ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM
A surgical severing and stapling instrument, suitable for laparoscopic and endoscopic clinical procedures, clamps tissue within an end effector of an elongate channel pivotally opposed by an anvil. An E-beam firing bar moves distally through the clamped end effector to sever tissue and to drive staples on each side of the cut. The E-beam firing bar affirmatively spaces the anvil from the elongate channel to assure properly formed closed staples, especially when an amount of tissue is clamped that is inadequate to space the end effector. In particular, an upper pin of the firing bar longitudinally moves through an anvil slot and a channel slot is captured between a lower cap and a middle pin of the firing bar to assure a minimum spacing. Forming the E-beam from a thickened distal portion and a thinned proximal strip enhances manufacturability and facilitates use in such articulating surgical instruments.
This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/679,300, entitled ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM, filed Aug. 17, 2017, now U.S. Patent Application Publication No. 2018/0085123, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/850,030, entitled ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM, filed Sep. 10, 2015, which issued on Aug. 22, 2017 as U.S. Pat. No. 9,737,303, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/521,748, entitled STAPLE CARTRIDGE, filed Oct. 23, 2014, which issued on Dec. 6, 2016 as U.S. Pat. No. 9,510,830, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/175,148, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 7, 2014, which issued on Mar. 15, 2016 as U.S. Pat. No. 9,282,966, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/369,601, entitled ROBOTICALLY-CONTROLLED SURGICAL END EFFECTOR SYSTEM, filed on Feb. 9, 2012, which issued on Jul. 22, 2014 as U.S. Pat. No. 8,783,541, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/118,246, entitled ROBOTICALLY-DRIVEN SURGICAL INSTRUMENT WITH E-BEAM DRIVER, filed on May 27, 2011, which issued on Jun. 23, 2015 as U.S. Pat. No. 9,060,770, which is a continuation-in-part application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 11/538,154, entitled ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM, filed on Oct. 3, 2006, now U.S. Patent Application Publication No. 2007/0084897, the entire disclosures of which are hereby incorporated by reference herein. This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/679,300, entitled ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM, filed Aug. 17, 2017, now U.S. Patent Application Publication No. 2018/0085123, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/850,030, entitled ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM, filed Sep. 10, 2015, which issued on Aug. 22, 2017 as U.S. Pat. No. 9,737,303, which is a continuation application under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/521,748, entitled STAPLE CARTRIDGE, filed Oct. 23, 2014, which issued on Dec. 6, 2016 as U.S. Pat. No. 9,510,830, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/175,148, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 7, 2014, which issued on Mar. 15, 2016 as U.S. Pat. No. 9,282,966, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 11/141,753, entitled SURGICAL STAPLING INSTRUMENT HAVING AN ELECTROACTIVE POLYMER ACTUATED MEDICAL SUBSTANCE DISPENSER, filed on Jun. 1, 2005, which issued on Dec. 9, 2014 as U.S. Pat. No. 8,905,977, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 60/591,694, entitled SURGICAL INSTRUMENT INCORPORATING AN ELECTRICALLY ACTUATED ARTICULATION MECHANISM, filed on Jul. 28, 2004, the entire disclosures of which are hereby incorporated by reference herein.
FIELD OF THE INVENTIONThe present invention relates in general to surgical instruments that are suitable for endoscopically inserting an end effector that is actuated by a longitudinally driven firing member, and more particularly a surgical stapling and severing instrument that has an articulating shaft.
BACKGROUND OF THE INVENTIONEndoscopic surgical instruments are often preferred over traditional open surgical devices since a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).
Positioning the end effector is constrained by the trocar. Generally these endoscopic surgical instruments include a long shaft between the end effector and a handle portion manipulated by the clinician. This long shaft enables insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby positioning the end effector to a degree. With judicious placement of the trocar and use of graspers, for instance, through another trocar, often this amount of positioning is sufficient. Surgical stapling and severing instruments, such as described in U.S. Pat. No. 5,465,895, are an example of an endoscopic surgical instrument that successfully positions an end effector by insertion and rotation.
More recently, U.S. patent application Ser. No. 10/443,617, entitled SURGICAL STAPLING INSTRUMENT INCORPORATING AN E-BEAM FIRING MECHANISM, filed on May 20, 2003, now U.S. Pat. No. 6,978,921, which is incorporated by reference in its entirety, describes an improved “E-beam” firing bar for severing tissue and actuating staples. Some of the additional advantages include affirmatively spacing the jaws of the end effector, or more specifically a staple applying assembly, even if slightly too much or too little tissue is clamped for optimal staple formation. Moreover, the E-beam firing bar engages the end effector and staple cartridge in a way that enables several beneficial lockouts to be incorporated.
