 6,910,691,B2; 8,632,072B2; 5,823,533; 5,393,063), and can also be used to create 3-D geometric shapes other than cubes (U.S. Pat. Nos. 3,065,970; 8,632,072B2). Unlike traditional 3D-puzzles that are composed of series of pieces that when put together create a single solution (U.S. Pat. Nos. 3,638,949; 4,662,638) or limited number of solutions (U.S. Pat. No. 4,153,254; GB420349A; U.S. Pat. Nos. 4,844,466; 6,910,691B2; 3,065,970), our invention was developed to offer a multiple-solutions design for the puzzle and to provide unlimited options to code the surface of the puzzle pieces in order to generate new solutions. Our invention offers a new way to play with a puzzle, meaning that once all solutions have been solved, we allow the players to change the design with a new set of removable tiles or to program the surface of the puzzle pieces to build a new set of solutions. In addition, commercially known puzzles, such as Think Fun Block by Block Puzzle, have several hundred possible solutions that are very difficult to track and it is difficult for the player to know if he/she has solved a specific solution. Our invention allows the player to recognize and track each new solution using the design elements depicted on the mountable tiles. Finally, to make our multi-faced building blocks more stable and ease the overall construction process we added friction edges to each block. The multi-faced building blocks allow developing children's spatial reasoning skills and can be used for education as well as for entertainment.

BRIEF SUMMARY OF THE INVENTION

Creating 3-dimensional geometric puzzles using different regular or irregular building blocks to construct 3 by 3 by 3 cubes (GB420349A; U.S. Pat. No. 3,638,949; GB2143139A), 4 by 4 by 4 cubes (U.S. Pat. Nos. 4,153,254; 4,662,638; 4,844,466; 6,910,691B2; 8,632,072B2; 5,823,533), or other geometric structures (U.S. Pat. No. 3,065,970; 8,632,072B2) is well known but presents the following challenges: 1) these puzzles lack stability of the structure during the construction; 2) there is a very limited number of puzzle solutions for a set of blocks; 3) for the puzzles, such as Soma cubes, that have several hundred possible solutions it is very difficult to track if the player has solved a specific solution; 4) solving these puzzles is challenging, especially for younger players who may lose interest; and 5) players are not able to create and code new solutions. Our invention provides an improved set of multi-faced building blocks with the following characteristics: 1) softer edges designed to increase friction of the blocks during the construction process; 2) faces that allow mounting different tiles with variety of designs, which provide hints guiding construction of solutions and allow players to complete puzzles; and 3) mountable tiles that code each face of the building block in order to increase the number of solutions within one set of blocks, which makes the puzzle more versatile. Our invention lets players create and code their own new unique solutions using the mountable tiles. Our invention also allows the player to recognize and track each new solution using the design elements depicted on the mountable tiles. The proposed invention can develop spatial reasoning skills of players and can be used for education or entertainment.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

FIG. 1A through 1B show examples of a multi-faced building block with friction edges and mountable coding tiles, where the block consists of 3 unit-cubes permanently fused together. FIG. 1A has each face of the multi-faced building block covered by multiple mountable coding tiles. FIG. 1B has each face of the multi-faced building block covered by one mountable coding tile.

FIG. 2 shows an example of a multi-faced building block with friction edges and mountable coding tiles, wherein the block consists of 4 unit-cubes permanently fused together.

FIG. 3 shows an example of a multi-faced building block with friction edges and mountable coding tiles, wherein the block consists of 5 unit-cubes permanently fused together.

FIG. 4 shows a skeleton of a multi-faced building block with one mountable mechanism per square-unit.

FIG. 5A through 5B show the shape of the friction edge of the block by presenting a cross section of a portion of a multi-faced building block without tile in FIG. 5A, and with an attached coding tile in FIG. 5B.

FIG. 6 shows a receiving convex portion of the mounting mechanism on each square portion of the face of a multi-faced building block with friction edges and without mountable coding tiles attached.

FIG. 7 shows the bottom portion of a mountable coding tile with a concave portion of the mounting mechanism.

