VEHICLE BODY FRONT STRUCTURE
A vehicle body front structure includes a powertrain, a pair of side members, a suspension member, a first load transmission member and a second load transmission member. The powertrain has an engine and a continuously variable transmission that are juxtaposed to each other along the vehicle width direction. The side members are disposed on the outside of the power train in the vehicle width direction. The suspension member is disposed below the side members. The first and second load transmission members mounted to the side members and the suspension member. In the power train, the continuously variable transmission is disposed on the load-transmission-member side, and has a pair of variable speed pulleys (an input-side pulley and an output-side pulley). Thus, the load received by the first and second load transmission members can be reliably transmitted to the engine through the variable speed pulleys.
This application is a U.S. national stage application of International Application No. PCT/JP2016/064824, filed on May 19, 2016.
BACKGROUND Field of the InventionThe present invention relates to a vehicle body front structure of an automobile vehicle body.
Background InformationA structure in which a side member is disposed on a side portion of an automobile vehicle body is known from the prior art. Here, there are cases in which so-called small overlap collision occurs, in which an obstacle collides against a vehicle body from the front side of the vehicle body, at a position on the outer side of the side member in the vehicle width direction. The measure disclosed in the following Patent Document 1 is known as a countermeasure for this small overlap collision.
In Japanese Laid-Open Patent Application No. 2015-36281 (Patent Document 1), a spacer (load transmission member) that projects toward the outer side in the vehicle width direction is provided on the side portion of a suspension member. A power train is installed on the inner side of the spacer in the vehicle width direction. The power train comprises the transmission and the engine disposed along the vehicle width direction, where the transmission is disposed on the spacer side.
Thus, when a small overlap collision occurs in the vehicle, the collision load from the collision object is transmitted from the spacer to the engine via the transmission.
SUMMARYHowever, in Patent Document 1, in the case that the strength of the transmission cannot withstand the collision load because the collision load is high, there is the risk that the transmission will be damaged, and it becomes difficult to transmit the collision load to the engine efficiently.
Thus, an object of the present invention is to provide a vehicle body front structure that, at the time of a small overlap collision, in which the collision load is input to a portion of the vehicle body that farther toward an outer side position than a side member in the vehicle width direction, efficiently transmits the collision load to the engine, which constitutes the power train.
The vehicle body front structure according to the present invention comprises a power train having an engine and a continuously variable transmission, a side member that is disposed on the outer side of the power train in the vehicle width direction, a suspension member that is disposed below the side member, and a load transmission member that is attached to at least one of the side member and the suspension member. In the power unit, a continuously variable transmission is disposed on the load transmission member side. The continuously variable transmission has a transmission pulley. The load transmission member comprises a load-receiving portion that receives the load, and a load transmission portion that transmits the load received by the load-receiving portion to the transmission pulley of the continuously variable transmission.
According to the vehicle body front structure of the present invention, it is possible to transmit the collision load that is received by a load transmission member to the engine efficiently via the transmission pulley of the continuously variable transmission at the time of a so-called small overlap collision, in which a collision object collides with an outer end portion of a host vehicle in the vehicle width direction.
A vehicle body front structure according to an embodiment of the present invention will be described below with reference to the drawings. In the present embodiment, an embodiment variant is shown in which the load transmission member is provided on the left side of the vehicle, but the load transmission member may be provided on the right side of the vehicle, or on both the left and right sides.
The engine compartment 3 is disposed in the front portion 1 of the vehicle, as illustrated in
The continuously variable transmission 29, also referred to as a CVT (continuously Variable Transmission), transmits the rotary driving force from the engine 27 to the wheels. Specifically, as illustrated in
The pulley unit 37 is composed of an input-side pulley 41 (transmission pulley) that is disposed on the lower side, an output-side pulley 43 (transmission pulley) that is disposed on the upper side, and a metal belt 45 that connects the input-side pulley 41 and the output-side pulley 43, as illustrated in
The first load transmission member 51 that is attached to the side member 15 and the side member 15 will now be described.
