Analytical Tools and Method for Modeling Transport Processes in Fluids

An improved computer implemented method for modeling transport processes in fluids is disclosed. The method is adapted to model gas flow including dilute gas flow at high Knudsen numbers. Instead of modeling based on using an infinitesimal fluid element of a continuous medium, the method approximates fluid flow as a model gas flow. The method is based on assuming that each of a plurality of particles, which compose the model gas, travels with a probability between any of two points in space occupied by the model gas by following a ballistic trajectory governed by a law of motion in free space and treating each of the plurality of ballistic particles as a property carrier transporting one or more of mass, momentum, and energy between the points of consecutive collisions. The major steps of the method are indicated in the accompanying flow chart. The method also delivers a new basis for prediction of dynamic evolution of the model gas system by considering a pre-established or known dynamic history of the system during a pre-initial period.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates to an improvement of the computer implemented method for modeling transport processes in fluids.

BACKGROUND ART

Computational Fluid Dynamics (CFD) is used mainly for analytical predictions of the fluid transport properties, including velocity, heat transfer coefficient, and pressure; still, CFD has many challenges. One challenge is that the users must select the appropriate models to characterize their specific problem. However, errors due to uncertainty in the formulation of the model and often intentional simplification of the model may diminish the usefulness of the results of the computations. Also, errors in the modeling of the fluids are disturbed with the choice of the governing equations to be solved and models for the fluid properties. The sources of uncertainty in physical models are listed by Mehta, U. B. 1996, “Guide to Credible Computer Simulations of Fluid Flows,” AIAA Journal of Propulsion and Power 12, 5, 940-948. (Also AIAA Paper 95-2225). Such include 1) the phenomenon is not understood; 2) parameters used in the model are known but with some uncertainty; 3) appropriate models are simplified, thus introducing uncertainty; and 4) experimental confirmation of the models is impossible or is incomplete. The general major disadvantage of any existing or available on market CFD software consists of using an infinitesimal fluid element viewed as a continuous medium, to which fundamental physical principles are applied. This approach is in a contradiction with the molecular or particle nature, thus providing a source of significant uncertainty in interpreting the results of modeling and calculations.

Simulating a system means to solve its mathematical model and to predict its behavior in different situations based on that solution. Continuous systems can be modeled with ordinary differential equations (ODE) or partial differential equations (PDE). Solving an ODE or PDE with an initial value at an initial time, t0, results in determining the system's evolution. Disadvantageously, this approach does not consider the dynamic behavior of the fluid system in times earlier than initial time, t0, which actually affects the behavior of the fluid system in times following the initial time.

Fluid as a matter comprises molecules. In contemporary fluid dynamics, it is a continuous distribution of matter and is defined as a substance that deforms continuously under the action of shear stress. Both liquids and gases are fluids, and all variables describing fluids are considered continuous functions of the spatial coordinates and time. The flow is assumed to be differentiable and continuous, allowing the mass, momentum, and energy balances, which are commonly known as Navier-Stokes (NS) equations, to be expressed as partial differential equations.

Also, the balance equations can only describe fluid flow approximately mostly because of the inability to determine the functional distribution for viscous stress forces and the rate of heat addition and viscous dissipation. Thus, although the conservation laws correctly describe the fluid within a control volume located remotely in a fluid flow, they do not take into consideration the molecular nature of the fluid. Specifically, viscosity in gases arises principally from the molecular diffusion that transports momentum between layers of flow.

As a general limitation, microscopic or bulk analysis allows the treatment of a collection of free particles as a continuum where collisional mean free path, λf, is much lower than the macroscopic length scale L of the system. However, the classical continuum approach cannot be applied to situations when the length scale of the system is of the same order or less as compared to the collisional mean free path. From the viewpoint of the classical fluid dynamic, the condition λf<<L makes good physical sense, which enables the introduction of the concept of fluithe d element with volume V having a linear size large in comparison with λf but small in comparison with L.