FIG. 8A through 8B show a sample of different geometric structures that represent puzzle solutions. FIG. 8A is a 3-D geometric structure that was built using a set of multi-faced building blocks. The mountable coding tiles show a solution coded with letter patterns on the structure. FIG. 8B shows a 3 by 3 by 3 cube that was built using a set of multi-faced building blocks. The mountable coding tiles show a cube-solution coded with hearts on the top face of the cube.

FIG. 9 shows a set of seven irregular multi-faced building blocks with friction edges and mountable coding tiles, wherein these seven blocks can be used to assemble a 3 by 3 by 3 cube.

FIG. 10A through 10G show the first of the seven multi-faced building blocks in FIG. 9 with 20 coded cube solutions for the 3 by 3 by 3 cube. FIG. 10A is an isometric view of the first block. FIG. 10B-FIG. 10G represent six views, including view 1 front, view 2 top, view 3 right, view 4, back, view 5 left, and view 6 bottom. Each face of each of the blocks is coded with two letters. Each of these letters represents a color, pattern, or a design element that are used to code one cube solution presented on the face of a 3 by 3 by 3 cube. The portions of the multi-faced building blocks that are not labeled represent squares that cannot be used to code a unique solution.

FIG. 11A through 11G show the second of the seven multi-faced building blocks in FIG. 9 with 20 coded cube solutions for the 3 by 3 by 3 cube. FIG. 11A is an isometric view of the first block. FIG. 11B-FIG. 11G represent six views including view 1 front, view 2 top, view 3 right, view 4, back, view 5 left, and view 6 bottom. Each face of each of the blocks is coded with two letters. Each of these letters represents a color, pattern, or a design element that are used to code one cube solution presented on the face of a 3 by 3 by 3 cube. The portions of the multi-faced building blocks that are not labeled represent squares that cannot be used to code a unique solution.

FIG. 12A through 12G show the third of the seven multi-faced building blocks in FIG. 9 with 20 coded cube solutions for the 3by 3by 3 cube. FIG. 12A is an isometric view of the first block. FIG. 12B-FIG. 12G represent six views including view 1 front, view 2 top, view 3 right, view 4, back, view 5 left, and view 6 bottom. Each face of each of the blocks is coded with two letters. Each of these letters represents a color, pattern, or a design element that are used to code one cube solution presented on the face of a 3by 3by 3 cube. The portions of the multi-faced building blocks that are not labeled represent squares that cannot be used to code a unique solution.

FIG. 13A through 13G show the fourth of the seven multi-faced building blocks in FIG. 9 with 20 coded cube solutions for the 3by 3by 3 cube. FIG. 13A is an isometric view of the first block. FIG. 13B-FIG. 13G represent six views including view 1 front, view 2 top, view 3 right, view 4, back, view 5 left, and view 6 bottom. Each face of each of the blocks is coded with two letters. Each of these letters represents a color, pattern, or a design element that are used to code one cube solution presented on the face of a 3by 3by 3 cube. The portions of the multi-faced building blocks that are not labeled represent squares that cannot be used to code a unique solution.

FIG. 14A through 14G show the fifth of the seven multi-faced building blocks in FIG. 9 with 20 coded cube solutions for the 3by 3by 3 cube. FIG. 14A is an isometric view of the first block. FIG. 14B-FIG. 14G represent six views including view 1 front, view 2 top, view 3 right, view 4, back, view 5 left, and view 6 bottom. Each face of each of the blocks is coded with two letters. Each of these letters represents a color, pattern, or a design element that are used to code one cube solution presented on the face of a 3by 3by 3 cube. The portions of the multi-faced building blocks that are not labeled represent squares that cannot be used to code a unique solution.

FIG. 15A through 15G show the six of the seven multi-faced building blocks in FIG. 9 with 20 coded cube solutions for the 3by 3by 3 cube. FIG. 15A is an isometric view of the first block. FIG. 15B-FIG. 15G represent six views including view 1 front, view 2 top, view 3 right, view 4, back, view 5 left, and view 6 bottom. Each face of each of the blocks is coded with two letters. Each of these letters represents a color, pattern, or a design element that are used to code one cube solution presented on the face of a 3by 3by 3 cube. The portions of the multi-faced building blocks that are not labeled represent squares that cannot be used to code a unique solution.

