SELF-MOVING GROUND PROCESSING APPARATUS AND SUCTION NOZZLE
Provided is a self-moving ground processing apparatus and a suction nozzle. The self-moving ground processing apparatus includes at least an apparatus main body and a suction nozzle coupled to the apparatus main body, where, a suction port is formed on the bottom of the suction nozzle, an advancing direction of the suction nozzle during the operation process is set as a forward direction, a front sealing strip is arranged on the front side of the suction port, the front sealing strip and includes a fixed end and a free end extending toward a working surface. The front sealing strip is made of a flexible material, and the front sealing strip is arranged to deviate from the forward direction, so that a projection of the fixed end on the working surface is positioned before a projection of the free end on the working surface.
Latest ECOVACS ROBOTICS CO., LTD. Patents:
The present disclosure relates to a self-moving ground processing apparatus and a suction nozzle.
BACKGROUNDA cleaning apparatus or a system for removing dust on the ground by means of vacuum suction is widely used due to its easy operation and high efficiency. The magnitude of the vacuum suction force of a suction port of the suction nozzle during the operation process plays a vital role in the quality of the dust removal effect, and the magnitude of the vacuum suction force of the suction port depends on the arrangement mode of a suction port sealing structure.
Therefore, in view of the above-described deficiencies of the prior art, there is a need for a cleaner capable of sucking coarse-particle dust while maintaining the suction port vacuum.
SUMMARYIn view of the deficiencies of the prior art, the technical problem to be solved by the present disclosure is to provide a self-moving ground processing apparatus and a suction nozzle, where, the perimeter of a suction port on the suction nozzle is sealed, so that the vacuum suction force in the suction port is improved, and the dust removal capacity of the self-moving ground processing apparatus is improved thereby. Particularly, the arrangement direction, shape and material of the front sealing strip ensure that large-particle dust can be effectively sucked, the vacuum degree of the suction port is maintained, and the dust removal efficiency is high.
These and other example problems may be solved by the present disclosure via the following technical solution:
A self-moving ground processing apparatus includes at least an apparatus main body and a suction nozzle coupled to the apparatus main body, where, a suction port is formed on the bottom of the suction nozzle, an advancing direction of the suction nozzle during the operation process is set as a forward direction, a front sealing strip is arranged on the front side of the suction port, the front sealing strip includes a fixed end and a free end, the front sealing strip is made of a flexible material, and the front sealing strip is arranged to deviate from the forward direction, so that a projection of the fixed end on a working surface is positioned before a projection of the free end on the working surface.
Additionally or alternatively, the front sealing strip is arranged on the front side of the suction port through the fixed end. To improve the deformation capability of the front sealing strip, a thickness of the fixed end is less than a thickness of the free end. In these or other embodiments, the thickness of the front sealing strip is less than or equal to 1.8 mm.
The front sealing strip may be arc-shaped as desired. Particularly, when a rolling brush is mounted at the suction port of the suction nozzle, to ensure the dust removal effect and the compact structure of the suction nozzle, and make the front sealing strip and the rolling brush not interfere with each other, the front sealing strip and the rolling brush are concentrically arranged.
Additionally or alternatively, a suction port cover plate is mounted on the bottom of the suction nozzle, the suction port is formed in the middle of the suction port cover plate, which includes a left side cover and a right side cover arranged on the left side and the right side respectively, each cover includes a inclined portion on the front side and a planar portion on the rear side. A contact point of the free end of the front sealing strip with the working surface is located at or behind the foremost end of the planar portion.
Additionally or alternatively, the left side cover and the right side cover of the suction port cover plate are cover with a soft cushion is covered on.
Additionally or alternatively, to improve the deformation capability of the front sealing strip, a plurality of gaps are formed on the front sealing strip at intervals.
Additionally or alternatively, to ensure airtightness, the width of the gaps is less than or equal to 5 mm.
Additionally or alternatively, to improve the deformation capability of the front sealing strip, when the longitudinal length of the front sealing strip is not extremely large, for example, less than 10 mm, the length of the gaps is the same as the longitudinal length of the front sealing strip. Alternatively, the length of the gaps is set to be greater than 3 mm, so that the front sealing strip can roll over most large-particle dust, for example, rice grains or the like.
Additionally or alternatively, to improve the deformation capability of the front sealing strip, a plurality of notches can be formed on the front sealing strip at intervals.