Depending upon the nature of the operation, it may be desirable to further adjust the positioning of the end effector of an endoscopic surgical instrument. In particular, it is often desirable to orient the end effector at an axis transverse to the longitudinal axis of the shaft of the instrument. The transverse movement of the end effector relative to the instrument shaft is conventionally referred to as “articulation”. This is typically accomplished by a pivot (or articulation) joint being placed in the extended shaft just proximal to the staple applying assembly. This allows the surgeon to articulate the staple applying assembly remotely to either side for better surgical placement of the staple lines and easier tissue manipulation and orientation. This articulated positioning permits the clinician to more easily engage tissue in some instances, such as behind an organ. In addition, articulated positioning advantageously allows an endoscope to be positioned behind the end effector without being blocked by the instrument shaft.
Approaches to articulating a surgical stapling and severing instrument tend to be complicated by integrating control of the articulation along with the control of closing the end effector to clamp tissue and fire the end effector (i.e., stapling and severing) within the small diameter constraints of an endoscopic instrument. Generally, the three control motions are all transferred through the shaft as longitudinal translations. For instance, U.S. Pat. No. 5,673,840 discloses an accordion-like articulation mechanism (“flex-neck”) that is articulated by selectively drawing back one of two connecting rods through the implement shaft, each rod offset respectively on opposite sides of the shaft centerline. The connecting rods ratchet through a series of discrete positions.
Another example of longitudinal control of an articulation mechanism is U.S. Pat. No. 5,865,361 that includes an articulation link offset from a camming pivot such that pushing or pulling longitudinal translation of the articulation link effects articulation to a respective side. Similarly, U.S. Pat. No. 5,797,537 discloses a similar rod passing through the shaft to effect articulation.
In commonly-owned U.S. patent application Ser. No. 10/615,973, entitled SURGICAL INSTRUMENT INCORPORATING AN ARTICULATION MECHANISM HAVING ROTATION ABOUT THE LONGITUDINAL AXIS, now U.S. Pat. No. 7,111,769, the disclosure of which is hereby incorporated by reference in its entirety, a rotational motion is used to transfer articulation motion as an alternative to a longitudinal motion.
In the application entitled SURGICAL STAPLING INSTRUMENT INCORPORATING AN E-BEAM FIRING MECHANISM, U.S. patent application Ser. No. 10/443,617, filed on May 20, 2003, now U.S. Pat. No. 6,978,921, the disclosure of which was previously incorporated by reference in its entirety, a surgical severing and stapling instrument, suitable for laparoscopic and endoscopic clinical procedures, clamps tissue within an end effector of an elongate channel pivotally opposed by an anvil. An E-beam firing bar moves distally through the clamped end effector to sever tissue and to drive staples on each side of the cut. The E-beam firing bar affirmatively spaces the anvil from the elongate channel to assure properly formed closed staples, especially when an amount of tissue is clamped that is inadequate to space the end effector. In particular, an upper pin of the firing bar longitudinally moves through an anvil slot and a channel slot is captured between a lower cap and a middle pin of the firing bar to assure a minimum spacing. While this E-beam firing bar has a number of advantages, additional features are desirable to enhance manufacturability and to minimize dimensional variations.
Consequently, a significant need exists for a surgical instrument with a firing bar that advantageously assures proper spacing between clamped jaws of an end effector and which facilitates articulation of its shaft.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
The entire disclosure of U.S. patent application Ser. No. 11/082,495, entitled SURGICAL INSTRUMENT INCORPORATING AN ELECTRICALLY ACTUATED ARTICULATION MECHANISM, filed on Mar. 17, 2005, now U.S. Pat. No. 7,506,790, is incorporated herein by reference. The entire disclosure of U.S. Pat. No. 6,667,825, entitled STABLE CONJUGATED POLYMER ELECTROCHROMIC DEVICES INCORPORATING IONIC LIQUIDS, issued on Jan. 3, 2002, is incorporated herein by reference. The entire disclosure of U.S. patent application Ser. No. 11/061,908, entitled SURGICAL INSTRUMENT INCORPORATING A FLUID TRANSFER CONTROLLED ARTICULATION MECHANISM, filed on Feb. 18, 2005, now U.S. Pat. No. 7,559,450, is incorporated herein by reference.