FIG. 16A through 16G show the seventh of the seven multi-faced building blocks in FIG. 9 with 20 coded cube solutions for the 3by 3by 3 cube. FIG. 16A is an isometric view of the first block. FIG. 16B-FIG. 16G represent six views including view 1 front, view 2 top, view 3 right, view 4, back, view 5 left, and view 6 bottom. Each face of each of the blocks is coded with two letters. Each of these letters represents a color, pattern, or a design element that are used to code one cube solution presented on the face of a 3by 3by 3 cube. The portions of the multi-faced building blocks that are not labeled represent squares that cannot be used to code a unique solution.

FIG. 17 shows one solution on top of the 3by 3by 3 cube, which is constructed by seven multi-faced building blocks in FIG. 9. The solution is coded with the letter F, which represents a color, pattern, or a design element as shown in the cube solution in FIG. 8B. The remaining letters presented here show the remaining 19 out of 20 possible coded solutions.

DETAILED DESCRIPTION OF THE INVENTION

This invention is designed to create 3-dimensional geometric shapes or figures using building blocks with mounted tile faces and friction edges in a manner described below.

Multi-faced Building Blocks (MBB): The multi-faced building blocks are designed as multiple interconnected unit cubes that are fused together (FIG. 1A, FIG. 2, FIG. 3). Fusing of the unit blocks in the design of the multi-faced building blocks is important because it allows for stability during the construction process and helps avoid breakage of the multi-faced blocks handled by a player of any age. The unit cubes that create a building block have at least one common square face. Different configurations of the blocks made of at least three cubic units are possible. The multi-faced building blocks can be made of plastic, wood, metal, clay, glass, or any moldable material; and can be one or a combination of different colors. Instead of fusing the blocks, a single block of an aforementioned shape can also be created using a mold (not shown here). The building blocks can be solid or hollow. Alternatively, the building blocks can be designed as skeletons, with a set of internal support beams that connect all of the mountable mechanisms, which are then covered by a friction edge's material in the shape of an individual block (FIG. 4).

Friction Edges (FEs): The friction edges are designed to increase the friction of each building block during the construction process and to increase the stability of the completed puzzle or geometric structure. The friction edges can be made using rubber, plastic, silicone, or any other material with higher elasticity and friction than the material of the building blocks. The friction edges are connected to a thin layer (made from the same material) covering the surface of the multi-faced building block and are extend outwards on the edges of the block. The cross section of the friction edge without a tile (FIG. 5A) and with a tile (FIG. 5B) are shown in FIG. 5. The design and size of the friction edges allow for a gap between tiles and edges to ease the removal of the mountable tiles (FIG. 5B).

Mounting Mechanisms: Mounting mechanisms are used to connect mountable tiles to each face of a multi-faced building block. The mounting mechanisms on the surface of the block (FIG. 6) and at the bottom of the tile (FIG. 7) are complementary to each other and allow connecting the pieces by geometric, magnetic, or frictional locking. The mechanisms could be of different size and could be round, square, x-shaped, rectangular, or any other shape. There could be one or more mounting mechanisms connecting a tile to a face of the multi-faced building block. A variety of mounting mechanisms has been used in prior arts for tiling a unit cube (U.S. Pat. Nos. 6,679,780B1; 4,003,144; 5,306,198; 8,408,549B2) or for connecting multiple unit cubes together (U.S. Pat. No. 6,237,914B1; 6,679,780B1; 4,003,144; 5,306,198). In our invention, we are incorporating mounting mechanisms to code the solutions of the puzzle using the tiles, and to increase the number of potential solutions of the puzzle. We avoid using unit-blocks as well as mounting mechanisms to connect unit-blocks in the design of each multi-faced building block because this can make the pieces breakable during the construction process.

Mountable Coding Tiles (MCTs): A set of multi-faced building blocks comes with a set of removable/mountable tiles attached to them to create the design of the puzzle. These mountable coding tiles (MCTs) provide hints to the player on how to solve a puzzle (FIG. 8A), without using any reference materials or on-line resources. MCTs also allow a child or player to create and code their own geometric structure with a unique solution for peers to solve. Each set of mountable tiles when attached to the building blocks allows for a unique set of many different solutions (below we describe an example of 20 solutions on a set of 7 multi-faced building blocks) to be solved by players without changing the location of the tiles. A player can solve all the solutions with a given set of tiles mounted in the prescribed locations on each block. Then the tiles can be replaced with a new set of mountable tiles to implement a new design with a new set of solutions for a 3-D geometric structure.

