METHOD AND APPARATUS FOR PRE-LOADING A PIEZOELECTRIC TRANSDUCER FOR DOWNHOLE ACOUSTIC COMMUNICATION
A downhole acoustic transmitter has a pre-loaded piezoelectric transducer, an enclosure in which the piezoelectric transducer is housed, a preload spring that biases the transducer against a first end coupling of the enclosure, and an adjustable preload means mounted to the enclosure such that a selected compressive force is applied to the preload spring, which in turn urges the transducer against a face of the first end coupling such that a mechanical preload is applied to the transducer. The position of the adjustable preload means and the spring compliance are selected so that the level of mechanical preload applied to the transducer compensates for an expected amount of flexing of the acoustic telemetry transmitter due to varying tension and compression applied to the transmitter, thereby maintaining an effective preload on the transducer.
Latest XACT Downhole Telemetry Inc. Patents:
- METHOD AND SYSTEM FOR CONTROLLING VOLTAGE APPLIED ACROSS A PIEZOELECTRIC STACK OF A DOWNHOLE ACOUSTIC TRANSMITTER
- Robust telemetry repeater network system and method
- Downhole low rate linear repeater relay network timing system and method
- Acoustic transmitter for transmitting a signal through a downhole medium
- Acoustic telemetry stacked-ring wave delay isolator system and method
This disclosure relates generally to a downhole acoustic transmitter having a pre-loaded piezoelectric transducer and a method for pre-loading a piezoelectric transducer for use in downhole communication such as downhole acoustic telemetry.
BACKGROUNDThe evolution of modern oil and gas wells has led to increases in both the depth of the wells and the complexity of the procedures and equipment needed for drilling and completions operations. Additionally, there is an ongoing need for improved safety and efficiency in the drilling and completions process. The combination of these factors has created a need for improved visibility of the downhole conditions along the length of the drill string and at the bottom hole assembly (BHA) during drilling and completions operations. Downhole sensor measurements such as downhole bore and annular pressure, drill string torque and tension, and temperature can be transferred from a downhole location to the surface through one of several known telemetry methods.
One type of downhole communication method is wired drill pipe telemetry, which offers very high bandwidths, but tends to be expensive to deploy and prone to failure. Another known downhole communication method is mud pulse telemetry which encodes sensor data into pressure waves that are induced in the drilling fluid flowing in the drill string. Drawbacks to mud pulse telemetry include an inability to transmit when drilling fluid is not flowing, and relatively low data rate transmissions which decrease as the depth of the well increases. A third type of downhole communication is electromagnetic (EM) telemetry, which transmits digitally modulated electromagnetic waves through the formations surrounding the drill string to a surface receiver. EM telemetry does not require the flow drilling fluid and can provide a higher data transmission rate than mud pulse telemetry, but can be sensitive to the nature of the formations surrounding the well and may not be well suited for deeper wells.
A fourth type of downhole communication is acoustic telemetry, which has proven to be well suited for the modern drilling environment. Acoustic telemetry is capable of transmitting hundreds of bits per second, and since it uses the body of the drill pipe as its transmission medium it is insensitive to the surrounding formation or casing, and does not require any fluid flow to enable the transmission of data.
There are currently three different implementations of acoustic telemetry systems in downhole tools that use acoustic telemetry: probe-based, clamp-on, and collar-based. These systems typically comprise components including sensors, electronics, batteries and an acoustic transmitter. The probe-based implementation is mounted at least partially within the bore of the drill pipe. The clamp-on implementation is mounted on the external wall of the drill pipe. The collar-based implementation places the components within an annular space in the downhole tool.
In a typical drilling or completions environment, a number of acoustic transmitters can be spaced along the length of the drill string. The most common type of acoustic transducer used within downhole tools comprises a cylindrical piezoelectric stack mounted in a collar-based implementation. Such a stack comprises a number of thin piezoceramic discs layered with thin electrodes between each disc which are connected electrically in parallel. As is known in the art, such as disclosed in U.S. Pat. No. 6,791,470, the entirety of which is incorporated by reference herein, an advantage of the piezoelectric stack when compared to other acoustic transducer types is that the acoustic impedance of the stacked ring structure can be closely matched to the acoustic impedance of the tool's structure thereby optimizing the transfer of acoustic energy from the stack into the tool body, and subsequently into the drill string. Any acoustic impedance mismatch between the stack and the tool surrounding structure results in a reduction in the acoustic output power of the tool.