In recent years, flow in microsystems has received much attention because of rapid developments in micromachining technology, in which most common components are micro fluidic and micro heat transfer systems. To define a transport process, one must understand conditions at the boundary of the system. At the current state of the art, specifying the boundary conditions is one of the most difficult parts of the analysis. In microfluidic systems, the molecular mean free path is comparable to the system's characteristic length, so that non-continuum or rarefied effects at molecular scale must be considered.

It is well-known from the prior art that “the Navier-Stokes equations, which are the base for the CFD, are only valid as long as the representative physical length scale of the system is much larger than the mean free path of the molecules that make up the fluid. In that case, the fluid is referred to as a continuum. The ratio of the mean free path, λf, and the representative length scale, L, is called the Knudsen number, Kn=λf/L. The NS equations are valid for Kn<0.01.” (www.comsol.com/multiphysics/navier-stokes-equations)

The limitation that the NS equations are valid for Kn<0.01 reduces the fields of CFD applications significantly. Specifically, the CFD method is inapplicable for modeling of dilute or rarefied gases. It is not useful for simulations microelectronics and nanoelectronics low-pressure processing and plasma processing. It does not simulate a gas flow properly in microchannels in micromechanical systems (MEMS) applications. “In the slip-transition regimes range, that is, 0.001<Kn≤10, the CFD scheme, based on the classical Navier-Stokes equations, becomes inappropriate to describe the gas flow behavior in MEMS devices.” (Hindawi Publishing Corporation, Modelling and Simulation in Engineering, Volume 2016, Article ID 7619746, 9 pages, dx.doi.org/101155/2016/7619746)

The other approach involves fluid simulations based on collisions of particles positioned at sites of a three-dimensional lattice. It can be performed effectively only by massively parallel data processors having combinational logic for processing collision rules. This method is enormously complicated and restricted because of the limitation of the available computational approaches for modeling real physical systems.

Summing noted above, a satisfactory, accurate calculation of momentum or mass or energy transport properties of free particles interacting by collisions lies in a lack of an appropriate method for describing adequately a collection of free particles traveling in space via particle/molecular collisions between gas particles.

In view of the above, a practical universal analytical tool and method that allows effective combination/supplement of macroscopic fluid dynamics with microscopic particulate nature of the matter and capable model gases in a wide range of gas pressure for high Knudsen numbers is desired.

SUMMARY OF INVENTION

One general aspect includes analytical tools and a method for modeling fluid flow such as a gas flow in an unstable and stable condition in the range from the continuum flow regime (Kn<0.01) to the free molecular flow regime (Kn>10).

Another general aspect includes describing adequately a collection of free particles traveling in space via particle/molecular collisions for predicting one or more of distribution patterns of fluid flow properties such as density, mass flow velocity, and temperature.

More specifically, instead of modeling based on using an infinitesimal fluid element that is treated as a continuous medium, which is the basis for any CFD application, the inventive method aims to approximate fluid flow in a fluid system as a model gas flow in a model gas system, which is identical to the fluid system.

According to the method, the model gas is designed to facilitate a distant transport of one or more of properties including one or more of mass, momentum, and energy, which is implemented by way of a plurality of particles being in a constant state of mostly random motion and interaction by collisions, where each of the plurality of particles of the model gas is assigned to travel with a probability between any of two points of a plurality of points in space occupied by the model gas by following a ballistic trajectory governed by a law of motion in free space. The ballistic trajectory has a starting point in one of a plurality of points of original collisions and an ending point in one of a plurality of points of ending collisions, and where each of the plurality of particles is adapted to transport a combination of one or more of properties including one or more of mass, momentum, and energy between one of the plurality of points of original collisions and one of the plurality of points of ending collisions.