Additionally or alternatively, to improve the vacuum degree of the suction port, the length of the front sealing strip is greater than the height of the fixed end from the working surface, so that when the suction nozzle works, the free end of the front sealing strip abuts against the working surface.
When works on a working surface such as a floor, to prevent the generation of noise when the front sealing strip scrubs the floor for walking, a certain clearance is provided between the free end of the front sealing strip and the working surface. Meanwhile, in order not to influence the sealing performance of the front sealing strip, the height of the free end of the front sealing strip from the working surface is less than or equal to 1.5 mm.
The present disclosure further provides a suction nozzle with a suction port formed on its bottom, where, an advancing direction of the suction nozzle during the operation process is set as a forward direction, a front sealing strip is arranged on the front side of the suction port, the front sealing strip includes a fixed end and a free end, the front sealing strip is made of a flexible material, and the front sealing strip is arranged to deviate from the forward direction, so that a projection of the fixed end on a working surface is positioned before a projection of the free end on the working surface.
In conclusion, the present disclosure provides a self-moving ground processing apparatus and a suction nozzle, where the perimeter of the suction port on the suction nozzle is sealed, so that the vacuum suction in the suction port is improved, and the dust removal capability of the self-moving ground processing apparatus is improved thereby. Due to the arrangement mode of the front sealing strip, the projection of the fixed end of the front sealing strip on the working surface is positioned before the projection of the free end on the working surface, and the front sealing strip is made of a flexible material, when the front sealing strip comes into contact with large-particle dirt during the operation process, the front sealing strip is easier to bend to roll over the large-particle dirt. Consequently, the large-particle dirt can quickly pass over the front sealing strip and enter the suction port and be brought into a dust box under the action of the rolling brush and/or the vacuum suction force, so that the dust removal operation is completed. Therefore, in the present disclosure, large-particle dust can be effectively sucked, the vacuum degree of the suction port can be maintained, and the dust removal efficiency is high.
Hereinafter, the technical solution of the present disclosure will be described in detail below in connection with the accompanying drawings and specific embodiments.
Additionally or alternatively, to improve the deformation capability of the front sealing strip when it comes into contact with large-particle dust, the thickness of the front sealing strip should not be too large. For example, the thickness is less than or equal to 1.8 mm. If the thickness of the front sealing strip is too large, the front sealing strip cannot deform when coming into contact with large-particle dust, and will in turn push the large-particle dust forward which prevents the large-particle dust from entering the suction port. Of course, if the fixed end 10031 is made even thinner, for example, the fixed end 10031 is thinned, the front sealing strip is easier to deform.
Additionally or alternatively, to facilitate disassembly of the rolling brush, a suction port cover plate 1001 is generally mounted on the bottom of the suction nozzle 1000, the suction port 100 is formed in the middle of the suction port cover plate 1001, and the suction port cover plate 1001 includes a left side cover and a right side cover (not shown) arranged on the left side and the right side respectively. For example, as shown in
However, when the front sealing strip abuts against the working surface, it is also disadvantageous that, particularly when the front sealing strip comes into contact with the floor and other working surfaces, high noise will be generated. Therefore, in the actual arrangement of the front sealing strip, if working surfaces such as floor is taken into consideration, a certain clearance is provided between the front sealing strip and the working surface. For example, a clearance is provided between the free end 10032 of the front sealing strip 1003 and the working surface B, and the height of the clearance is 0-1.5 mm.
As shown in
However, if the length of the gaps is larger, the sealing effect is worse and the vacuum degree is lower. In practical applications, the length of the gaps can be flexibly set according to the size of large particles on the working surface. For example, if the length of the gaps is set to be greater than 3 mm (the diameter of particles such as rice grains is usually 3 mm) and less than the longitudinal length of the front sealing strip, the front sealing strip has a good cleaning effect in a working environment without too large dust particles.
Additionally or alternatively, as shown in
Thus, in some embodiments, the present disclosure provides a self-moving ground processing apparatus and a suction nozzle, where the perimeter of the suction port on the suction nozzle is sealed, so that the vacuum suction in the suction port is improved, and the dust removal capability of the self-moving ground processing apparatus is improved thereby. Due to the arrangement mode of the front sealing strip, the projection of the fixed end of the front sealing strip on the working surface is positioned before the projection of the free end on the working surface, and the front sealing strip is made of a flexible material. When the front sealing strip comes into contact with large-particle dirt during the operation process, the front sealing strip is easier to bend to roll over the large-particle dirt. Consequently, the large-particle dirt can quickly pass over the front sealing strip and enter the suction port and be brought into a dust box under the action of the rolling brush and/or the vacuum suction force, so that the dust removal operation is completed. In other words, in the present disclosure, large-particle dust can be effectively sucked, the vacuum degree of the suction port can be maintained, and the dust removal efficiency is high.