Each face of the multi-faced building block can be covered either by one MCT (FIG. 1B), or by a number of MCTs (FIG. 1A) using mounting mechanisms. The mountable coding tiles can also have a build-in electronic device(s) that allow(s) changing the color or design of each tile. The purpose of the MCTs is to provide affordances/hints to guide the construction process.

The mountable coding tiles can be made of plastic, wood, metal, clay, glass, or any moldable material. Moreover, they can be one or a combination of different colors, designs, ornamentations, or graphic prints. In prior arts, mountable tiles were used to code dice (CH450254; U.S. Pat. No. 8,408,549B2; DE202005001584U1; DE202005006329U1) or to provide a design on the surface of the puzzle. In contrast, our invention uses the mountable tiles to provide hints for solving the puzzle and to define many different solutions within one set of multi-faced building blocks with corresponding tiles.

Puzzle Solutions: In our invention, a set of multi-faced building blocks can be used to build 3-D geometric structures (FIG. 8A). Each block in the aforementioned set can be coded with MCTs to provide hints and help the player guide the solution (FIG. 8A, FIG. 8B). The solution is a distinct pattern or design that can be easily recognized when the structure is completed (FIG. 8A, FIG. 8B, FIG. 17). The puzzle solutions can be coded on a set of multi-faced building blocks to create any N by N by N cube (with N greater than 2), or 3-D geometric shapes other than cubes.

With respect to geometric structure in a shape of a cube, in prior arts, the solutions have been coded with a unique color or design on one or multiple faces of the completed puzzle (U.S. Pat. No. 5,306,198; US2016/0096106A1; U.S. Pat. Nos. 6,422,560B; 6,237,914B1; 5,785,319). In all of those cases, the number of solutions coded are limited and are permanent.

Our invention is different because it intentionally codes each face of the multi-faced building block, which allows a player to build additional solutions using the same set of blocks. The solutions change based on the orientation of the multi-faced building blocks in the final geometric structure. In addition, our multi-faced building blocks with removable tiles allow the players to change the design with a new set of removable tiles generating a new set of solutions.

In the case of a set of seven building blocks as presented in FIG. 9, we coded 20 unique solutions (FIGS. 10-17). To show coding of each of the 7 multi-faced building blocks (FIG. 9) we present all 6 possible views (front, top, right, back, left, and bottom) of each block coded with MCTs using letters (FIGS. 10-17). Each letter represents one of the possible 20 cube solutions (FIG. 17); for example, in FIG. 17 the solution is represented by the letter F coded on the top of the completed puzzle (FIG. 17). MCTs that code solutions are used on portions (90 unit-squares) of the multi-faced building blocks that can be visible on a face of any completed 3by 3by 3 cube. The faces of the seven multi-faced building blocks that never appear as part of the surface of any completed 3by 3 by 3 cube (FIG. 17) are left blank (FIGS. 10-17). For such faces, we use tiles of neutral color (these will not code a cube solution).

Claims

1. An improved set of multi-faced building blocks wherein at least one of the faces of each block is provided with at least one mounting mechanism; and at least one mountable coding tile (MCT) with a bottom side which is adapted to receive and be connected to at least one mountable mechanism; and at least one of the edges of each building block has at least one friction edge (FE) attached.

2. A multi-faced building block in claim 1, which is shaped as a polyhedron that is comprised of at least two fused rectangular prisms, wherein at least one face of at least one rectangular prism is in common with at least one face of another rectangular prism to create the block, wherein rectangular prisms are fused in order to avoid breakage during the construction of the geometric structures, the puzzle.

3. A multi-faced building block in claim 1 with each face of a block in a shape of a polygon, such as square, rectangle, or a polygon that is a composition of at least two rectangles.

4. A multi-faced building block in claim 1, wherein the block is made of at least one type of material such as plastic, wood, metal, clay, glass, or any moldable material.