The method further including steps of: specifying a geometry model; defining a net rate of property influx per unit volume from the model gas system in a general point of a plurality of non-moving points in space occupied by the model gas at a given time, the net rate of property influx per unit volume, which is formed by way of a plurality of converging ballistic particles, each of the plurality of converging ballistic particles is selected from the plurality of particles by the ballistic trajectory having the ending point in the general point of the plurality of non-moving points in space occupied by the model gas at the given time, where the given time is greater than or equal to the initial time; defining a net rate of property efflux per unit volume from the general point at the given time, the net rate of property efflux per unit volume, which is formed by way of a plurality of diverging ballistic particles, each of the plurality of diverging ballistic particles is selected from the plurality of particles by the ballistic trajectory having the starting point in the general point of the plurality of non-moving points at the given time; forming an integral property balance equation for each of one or more properties being transported by the plurality of particles in each of the plurality of non-moving points, where the integral property balance equation is established in a way that, in the general point at the given time, a term of the net rate of property influx per unit volume is equated to the sum of the first term of temporal rate of a property change per unit volume and a second term of the net rate of property efflux per unit volume; and computing the flow of the model gas, where computing the flow of the model gas includes resolving a system of one or more of integral property balance equations in each of the plurality of non-moving points at the given time. Implementations of the described techniques include hardware, a method or process, or computer software on a computer-accessible medium.

In the section 2 “Performing flow computation by using the computer for simulating the fluid flow,” two best modes for carrying out the invention (Simulation 1 and Simulation 2) are given to explain the feasibility of the method and to demonstrate significant improvement from the prior art.

Simulation 1 is disclosed for incompressible model gas expanding in the space between two infinite parallel plates in the open channel at the uniform temperature where the top and bottom plates and the model gas are initially at rest. The velocity profile induced in the model gas due to the sudden motion of the bottom plate is determined by using a computer program, including computer readable medium having represented in that program codes.

Simulation 2 is disclosed for incompressible model gas expanding in the space between two infinite parallel plates in the open channel at the uniform temperature in a case of mixed diffuse and specular particles scatterings from the plates being at rest. The velocity profile induced in the model gas due to the pressure gradient along the channel is determined by using the computer program, including computer readable medium having represented in that program codes. Note: Diffuse scattering is an act of interaction involving property transfer from a gas-solid interface to a scattered particle whereas specular scattering does not involve property exchange between the gas-solid interface to a scattered particle.

The most significant improvement consists in demonstrating, first, the capability to model and compute flows in rarefied gases and, second, in showing an improvement of time resolution of computations for unstable flows. Specifically, the results of the numerical calculations in Simulation 1 were made for the nitrogen gas flow in a channel confined by parallel plates spaced at the distance of 1 meter at the uniform temperature of 300K and pressure of 0.6 Pa (see FIG. 15). FIG. 15 also demonstrates the capability of the inventive method to compute the velocity flow profile at the testing time as short as one millisecond. The results of the numerical calculations in Simulation 2 were made for the nitrogen gas flow in a channel confined by parallel plates, which are characterized by the property accommodation coefficient of 0.7 and spaced at the distance of 0.1 meters at the uniform temperature of 300K and pressure of 1 Pa (see FIG. 16). The simulation demonstrates significant improvement from the prior art, which in addition to the capability to model and compute flows in rarefied gases also consists in the ability to interpret the effect of the property/momentum accommodation coefficient. Knudsen number in Simulation 1 is about Kn˜0.05 and, in Simulation 2, is about Kn˜0.1, the values which do not allow using the CFD scheme based on the classical Navier-Stokes equations as it was referenced above.

Moreover, the improved method will be applicable even in values of Knudsen number equal to or higher than 10, which is a molecular beam region. Improvement by increasing the operable range of Knudsen numbers is of great importance for the CFD method and will expand horizons of CFD applications in the industry and in the technological processing. Finally, both Simulation 1 and Simulation 2 demonstrate improvement from the prior art, which consists of the capability to produce useful results by much lower computational resources.

Contrary, simulations by prior art at such low gas pressure (μ1 Pa) may be done (if it is possible at all with a time resolution of 1 millisecond and the possibility to predict the steps in the velocity profiles as shown in FIG. 15) only by a massively parallel data processors and are limited by currently underdeveloped computational approaches for modeling real physical statistical systems.