In
With particular reference to
Once positioned with tissue in the staple applying assembly 12, a surgeon closes the anvil 22 by drawing a closure trigger 40 proximally toward a pistol grip 42. Once clamped thus, the surgeon may grasp a more distally presented firing trigger 44, drawing it back to effect firing of the staple applying assembly 12, which in some applications is achieved in one single firing stroke and in other applications by multiple firing strokes. Firing accomplishes simultaneously stapling of at least two rows of staples while severing the tissue therebetween.
Retraction of the firing components may be automatically initiated upon full travel. Alternatively, a retraction lever 46 may be drawn aft to effect retraction. With the firing components retracted, the staple applying assembly 12 may be unclamped and opened by the surgeon slightly drawing the closure trigger 40 aft toward the pistol grip 42 and depressing a closure release button 48 and then releasing the closure trigger 40, thereby releasing the two stapled ends of severed tissue from the staple applying assembly 12.
Staple Applying AssemblyWhile an articulation joint 32 is depicted in
In
With particular reference to
The shaft frame 70 encompasses and guides a firing motion from the handle 14 through a longitudinally reciprocating, two-piece knife and firing bar 90. In particular, the shaft frame 70 includes a longitudinal firing bar slot 92 that receives a proximal portion of the two-piece knife and firing bar 90, specifically a laminate tapered firing bar 94. It should be appreciated that the laminated tapered firing bar 94 may be substituted with a solid firing bar or of other materials in applications not intended to pass through an articulation joint, such as depicted in
An E-beam 102 is the distal portion of the two-piece knife and firing bar 90, which facilitates separate closure and firing as well as spacing of the anvil 22 from the elongate staple channel 18 during firing. With particular reference to
Forming these features (e.g., top pins 110, middle pins 112, and bottom foot 114) integrally with the E-beam 102 facilitates manufacturing at tighter tolerances relative to one another as compared to being assembled from a plurality of parts, ensuring desired operation during firing and/or effective interaction with various lockout features of the staple applying assembly 12.
In
In
In
In
In
Firing the staple applying assembly 12 begins as depicted in
In
In
In
In
A central passage 320 (
While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.
For example, while there are a number of advantages to having a wedge sled integral to a staple cartridge, in some applications consistent with aspects of the present invention, the wedge sled may be integral instead to an E-beam. For instance, an entire end effector may be replaceable rather than just the staple cartridge.
Claims
1. A surgical instrument comprising:
- a handle portion operable to produce a firing motion; and
- an implement portion responsive to the firing motions from the handle portion, the implement portion comprising: an elongate channel coupled to the handle portion and including a channel slot, a staple cartridge received by the elongate channel and incorporating a proximally positioned wedge member aligned to cam upward a driver supporting a staple, an anvil pivotally coupled to the elongate channel and including an anvil channel, a firing device including a distally presented cutting edge longitudinally received between the elongate channel and the anvil, an upper member engageable to the anvil channel, a lower member engaging the channel slot, and a middle member operable to actuate the staple cartridge by distally translating the wedge member of the staple cartridge, the firing device positively engaging both the elongate channel and the anvil during longitudinal firing travel to provide spacing therebetween for staple formation, an articulation joint proximally coupled to the elongate channel, and a thinned firing strip proximally attached to the firing device for transferring the firing motion from the handle portion through the articulation joint.
2. The surgical instrument of claim 1, wherein the anvil forms a pivotal attachment to the elongate channel inwardly biased at respective distal ends to assist the firing device in affirmatively spacing between the anvil and elongate channel during actuation of the staple cartridge.
3. The surgical instrument of claim 1, wherein the staple cartridge is a selected type of a plurality of staple cartridge types, each staple cartridge type characterized by a thickness selected for a desired spacing between the anvil and elongate channel and characterized by staples having a length suitable for the desired spacing.
4. The surgical instrument of claim 3, wherein the wedge member comprises a wedge sled having a plurality of connected camming wedges each having a preselected height configured for the selected type of staple cartridge, the middle member of the firing device oriented to abut each of the plurality of staple cartridge types.
5. A surgical instrument comprising:
- a handle portion operable to produce a firing motion and a closing motion; and
- an implement portion responsive to the firing motions from the handle portion and diametrically dimensioned for endo-surgical use, the implement portion comprising: a shaft coupled to the handle portion operable to separately transfer the firing motion and the closing motion, an elongate channel coupled to the shaft and including a channel slot, an anvil pivotally coupled to the elongate channel, responsive to the closing motion from the shaft, and including an anvil channel, a firing device including a distally presented cutting edge longitudinally received between the elongate channel and the anvil, the firing device including a lower portion slidingly engaged to the elongate channel and an upper portioned positioned to slidingly engage the anvil during firing, engagement of the firing device to the elongate channel and the anvil maintaining a spacing therebetween; and a thinned strip proximally attached to the firing device operable to transfer the firing motion to the firing device.