The piezoelectric stack structure offers a large displacement force combined with a high energy conversion efficiency and high compressive strength, but offers little resistance to tension, even that incurred when voltage is applied. Due to its low tensile strength, it is common practice to place a piezoelectric stack under a mechanical compressive preload along the stack's axis of operation in order to maintain stack integrity while being actuated. The magnitude of the preload can compensate for dynamic forces, but also affects the mechanical energy output from the stack. If there is no compressive preload or if the compressive preload exceeds the blocking force of the piezoelectric material, then there is no mechanical energy output from the stack. An optimum preload level that will maximize the output mechanical energy from the stack occurs when the stiffness of the preloaded stack is equal to the stiffness of the mechanical load.
Referring to
The prior art acoustic transmitter 301 will maintain a positive compressive preload on the piezoelectric stack 308 over a limited range of tension/compression on the downhole tool. However, in deeper wells such as those drilled offshore, the tension/compression applied to the downhole tool by external forces can result in the tool flexing enough to either reduce the preload to zero, or to compress the piezoelectric stack beyond its compressive limits. Thus there is a need for a method of applying a compressive preload to the piezoelectric stack in a downhole acoustic transmitter that will maintain an effective preload over the entire range of tension and compression applied to the downhole tool by the drill string while operating in a downhole environment.
SUMMARYAccording to one aspect, there is provided a downhole acoustic transmitter for use in downhole communication, comprising an enclosure, a piezoelectric transducer, a preload spring and an adjustable preload means. The enclosure comprises a first end coupling, a second end coupling, a tubular outer housing having a first end coupled to the first end coupling and a second end coupled to the second end coupling, and an inner mandrel inside the outer housing and extending between the first and second end couplings such that an annular space is defined between the mandrel and the outer housing. The piezoelectric transducer is in the annular space, and has a first end contacting an inner face of the first end coupling in an axial direction. The preload spring is in the annular space and has a first end contacting a second end of the piezoelectric transducer in the axial direction. The adjustable preload means contacts the enclosure and a second end of the preload spring such that a compressive force in the axial direction is applied to the preload spring, which in turn compresses the piezoelectric transducer against the inner face of the first coupling.
The adjustable preload means can comprise one or more spacers contacting an inner face of the second end coupling, or be a retaining ring attached to an inner surface of the outer housing, or be a threaded nut attached to the mandrel. The piezoelectric transducer can comprise an annular stack of annular piezoceramic discs with annular electrodes between each disc, wherein the annular stack is slidable over the mandrel. The preload spring can be a metal tube slidable over the mandrel, or can be one or more metal rods or tubes each extending in the axial direction in the annular space.
The downhole acoustic transmitter can further comprise an acoustic tuning element in the annular space and attached to the second end of the piezoelectric transducer. The acoustic tuning element has a selected acoustic impedance that when combined with the acoustic impedance of the preload spring, equals the acoustic impedance of the inner face of the first end coupling. The acoustic tuning element can comprise a metal cylinder having a first end attached to the second end of the piezoelectric transducer and a free second end. One or more of a mass density, mass distribution, length and cross sectional area of the acoustic tuning element can be selected to provide the selected acoustic impedance.
According to another aspect, there is provided a downhole acoustic telemetry node which comprises one or more sensors for measuring a local borehole environment and one or more mechanical conditions of a drill string (e.g. pressure, temperature, tension, compression and torque), a processor and memory communicative with the one or more sensors for storing measurements taken by the one or more sensors, and the downhole acoustic transmitter, which is communicative with the processor and memory and is operable to transmit the measurements.
According to another aspect, there is provided a method for acoustic transmission from a downhole location, comprising: (a) applying a compressive preload in an axial direction against a preload spring, which in turn compresses a piezoelectric transducer against an inner face of a first end coupling of an enclosure of a downhole acoustic transmitter, wherein the compressive preload is selected to place the piezoelectric transducer in compression over a range of expected operating conditions of the downhole acoustic transmitter; and (b) applying a voltage to the piezoelectric transducer to generate an acoustic transmission. The method can further comprise tuning the acoustic impedance of the piezoelectric transducer by contacting an end of the piezoelectric transducer with an acoustic tuning element having a selected acoustic impedance such that when combined with an acoustic impedance of the preload spring, equals the acoustic impedance of the inner face of the first end coupling, wherein the end of the piezoelectric transducer contacting the acoustic tuning element also contacts the preload spring.
Directional terms such as “top”, “bottom”, “upwards”, “downwards”, “vertically”, and “laterally” are used in the following description for the purpose of providing relative reference only, and are not intended to suggest any limitations on how any article is to be positioned during use, or to be mounted in an assembly or relative to an environment.