The method offers a basis for a new generation of a Computational Fluid Dynamics analysis processes since modeling of the fluid system evolution can be based not only on the established initial conditions at the initial time for the fluid system but also on the pre-established dynamic history of the fluid system at a period preceding the initial time, thus increasing certainty and accuracy of prediction of the fluid system evolution for extended period of time. The method advances a new generation of a Computational Fluid Dynamics analysis processes by a significant decrease of physical modeling errors due to uncertainty in the formulation of the model and deliberate simplifications of the model. The method creates potentially much lower discretization errors since the flow problem can be formulated by direct application of integral or integro-differential equations, thus decreasing errors occurred from the representation of the governing flow differential equations and other physical models as algebraic expressions in a discrete domain of space and time. A new generation of Computational Fluid Dynamics software products, which are based on the disclosed analytical tools and method, are anticipated having capability to modeling gases from the continuum flow regime (Kn<0.01) to the rarefied and free molecular flow regime (Kn>10), considerably higher accuracy of prediction, and lower computation cost.

As will further be appreciated by those of skill in the art, the invention may be embodied as a method, apparatus/system, and computer program products. Other systems, methods, and computer program products according to embodiments will be or become apparent to one with skill in the art upon review of these drawings and detailed description. It is intended that all such additional systems, methods, and computer program products be included within this description, be within the scope of the present invention, and be protected by the claims.

BRIEF DESCRIPTION OF DRAWINGS

The invention can be best understood by those having ordinary skill in the art by reference to the following detailed description when considered with the drawings, which are provided as example schematics and are not meant to limit the invention, where:

FIG. 1 is a general flowchart of the method steps embodying the principles of the method.

FIG. 1A is a block diagram of an alternative approach employed to define different components of the net rate of property influx from the model gas system in a general non-moving point.

FIG. 2 illustrates ballistic traveling of a particle between two consecutive collisions in a fluid system composed of the model gas particles.

FIG. 3 is a block diagram of an alternative approach employed to define major steps needed to calculate the net rate of property influx from the model gas in the general non-moving point at the given time.

FIG. 4 is a schematic view of a one-dimensional configuration for explaining the ballistic movement of the particle in a field of the external force.

FIG. 5 is a schematic view for explaining a method for determining the average magnitude of the instant velocity of the traveling particle with respect to a nearby particle along a ballistic trajectory of the traveling particle in the one-dimensional configuration.

FIG. 6 is a schematic view of flow geometry and coordinate system showing model gas flow confined between two parallel plates.

FIG. 7 is a schematic view of a model gas system confined between parallel plates, shown to illustrate a variety of ballistic trajectories of particles in the model gas system having gas-solid interfaces with mixed diffuse and specular components of particle scattering.

FIG. 8 is a block diagram of an alternative approach employed to define the steps needed to calculate the net rate of property influx per unit volume from a diffuse gas-solid interface in the general non-moving point y at the given time t.

FIG. 9 is a block diagram of an alternative approach employed to define major steps needed to calculate the net rate of property influx per unit volume via one or more of mixed diffuse-specular gas-solid interfaces in the general non-moving point at the given time.

FIG. 10 is a schematic view of the one-dimensional model gas system between parallel infinite plates, shown to illustrate a schematic of defining diffuse and specular components of the impingement rate on the gas-solid interfaces the plates.

FIG. 11 is a schematic view of the one-dimensional model gas system, shown to illustrate a method for analytical representation of the net rate of property influx, which is formed by converging ballistic particles originated from diffuse and specular particle scatterings from confining parallel plates.

FIG. 12 is a schematic shown to illustrate a method for analytical representation of the net rate of property efflux from a stationary point in one-dimensional space occupied by the model gas.

FIG. 13 is a block diagram of a word equation of a general property balance in the model gas system according to the principles of the method.