The side member 15 is formed from an upper surface 53, a bottom surface 55, and an inner-side surface 57 and an outer-side surface 59 that vertically connect the upper surface 53 and the bottom surface 55 to each other, to have a rectangular cross section, as illustrated in
The first load transmission member 51 is integrally formed from a load-receiving portion 65 that projects outward in the vehicle width direction (left side of the vehicle) and a load transmission portion 67 that is connected to the load-receiving portion 65 and that projects inward in the vehicle width direction (right side of the vehicle). The load-receiving portion 65 has the approximate form of a triangular prism. Specifically, a first load-receiving surface 69 formed on the front surface is formed extending toward the outer side in the vehicle width direction and is concavely curved toward the rear side of the vehicle. The rear surface portion 71 is formed in a flat shape, extending rearward in plan view, and toward the inner side in the vehicle width direction. The load transmission portion 67 is composed of a connecting portion 73 that is disposed on the center side of the load-receiving portion 65 in the vehicle width direction and integrally formed with the load-receiving portion 65, and a main body portion 75 that is integrally formed with the connecting portion 73 on the center side of the connecting portion 73 in the vehicle width direction. The upper surface of the connecting portion 73 abuts the bottom surface 55 of the front portion of the side member 15. That is, the upper surface of the connecting portion 73 is composed of a flat portion 77 that abuts the flat portion 61 of the bottom surface 55 of the side member 15, and an inclined portion 79 that abuts the inclined portion 63 of the bottom surface 55 of the side member 15. In addition, the main body portion 75 has the form of a triangular prism. Specifically, the side surface of the main body portion 75 has a front side inclined surface 81 that is inclined rearward in a plan view and toward the inner side in the vehicle width direction, and a rear side inclined surface 83 that is inclined rearward and toward the outer side in the vehicle width direction. Elliptically shaped bolt holes 85 are formed on the side surface of the main body portion 75, and it is possible to fasten the first load transmission member 51 to the side member 15 by inserting bolts into the bolt holes 85 and fastening the bolts to the side surface of the side member 15.
The second load transmission member 91 will now be described with reference to
The second load transmission member 91 is attached to the suspension member 31. The suspension member 31 has a front portion 93 that extends in the vehicle width direction and a side portion 95 that bends at the end of the front portion 93 in the vehicle width direction and extends rearward. A columnar connecting bracket 99 (refer to
As viewed from the side of the vehicle, the first load transmission member 51 and the second load transmission member 91 overlap in the height direction with the input-side pulley 41 (transmission pulley), as illustrated in
The way in which the collision load is transmitted in the case of a small overlap collision will now be described. In a small overlap collision, the collision load is input from a collision object 121 to a portion of the vehicle body positioned farther toward the outer side than the side member 15 in the vehicle width direction, as illustrated in
When a collision object 121 moves rearward relative to the vehicle body, the collision object 121 collides simultaneously with the first load-receiving surface 69 of the first load transmission member 51 and the second load-receiving surface 109 of the second load transmission member 91. As a result, the collision load is received by the load-receiving portions 65, 103. Because the load transmission portions 67, 105 are fixed to the load-receiving portions 65, 103, the collision load received by the load-receiving portions 65, 103 is transmitted to the load transmission portions 67, 105. Therefore, the end portion of the load transmission portion 67 of the first load transmission member 51 and the first projecting portion 113, which is the end portion of the load transmission portion 105 of the second load transmission member 91, both move rearward together with the load-receiving portions 65, 103, and collide with left end portion of the continuously variable transmission 29. Here, because the transmission pulleys (input-side pulley 41, output-side pulley 43) are of greater strength than the other component parts of the continuously variable transmission 29, the yield strength thereof with respect to the input load is high. Therefore, even if the end portion of the load transmission portion 67 of the first load transmission member 51 and the first projecting portion 113 of the second load transmission member 91 hit the continuously variable transmission 29, the transmission pulleys (input-side pulley 41, output-side pulley 43) are less likely to be damaged, and it becomes possible to transmit the collision load to the engine 27 efficiently via the transmission pulleys.
The action and effects of the embodiment of the present invention will now be described.
(1) A vehicle body front structure is provided with a power train 25 that is disposed in a front portion of a vehicle and that has an engine 27 and a continuously variable transmission 29 arranged in parallel in the vehicle width direction, a side member 15 that is disposed on the outer side of the power train 25 in the vehicle width direction and that extends in the longitudinal direction of the vehicle, a suspension member 31 that is disposed below the side member 15, and load transmission members (first load transmission member 51, second load transmission member 91) that are attached to at least one of the side member 15 and the suspension member 31. In the power train 25, the continuously variable transmission 29 is disposed on the load transmission member side, and the continuously variable transmission 29 comprises transmission pulleys (input-side pulley 41, output-side pulley 49). The load transmission member comprises load-receiving portions 65, 103 that project farther on the outer side in the vehicle width direction than a side surface of the side member 15 or the suspension member 31 on the outer side in the vehicle width direction, and that receive the load towards a rear of the vehicle, and load transmission portions 67, 105 that are joined to the load-receiving portions 65, 103 and that transmit the load received by the load-receiving portions 65, 103 to transmission pulleys (input-side pulley 41, output-side pulley 43) of the continuously variable transmission 29.