Additionally, the term “couple” and variants of it such as “coupled”, “couples”, and “coupling” as used in this description is intended to include indirect and direct connections unless otherwise indicated. For example, if a first device is coupled to a second device, that coupling may be through a direct connection or through an indirect connection via other devices and connections. Similarly, if the first device is communicatively coupled to the second device, communication may be through a direct connection or through an indirect connection via other devices and connections.
Furthermore, the singular forms “a”, “an”, and “the” as used in this description are intended to include the plural forms as well, unless the context clearly indicates otherwise.
The embodiments described herein relate generally to a downhole acoustic transmitter having a pre-loaded piezoelectric transducer and a method for pre-loading a piezoelectric transducer for use in downhole acoustic communication such as downhole telemetry. The transmitter comprises an enclosure in which the piezoelectric transducer is housed, a preload spring that biases the transducer against a first end coupling of the enclosure, and an adjustable preload means mounted to the enclosure such that a selected compressive force is applied to the preload spring, which in turn urges the transducer against a face of the first end coupling such that a mechanical preload is applied to the transducer. The position of the adjustable preload means and the spring compliance are selected so that the level of mechanical preload applied to the transducer compensates for an expected amount of flexing of the acoustic telemetry transmitter due to varying tension and compression applied to the transmitter, thereby maintaining an effective preload on the transducer.
In some embodiments, the downhole acoustic transmitter further comprises an acoustic tuning element positioned to contact the piezoelectric transducer at the same end as the preload spring. The acoustic tuning element is tuned such that the acoustic impedance seen by the piezoelectric transducer at that end, comprising the combination of the acoustic impedance of the tuning element and the acoustic impedance of the preload spring at that end, is equal to the acoustic impedance offered to the transducer at the other end by the face of the first end coupling, thereby maintaining the output power of the transducer while compensating for any variations in the mechanical preload applied by the preload spring.
Referring now to
The acoustic transmitters in this embodiment have a collar-based configuration, with the components of the acoustic transmitter including the piezoelectric transducer, sensors, electronics and batteries being mounted in a wall of a tubular section of the repeater 106 or the telemetry tool 105. However, the acoustic transmitters can have a probe-based or clamp-on configuration according to other embodiments (not shown). As will be described in more detail below, each acoustic transmitter comprises a mandrel defining a through-bore which allows fluid to pass through repeater 106 or telemetry tool 105. Each acoustic transmitter is operable to transmit a modulated acoustic signal as an extensional wave through the drill string components. The connection of several lengths of tubing 103 of similar size and dimensions is well known to form an acoustic frequency response similar to a bandpass comb filter which comprises a number of passbands alternating with stopbands as shown in
According to a first embodiment and referring to
The transducer 405 comprises a stack of thin annular piezoceramic discs layered with thin annular electrodes between each disc which are connected electrically in parallel (the transducer is herein alternatively referred to as a “piezoelectric stack” 405). As a result, the stack's electrical behavior is primarily capacitive. Applying a high voltage charges the piezoelectric stack 405 and causes it to increase and decrease in length. It is this deflection that launches extensional waves into the drill pipe (not shown). Data can be carried by the extensional waves by modulating the voltage applied to the piezoelectric stack 405.
The piezoelectric stack 405 slides over the mandrel 404 and has a first end that contacts an inner face of the first end coupling 402. The preload spring 407 is shown in
One or more spacers 409 slide over the mandrel 404 to contact a second end of the preload spring 407. The pin 410 is threaded onto the internally threaded second end of the outer housing 403 such that an inner face of the pin 410 applies axial pressure against the spacer(s) 409, which in turn applies an axial compressive preload against the piezoelectric stack 405. Although only one spacer 409 is shown in
That is, the physical environment imposed on the acoustic transmitter 401 can be particularly challenging, with the telemetry tool 106 in particular being subjected to extreme ranges of pressure, temperature, and tension/compression, all of which vary as a function of the tool's placement in the drill string, depth, and the rig's operational state. The orientation of the borehole 108 containing the tubing 103 can be vertical with an inclination of 0 degrees, or may have one or more deviations in orientation along its length resulting in changes of inclination as high as 90 degrees. Due to the length of the tubing 103 and the deviations in its orientation, the tensile and compressive forces that the telemetry tool 106 are subjected to during rig operations can be very high. For example, the telemetry tool 106 may be subject to pressures up to 30 kpsi, tensions over 1,000,000 pounds, and temperatures up to 175° C. Of particular concern to the piezoelectric stack 405 is the flexing of the tool structure under various load conditions. These varying load conditions can affect the mechanical energy output by the piezoelectric stack 405 as the compressive load on the piezoelectric stack 405 varies. In the extreme, the piezoelectric stack 405 can be depolarized due to excessive compression caused by compression on the tool 106, or be damaged when the stack compression falls below safe operating levels during periods of high tension on the tool 106.