FIG. 14 is a flowchart of the flow calculation by the numerical method.

FIG. 15 is a chart showing the solutions providing the velocity profiles across between the parallel plates at different moments of time and a comparative analytical solution of a steady-state velocity profile.

FIG. 16 is a chart showing the solutions for the stable velocity profile across between the parallel plates at different numbers of the sequential approximations with mixed diffuse and specular scattering from the plates and a comparative analytical solution.

FIG. 17 is a schematic representation of the special purpose computer for implementing the method for simulating fluid flow.

DETAILED DESCRIPTION

Reference will now be made to the preferred embodiments of the invention, examples of which are illustrated in the drawings. Throughout the following detailed description, the same reference numerals refer to the same elements in all figures.

The transport processes involve the exchange of mass, momentum, energy, and other properties exchanged via exchange by particles. In a more abstract sense, we view all particle interactions and property randomizing as an exchange of property/information. We have also recognized that (1) transport phenomena include any situation that involves a net transfer of property/information between particles and randomizing properties between interacting particles; (2) a randomized physical/statistical property by property exchange between interacting particles can be taken out into the surrounding gas.

It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the claimed subject. Specifically, the following specification is limited to the case of fluid systems having no internal property generation sources such as energy generation sources. However, the method can be generalized by including in the balance property/energy generation term with no difficulty, as apprehended by those skilled in the art.

In this specification, all references are made to absolute time, which is measured equally in all inertial reference frames. Also, when referencing to appropriate laws of motion, Newton's First and Second Laws of motion are applied to the method. However, the method can be generalized, for example, by applying a different law of motion applicable to non-Newtonian or relativistic systems, as apprehended by those skilled in the art.

Also, in these embodiments, the majority of the transport processes are treated or viewed as transient or unsteady, implying that process variables change in time, which is the most common state of a system or process. However, the method can be reduced to a steady state or in a stable state, in which the values of all variables associated with the process do not change with time, by eliminating the time dependence in variables and terms associated with the process with no difficulty, as apprehended by those skilled in the art.

In these embodiments, fluid affected by a uniform body force or external force field such as gravitational field is analyzed. It is to be understood this limitation is made without departing from the claimed subject.

Some have recognized that the majority of rules and concepts governing fluid flow in three-dimensional and one-dimensional configurations are similar. Therefore, for clarity and exemplary, the description deals with a method of modeling fluid behavior in the one-dimensional fluid system, which comes with simulations in a computer. The method is also applicable to two-dimensional and multi-dimensional particle motions.

Embodiments of the present invention will now be described with accompanying drawings.

1. Analytical Tools and Method for Modeling Fluid Flow

FIG. 1 is a general flowchart of the method steps embodying the principles of the method.

The method for modeling transport processes in fluids in an unsteady state condition includes, for example, the steps of:

approximating fluid flow as model gas flow (S101);

specifying the geometry model (S102);

defining a net rate of property influx per unit volume from the model gas system in a general point of a plurality of non-moving points in space occupied by the model gas at a given time, which is formed by way of a plurality of converging particles, each of the plurality of converging particles is selected from the plurality of particles of the model gas system by a converging ballistic trajectory having the ending point in the general point of the plurality of non-moving points in space at the given time (S103);

defining a net rate of property efflux per unit volume from the general point of the plurality of non-moving points at the given time, which is formed by way of a plurality of diverging ballistic particles, each of the plurality is selected from the plurality of particles of the model gas system by a diverging ballistic trajectory having the starting point in the general point of the plurality of non-moving points at the given time (S104);

defining a temporal rate of property change per unit volume in the general point of the plurality of non-moving points at the given time (S105);

forming an integral property balance equation for each of one or more properties being transported by the plurality of particles in each of the plurality of non-moving points (S106);

computing the flow of the model gas (S107),

where computing the flow of the model gas includes resolving a system of one or more of integral property balance equations in each of the plurality of non-moving points at the given time.