Thus, it is possible to transmit the collision load that is received by the load transmission members to the engine 27 efficiently via the transmission pulleys (input-side pulley 41, output-side pulley 43), at the time of a so-called small overlap collision, in which the collision object 121 collides with an outer end portion of a host vehicle in the vehicle width direction.
That is, because, of the component parts of the continuously variable transmission 29, the transmission pulleys (input-side pulley 41, output-side pulley 43) are of particularly high strength, the yield strength of transmission pulleys with respect to the input load will be high. Thus, because the transmission pulleys are not likely to be crushed, even if collision load received by the load transmission members is input to the transmission pulleys, it is possible to transmit the collision load to the engine 27 efficiently via the transmission pulleys.
(2) The load transmission members (first load transmission member 51, second load transmission member 91) are arranged in positions overlapping in a height direction with the transmission pulley (input-side pulley 41) of the continuously variable transmission 29 as viewed from the side of the vehicle.
Because the load transmission members overlap the transmission pulley (input-side pulley 41) in the height direction in this manner, it becomes likely that the load transmission member will collide with the transmission pulley (input-side pulley 41) at the time of a vehicle collision. Therefore, it is possible to transmit the collision load to the engine 27 more efficiently via the transmission pulley.
(3) The load transmission members include a first load transmission member 51 that is attached to the side member 15 and a second load transmission member 91 that is attached to the suspension member 31.
In this manner, the load transmission members are configured from both the first load transmission member 51 and the second load transmission member 91. Thus, the total area of the load-receiving surface of the load transmission members increases compared to the case in which only one of the first load transmission member 51 and the second load transmission member 91 is provided. Thus, because the load received by the load transmission members is dispersed across a wide range, the burden of the load that is input to each load transmission member is reduced.
(4) A first load-receiving surface 69 is formed on the front surface of the first load transmission member 51, a second load-receiving surface 109 is formed on the front surface of the second load transmission member 91, and the first load-receiving surface 69 and the second load-receiving surface 109 are arranged to be aligned as viewed from above the vehicle.
Because the first load-receiving surface 69 and the second load-receiving surface 109 are arranged to be aligned in this manner, it is possible for the first load-receiving surface 69 and the second load-receiving surface 109 to simultaneously receive load from a collision object 121.
Here, if the first load-receiving surface 69 and the second load-receiving surface 109 are arranged in different positions in the front-rear direction, the load-receiving surface that is arranged on the front side would contact the collision object first, and the input amount of the collision load would be greater therein.
Thus, it is possible to transmit the collision load to the engine 27 more efficiently compared to the case in which the first load-receiving surface 69 and the second load-receiving surface 109 are arranged in different positions in the front-rear direction.
The present invention is not limited to the embodiment described above, and various modifications are possible within the scope of the present invention.
Claims
1. A vehicle body front structure comprising:
- a power train disposed in a front portion of a vehicle and including an engine and a continuously variable transmission arranged in parallel in a vehicle width direction;
- a side member disposed on an outer side of the power train in the vehicle width direction and extending in a longitudinal direction of the vehicle;
- a suspension member disposed below the side member; and
- a load transmission member attached to at least one of the side member and the suspension member;
- the continuously variable transmission being disposed on a load transmission member side of the power train,
- the continuously variable transmission includes a transmission pulley, the load transmission member comprising a load-receiving portion that projects farther on the outer side in the vehicle width direction than a side surface of the side member or the suspension member on the outer side in the vehicle width direction, and the load-receiving portion that receives a load towards a rear of the vehicle, and a load transmission portion that is joined to the load-receiving portion and that transmits the load received by the load-receiving portion to the transmission pulley of the continuously variable transmission, and
- the transmission pulley overlapping with the load transmission portion in the vehicle width direction as viewed from in front of the vehicle, and being arranged in a position overlapping in a height direction with the load transmission member as viewed from a side of the vehicle.
2. (canceled)
3. The vehicle body front structure as recited in claim 1, wherein
- the load transmission member includes a first load transmission member that is attached to the side member and a second load transmission member that is attached to the suspension member.
4. The vehicle body front structure as recited in claim 3, wherein
- a first load-receiving surface is formed on a front facing surface of the first load transmission member, a second load-receiving surface is formed on a front facing surface of the second load transmission member, and the first load-receiving surface and the second load-receiving surface are arranged to be aligned as viewed from above the vehicle.
Type: Application
Filed: May 19, 2016
Publication Date: Nov 7, 2019
Inventors: Kouji HOSOMI (Kanagawa), Tsuyoshi MATSUNAGA (Kanagawa), Ryuuji OOTANI (Kanagawa)
Application Number: 16/089,438