Because a selected compressive preload is applied to the piezoelectric stack 405 by the spacers 409 via the preload spring 407, the piezoelectric stack 405 can be subjected to relatively large variations in compressive load as the tool 106 is subjected to changes in the drill string tension and compression during the rig's operations. The amount of compressive preload applied to the piezoelectric stack 405 by the preload spring 407 and spacers 409 can be selected by selecting the spring constant of the preload spring 407 and selecting the number of spacers 409 between the preload spring 407 and the pin 410. An appropriate compressive preload maintains a positive compressive preload on the stack 405 over the entire range of tension and compression expected to be applied to the telemetry tool 105 by the drill string during a drilling operation. Determining the appropriate preload will be evident to one skilled in art based on certain properties of the drill string, borehole, reservoir, and drilling operation. Once the appropriate preload is determined, a spring 407 with a suitable spring constant and a suitable number of spacers 409 can be selected to provide the appropriate preload.
Referring to
Referring to
The acoustic tuning element 606 is slid over the mandrel 604 such that the first end attaches to the piezoelectric stack 605 by a threaded connection, while leaving an annular space 608 between the outer surface of the mandrel 604 and the inner face of the acoustic tuning element 606. The preload spring 607 is slid over the mandrel 604 into the annular space 608 between the mandrel 604 and the acoustic tuning element 606 to contact the end of the piezoelectric stack 605. The outer housing 603 is slid over the assembly and threaded onto the external threads of the first end coupling 602, and the retaining ring 609 is slid over the mandrel 604 and comprises external threads which engage with internal threads of the outer housing 603 such that a compressive preload is applied to the piezoelectric stack 605 via the preload spring 607; consequently the piezoelectric stack 605 is compressed between the preload spring 607 and the inner face 611 of the first end coupling 602. The retaining ring 609 does not contact the second end 612 of the tuning element 606; therefore, the second end 612 of the tuning element remains “open”. The pin 610 is threaded into the outer housing 603 and mandrel 604 to close and seal the annular space 608 but does not contribute to the preload on the piezoelectric stack 605.
The acoustic tuning element 606 comprises a resonant structure that is tuned such that when it is attached to the end of the piezoelectric stack 605 its acoustic impedance reduces the piezoelectric stack 605 compliance at the frequencies being transmitted, and restores the acoustic match between the piezoelectric stack 605 and the first end coupling 603 without affecting the preload applied to the piezoelectric stack 605 by the preload spring 607.
For optimal acoustic output power, the piezoelectric stack 605 should be matched at either end with acoustic impedances equal to that of the piezoelectric stack 605; however the additional compliance of the preload spring 607 reduces the acoustic impedance seen by the piezoelectric stack 605 at the end at which the preload force is applied. The acoustic impedance of a segment of a cylinder of length l can be determined using the four-pole matrix solution to the wave equation. The four-pole solution can be written as:
in which
where c is the wave speed which is defined as
where E is the Young's modulus of the cylinder material and ρ is the mass density of the material. The force at one end of the cylinder at x+l can be written as
F(x+l)=F(x)cos(kl)+izV(x)sin(kl) Equation 1
in which z is the wave impedance of the cylinder which is defined as z=ρca, and a is the cross sectional area of the cylinder. In the case of a cylinder with an open end F(x+l)=0, resulting in an acoustic impedance at the opposing end of the cylinder of:
wherein i indicates the imaginary part of a complex number and is defined as the sqrt(−1).
For example, a steel cylinder 3.2 m long and 0.1 m in diameter and a 3800 mm2 cross sectional area can be used to represent the combined acoustic impedance of a preload spring and an acoustic tuning element; the acoustic impedance at a first end of the cylinder given a free end at the second end of the cylinder can be calculated using Equation 2. The resulting acoustic impedance contains resonant peaks and nulls which occur at frequencies corresponding to integer multiples of quarter wavelengths of the first resonant frequency.
To demonstrate, given a common piezoelectric material with a density of 7.5 Mg/m3, and a Young's modulus of 9.9*1010 N/m2, then a piezoelectric stack with a length of 0.142 m and a cross sectional area of 4200 mm2 will have a wave impedance of 114 Kg/s.
Instead of spacers 409 or a retaining ring 509, other types of adjustable preload means can be used to provide a compressive preload to the transducer via the preload spring. For example, referring to
While the illustrative embodiments of the present invention are described in detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications within the scope of the appended claims will readily be apparent to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the general concept.