6. The surgical instrument of claim 5, further comprising a staple cartridge engaged by the elongate channel and including a proximally opened slot for receiving the cutting edge of the firing device, the staple cartridge including a plurality of staples cammed upwardly by the distal longitudinal movement of the firing mechanism.
7. The surgical instrument of claim 6, wherein the staple cartridge further includes a plurality of drivers supporting the plurality of staples and a wedge sled responsive to the distal longitudinal movement of the firing mechanism to cam upwardly the drivers and thus form the plurality of staples against the anvil.
8. The surgical instrument of claim 5, wherein the shaft includes an articulation mechanism through which the thinned strip bends and longitudinally translates.
9. The surgical instrument of claim 6, wherein the staple cartridge is a selected type of a plurality of staple cartridge types, each staple cartridge type characterized by a thickness selected for a desired spacing between the anvil and elongate channel and characterized by staples having a length suitable for the desired spacing.
10. The surgical instrument of claim 9, wherein the wedge sled comprises a plurality of connected camming wedges each having a preselected height configured for the selected type of staple cartridge, the middle member of the firing device oriented to abut each of the plurality of staple cartridge types.
11. The surgical instrument of claim 5, wherein the firing device is configured to affirmatively space the anvil from the elongate channel during longitudinal travel between the anvil and elongate channel by including a lower portion having an upper surface and a lower surface that slidingly engage the elongate channel.
12. The surgical instrument of claim 11, wherein the lower portion of the firing device comprises a lower pin having the upper surface abutting the elongate channel and the lower portion further comprises a middle pin having the lower surface opposingly abutting the elongate channel.
13. The surgical instrument of claim 12, wherein the firing device further comprises an upper member having an upper surface and a lower surface that longitudinally slidingly engage the anvil.
14. The surgical instrument of claim 13, wherein the anvil includes an internal longitudinal slot having a narrowed vertical slot, and wherein the firing device translates in the narrowed vertical slot and includes an upper member having upper and lower surfaces that reside within the internal longitudinal slot for affirmatively spacing the anvil from the elongate channel.
15. The surgical instrument of claim 5, wherein the firing device is configured to affirmatively space the anvil from the elongate channel during longitudinal travel between the anvil and elongate channel by including an upper member having an upper surface and a lower surface that longitudinally slidingly and opposingly engage the anvil.
16. The surgical instrument of claim 15, wherein the anvil includes a longitudinal slot having an upper surface and a lower surface that slidingly abut respectively the lower surface and upper surface of the upper member of the firing device.
17. The surgical instrument of claim 16, wherein the longitudinal slot comprises an internal longitudinal channel communicating with a narrowed vertical slot, and wherein the firing device translates in the narrowed vertical slot and includes an upper member having the upper and lower surfaces that reside within the internal longitudinal channel for affirmatively spacing the anvil from the elongate channel.
18. A surgical instrument, comprising:
- a handle means for producing a closing motion and a firing motion;
- a clamping means responsive to the closing motion to clamp tissue;
- a firing means responsive to the firing motion for vertically spacing the clamping means and for causing severing and stapling of clamped tissue therein; and
- an articulation mechanism operably configured to articulate the clamping means relative to the handle means; and
- a thinned firing strip proximally attached to the firing means for bending through the articulation mechanism and for longitudinally transferring the firing motion.
19. The surgical instrument of claim 18, wherein the anvil includes an internal longitudinal slot having a narrowed inward opening, the firing device translating within the narrowed inward opening and having the upper member slidingly engaged within the longitudinal slot.
20. The surgical instrument of claim 19, further comprising a closure member operatively configured to longitudinally transfer the closure motion to the end effector to inwardly bias distal ends of the anvil and the elongate channel to assist the firing device in affirmatively spacing the anvil and elongate channel during actuation of the staple cartridge.
Type: Application
Filed: Apr 15, 2019
Publication Date: Oct 10, 2019
Inventors: Frederick E. Shelton, IV (Hillsboro, OH), Michael E. Setser (Burlington, KY), Kevin R. Doll (Mason, OH), Jerome R. Morgan (Cincinnati, OH)
Application Number: 16/384,011