Claims
1. A self-moving ground processing apparatus, comprising at least an apparatus main body and a suction nozzle (1000) coupled to the apparatus main body, wherein, a suction port (100) is formed on the bottom of the suction nozzle, an advancing direction of the suction nozzle during the operation process is set as a forward direction, a front sealing strip (1003) is arranged on the front side of the suction port, the front sealing strip comprises a fixed end (10031) and a free end (10032) extending toward a working surface (B), the front sealing strip is made of a flexible material, and the front sealing strip is arranged to deviate from the forward direction, so that a projection of the fixed end on the working surface is positioned before a projection of the free end on the working surface.
2. The self-moving ground processing apparatus according to claim 1, wherein, the front sealing strip (1003) is arranged on the front side of the suction port (100) through the fixed end (10031), and a thickness of the fixed end is less than a thickness of the free end (10032).
3. The self-moving ground processing apparatus according to claim 1, wherein, the thickness of the front sealing strip (1003) is less than or equal to 1.8 mm.
4. The self-moving ground processing apparatus according to claim 3, wherein, the front sealing strip (1003) is arc-shaped.
5. The self-moving ground processing apparatus according to claim 4, wherein, a rolling brush is mounted at the suction port (100) of the suction nozzle (1000), and the front sealing strip (1003) is arranged concentrically with the rolling brush.
6. The self-moving ground processing apparatus according to claim 1, wherein, a suction port cover plate (1001) is mounted on the bottom of the suction nozzle (1000), the suction port (100) is formed in the middle of the suction port cover plate, the suction port cover plate comprises a left side cover and a right side cover arranged on the left side and the right side respectively, each cover comprises a inclined portion (10011) on the front side and a planar portion (10012) on the rear side, and a contact point of the free end (10032) of the front sealing strip (1003) with the working surface (B) is located at or behind the foremost end of the planar portion.
7. The self-moving ground processing apparatus according to claim 6, wherein, the left side cover and the right side cover of the suction port cover plate (1001) are covered with a soft cushion.
8. The self-moving ground processing apparatus according to claim 1, wherein, a plurality of gaps (1004) are formed on the front sealing strip (1003) at intervals.
9. The self-moving ground processing apparatus according to claim 8, wherein, the width of the gaps (1004) is less than or equal to 5 mm.
10. The self-moving ground processing apparatus according to claim 8, wherein, the length of the gaps (1004) is the same as a longitudinal length of the front sealing strip (1003);
- or, the length of the gaps (1004) is greater than 3 mm.
11. The self-moving ground processing apparatus according to claim 1, wherein, a plurality of notches (1005) are formed on the front sealing strip (1003) at intervals.
12. The self-moving ground processing apparatus according to claim 1, wherein, the length of the front sealing strip (1003) is greater than the height of the fixed end (10031) from the working surface (B), so that when the suction nozzle (1000) works, the free end (10032) of the front sealing strip abuts against the working surface.
13. The self-moving ground processing apparatus according to claim 1, wherein, a clearance is provided between the free end of the front sealing strip (1003) and the working surface.
14. The self-moving ground processing apparatus according to claim 13, wherein, the clearance is less than or equal to 1.5 mm.
15. A suction nozzle, wherein, a suction port is formed on the bottom of the suction nozzle, an advancing direction of the suction nozzle during the operation process is set as a forward direction, a front sealing strip is arranged on the front side of the suction port (100), the front sealing strip (1003) comprises a fixed end (10031) and a free end (10032), the front sealing strip is made of a flexible material, and the front sealing strip is arranged to deviate from the forward direction, so that a projection of the fixed end on a working surface is positioned before a projection of the free end on the working surface.
Type: Application
Filed: Nov 8, 2017
Publication Date: Nov 14, 2019
Applicant: ECOVACS ROBOTICS CO., LTD. (Suzhou City, Jiangsu)
Inventor: Shaojiang LI (Suzhou City)
Application Number: 16/348,441