Claims
1. A downhole acoustic transmitter for use in downhole communication, comprising:
- (a) an enclosure comprising a first end coupling, a second end coupling, a tubular outer housing having a first end coupled to the first end coupling and a second end coupled to the second end coupling, and an inner mandrel inside the outer housing and extending between the first and second end couplings such that an annular space is defined between the mandrel and the outer housing;
- (b) a piezoelectric transducer in the annular space, and having a first end contacting an inner face of the first end coupling in an axial direction;
- (c) a preload spring in the annular space and having a first end contacting a second end of the piezoelectric transducer in the axial direction;
- (d) an adjustable preload means contacting the enclosure and a second end of the preload spring such that a compressive force in the axial direction is applied to the preload spring, which in turn compresses the piezoelectric transducer against the inner face of the first coupling.
2. The downhole acoustic transmitter as claimed in claim 1 wherein the adjustable preload means comprises one or more spacers contacting an inner face of the second end coupling.
3. The downhole acoustic transmitter as claimed in claim 1 wherein the adjustable preload means is a retaining ring attached to an inner surface of the outer housing.
4. The downhole acoustic transmitter as claimed in claim 1 wherein the adjustable preload means is a threaded nut attached to the mandrel.
5. The downhole acoustic transmitter as claimed in claim 1 wherein the piezoelectric transducer comprises an annular stack of annular piezoceramic discs with electrodes between each disc, wherein the annular stack is slidable over the mandrel.
6. The downhole acoustic transmitter as claimed in claim 1 wherein the preload spring is a metal tube slidable over the mandrel.
7. The downhole acoustic transmitter as claimed in claim 1 wherein the preload spring comprises one or more metal rods or tubes each extending in the axial direction in the annular space.
8. The downhole acoustic transmitter as claimed in claim 1 further comprising an acoustic tuning element in the annular space and attached to the second end of the piezoelectric transducer, the acoustic tuning element having a selected acoustic impedance that maximizes power transfer from the piezoelectric stack into the enclosure over a selected operating frequency bandwidth.
9. The downhole acoustic transmitter as claimed in claim 8 wherein the acoustic tuning element has a center frequency wherein the acoustic impedance of the acoustic tuning element matches the acoustic impedance of the piezoelectric stack and the selected operating frequency bandwidth is up to 15% of the center frequency.
10. The downhole acoustic transmitter as claimed in claim 9 wherein the acoustic tuning element comprises a metal cylinder having a first end attached to the second end of the piezoelectric transducer and a free second end.
11. The downhole acoustic transmitter as claimed in claim 9 wherein one or more of a mass density, mass distribution, length and cross sectional area of the acoustic tuning element is selected to provide the selected acoustic impedance.
12. The downhole acoustic transmitter as claimed in claim 1, mounted in a telemetry tool or a repeater of a drill string, wherein the downhole acoustic transmitter has a configuration selected from a group consisting of: collar-based, clamp-on, and probe-based.
13. A downhole acoustic telemetry node comprising:
- (a) one or more sensors for measuring a local borehole environment and one or more mechanical conditions of a drill string;
- (b) a processor and memory communicative with the one or more sensors for storing measurements taken by the one or more sensors; and
- (c) the downhole acoustic transmitter as claimed in claim 1 communicative with the processor and memory for transmitting the measurement
14. A method for acoustic transmission from a downhole location, comprising:
- (a) applying a compressive preload in an axial direction against a preload spring, which in turn compresses a piezoelectric transducer against an inner face of a first end coupling of an enclosure of a downhole acoustic transmitter, wherein the compressive preload is selected to place the piezoelectric transducer in compression over a range of expected operating conditions of the downhole acoustic transmitter; and
- (b) applying a voltage to the piezoelectric transducer to generate an acoustic transmission.
15. The method as claimed in claimed in claim 14 further comprising tuning the acoustic impedance of the piezoelectric transducer by contacting an end of the piezoelectric transducer with an acoustic tuning element having a selected acoustic impedance such that when combined with an acoustic impedance of the preload spring, equals the acoustic impedance of the inner face of the first end coupling, wherein the end of the piezoelectric transducer contacting the acoustic tuning element also contacts the preload spring.
Type: Application
Filed: Jul 7, 2017
Publication Date: Oct 3, 2019
Applicant: XACT Downhole Telemetry Inc. (Calgary, AB)
Inventors: Xiaojun Xiao (Calgary, Alberta), Dave Whalen (St. Johns, Newfoundland), John-Peter Van Zelm (Calgary, Alberta), John Godfrey McRory (Calgary, Alberta)
Application Number: 16/316,848