5. A multi-faced building block in claim 1, wherein the block is made of at least one color or design element.

6. A multi-faced building block in claim 1, wherein at least one mountable coding tile and at least one mountable mechanism are held together by frictional, magnetic, or geometric locking.

7. A mounting mechanism, in claim 6, wherein the concave recess area and corresponding convex part are complementary to each other and allow connecting the pieces by geometric, magnetic, or frictional locking.

8. A multi-faced building block in claim 1, wherein at least a part of at least one edge of the block has an attached friction edge (FE), wherein the FE is at least as tall as the thickness of the mountable coding tile mounted on at least one mountable mechanism on at least a part of at least one face of the block to provide friction with a flat surface used during the construction; wherein the FE is the part of the building block that makes contact with any planer surface (such as table, desk, or play surface) on which the block is placed.

9. A multi-faced building block in claim 1, where at least one friction edge separates at least two neighboring mountable coding tiles each mounted to at least one mountable mechanism located on at least one face of the block.

10. A multi-faced building block in claim 1, wherein a friction edge attached to an outer edge of a square-shaped face of a building block has a shape of a lateral surface area of a hollow truncated rectangular pyramid with the height of the truncated pyramid at least as tall as the thickness of the mountable tile, wherein the smaller base located in the cross section of the truncated rectangular pyramid is the square-shaped face of the building block.

11. A multi-faced building block in claim 1, wherein a friction edge is attached to an outer edge of polygonal faces of a building block, wherein the shape of the friction edges are lateral surfaces of connected truncated square pyramids with smaller bases comprising the polygonal face of the building block, wherein the heights of these truncated pyramids are at least as tall as the thickness of the mountable tile.

12. A multi-faced building block in claim 1, wherein each face of a building block permits mounting at least one MCT using a mounting mechanism.

13. A mountable coding tile, in claim 1 that contains at least one design element, wherein the design element is located on the top of the tile, wherein the design element is used to create a pattern to guide the construction of a given geometric structure.

14. A mountable coding tile in claim 1, shaped as a polygon, or a circle, wherein the tile is no larger than the corresponding portion of the surface of the multi-faced building block.

15. A mountable coding tile, in claim 1 wherein a bottom includes a mountable mechanism, recess area that is adapted to receive at least one convex part of a mountable mechanism.

16. A building set including at least two multi-faced building blocks in claim 1 that allow constructing of 3-D geometric structures.

17. A building set including at least two multi-faced building blocks in claim 1 that allow constructing a puzzle in a shape of a cube.

18. A set of multi-faced building blocks in claim 1 that contains at least one recognizable pattern/picture/design (solution) created by at least two MCTs on at least a portion of the geometric structure created by at least two multi-faced building blocks.

19. A building set of seven multi-faces building blocks in claim 1, wherein the building blocks are in the shape of all possible variations of three fused unit-cubes and all possible variations of four fused unit cubes, wherein each cube is connected with a neighboring cube only by one face, wherein the multi-faces building blocks are irregular (do not look like prisms/boxed); wherein the seven blocks put together construct a 3by 3by 3 cube.

20. A set of multi-faced building blocks in claim 18 that contains at least one recognizable pattern/picture/design (cube solution) created by at least two MCTs on at least one face of the cube created by at least two multi-faced building blocks.

21. A set of multi-faces building blocks in claim 18, wherein all of the building blocks' faces that can possibly be part of a face of the 3by 3by 3 cube are covered with a set of MCTs with K (where K is 1 or larger) color/design elements depicted on a square-unit portion of each polygonal MCT; wherein there are 10 times K unique cube solutions as a result of a construction of a cube.

22. A set of multi-faces building blocks in claim 18, wherein all of the building blocks' faces that can possibly be part of a face of the 3by 3by 3 cube are covered with a set of MCTs with K (where K is 1 or larger) colors/designs/elements per each square tile; wherein there are 10 times K unique cube solutions as a result of a construction of a 3by 3by 3 cube.

Patent History
Publication number: 20190275417
Type: Application
Filed: Mar 8, 2018
Publication Date: Sep 12, 2019
Inventors: Agida Manizade (Radford, VA), Christophe Hirel (Christiansburg, VA)
Application Number: 15/915,550
Classifications
International Classification: A63F 9/12 (20060101);