1.1 the Fluid Model

The fluid model includes the model of the model gas and the model of the gas-solid interface.

1.1.1 the Model of the Model Gas

The step S101 of approximating fluid flow includes approximating fluid flow including a flow of rarefied gases in a fluid system as a model gas flow in a model gas system being identical to the fluid system.

The model gas as any conventional gas is composed of a plurality of particles including molecules being in a constant state of mostly random motion and interaction by collisions. However, the model gas has some properties that are different from the properties of conventional gases, which in the prior art are characterized by the generalized properties of the ideal gas. The major specific properties of the model gas include:

each of the plurality of particles of the model gas is assigned to travel with a probability between any of two points of a plurality of points in space occupied by the model gas by following a ballistic trajectory governed by a law of motion in free space, the ballistic trajectory having a starting point in one of a plurality of points of original collisions and an ending point in one of a plurality of points of ending collisions, and

each of the plurality of particles is adapted to transport a combination of one or more of properties including one or more of mass, momentum, and energy between one of the plurality of points of original collisions and one of the plurality of points of ending collisions.

The model of the model gas further includes:

treating each point of the plurality of points in space occupied by the model gas as a point of collisions for each of the plurality of particles having the ballistic trajectory having the ending point in one of the plurality of points at the same time;

treating each of a plurality of the points of collisions as either a point source for each of a plurality of diverging particles or a point sink for each of a plurality of converging particles; and

treating each of the plurality of particles moving from the point source to the point sink as a property carrier created in the point source at time of original collision by obtaining one or more of properties of specific values being intrinsic to the model gas surrounding the point source, and ended in the point sink at time of ending collision by transferring one or more of properties of specific values in the point sink,

where value of property delivered in the point sink by each of the plurality of converging ballistic particles or value of property taken away from the point source by each of the plurality of diverging ballistic particles is evaluated regarding whether value of the property is conserved or changed because of aging and whether value of property carried by each of the plurality of particles is modified because of interaction with an external field, and

where the velocity of each of a plurality of point sources is assigned to be equal to the mass flow velocity of the model gas in each of a plurality of corresponding points of original collisions at time of the original collision.

1.1.2 the Model of the Gas-Solid Interface

The model of the gas-solid interface includes the steps of:

treating each of a plurality of collisions on a gas-solid interface of the model gas system, which has resulted in diffuse particle scattering from the gas-solid interface, as an act of interaction involving a property transfer from the gas-solid interface to a scattered particle; and

treating each of a plurality of points of diffuse particle scattering on the gas-solid interface as a heterogeneous point source for each of a plurality of scattered particles,

where the gas-solid interface reveals mixed diffuse and specular particle scatterings,

where the velocity of each of a plurality of heterogeneous point sources on the gas-solid interface is assigned to be equal to the velocity of the gas-solid interface in each of a plurality of corresponding points of diffuse particle scattering at time of diffuse particle scattering, and

where point source strength of each of the plurality of heterogeneous point sources on the gas-solid interface is assigned to be directly proportional to a property accommodation coefficient in each of the plurality of corresponding points of diffuse particle scattering at time of diffuse particle scattering, the property accommodation coefficient which is probability, for an incident particle, to accommodate one or more of properties intrinsic to the gas-solid interface and to scatter back in the model gas as a diffuse particle, the property accommodation coefficient being in a range from zero to one. Note: Diffuse scattering is an act of interaction involving property transfer from a gas-solid interface to a scattered particle whereas specular scattering does not involve property exchange between the gas-solid interface to a scattered particle.

1.1.3 Details of the Fluid Model

FIG. 2 illustrates ballistic traveling of the particle between two consecutive collisions in a fluid system composed of the model gas particles. In the example of FIG. 2, a schematic diagram of the model gas system composed of identical randomly moving particles B and positioned in the observer's Cartesian coordinate system 200 is shown. For clarity, the schematic presents a three-dimensional configuration. Note that in the specification and accompanying figures, the observer's coordinate system is designated by index “200.” To locate the position of the event, the observer needs only to read the space coordinates at the location of an event. The clocks at any location within a system are synchronized. The observer, therefore, allocates space coordinates and time by recording both the space coordinates and time at the clock nearest the event position. In the example of FIG. 2, for clarity with no limitation of the method, the observer's Cartesian coordinate system 200 is oriented so y-axis is along the negative direction of an applied field of external force 207 which provides, for each of a plurality of particles, an acceleration {right arrow over (g)}.

In the specification, claims, and figures herein, the acceleration is symbolized as g in the one-dimensional configuration. Each of the plurality of particles (shown as black disks), particularly a particle 201 (shown as transparent disks), travels in space between its two consecutive collisions: an original collision, 202, and an ending collision, 203, by following a trajectory 204 or 205 governed by an appropriate law of motion such as Newton's laws of motion. In a lack of external force, all ballistic trajectories between consecutive collisions will be just straight lines, respectively, as indicated by a trajectory 206.

Specifically, referring to FIG. 2, particle 201 obtains a set of properties of specific values in a point source 202 at time of the original collision, the set of properties including a set of one property of value, Ψ, which includes but not limited to a scalar property of value Ψ or a vector property value {right arrow over (Ψ)} (3D), which is intrinsic to the model gas near point source 202 at the time of the collision, ti′.

In point source 202 moving with velocity being equal to the mass flow velocity {right arrow over (u)}(ti′, {right arrow over (r)}′) of the model gas in {right arrow over (r)}′ at time ti′, each of the plurality of particles in the point source obtains, as a properties carrier, a specific magnitude of thermal velocity, vT(ti′, {right arrow over (r)}′), and one or more of model gas properties being intrinsic to the model gas surrounding the point of the original collision at a time of the original collision and may move in an arbitrary direction relatively to the point source. Each of the property carriers converging in point sink 203 transfers in the point of the ending collision one or more of a set of properties, which in some embodiments includes just one property Ψin, carried by each of the plurality of particles at the time of the ending collision.

1.1.3 the Model of the Geometry Model and the Dynamic History

Next, the step S102 of specifying the geometry model, for example, further includes steps of:

establishing geometry and boundary conditions,

where geometry and boundary conditions are established during a period from a pre-initial time until the given time; and

establishing a dynamic history of the model gas,

where the dynamic history of the model gas, which is in one or more of instant distribution patterns of the model gas properties within the model gas system at a set of different sequential moments in time, is established during a pre-initial period from the pre-initial time until the initial time, and

where the pre-initial period is set to be not less than a reliable period before the initial time.

Some have recognized that to model the model gas flow at the given time, t, which is greater than or equal to the initial time, t0, a setting of initial flow conditions is needed.

This, for example, is done by establishment of the model gas system geometry and model gas flow characteristics during some period advancing the initial time. The initial time, t0, is associated with the time of specific modification of the model gas system in a specific location, which, for example, includes changing of the temperature or/and velocity of a gas-solid interface, and/or application of an external field that modifies a property content. It has also been recognized that the specific modification of the model gas system in the specific location can be sensed in a remote point in space at a delayed time, which depends on the nature of a transporting carrier. Specifically, modification of the model gas system in the specific location, for example on a gas-solid interface, will be delivered in the distant point in space by diffuse ballistic particles and will initiate a modification of property in the distant point a local initial time according to Equation (1)


ti0=t0ar′,  (1)

where φar′ is a traveling time along the ballistic trajectory having a starting point in one of a plurality of points of original collisions and an ending point in one of a plurality of points of ending collisions.

The model gas system geometry, for example, is specified by identifying both boundaries, which includes the gas-solid interfaces defining boundary conditions and being characterized by specific properties such as surface temperature distributions and/or dynamics of geometry modification, and an available set of external fields of certain spatial configurations and certain known dynamics of modification, which are being a part of the geometry and are prone to affect the properties carried by each particle during its free path traveling.

The step of establishing geometry and boundary conditions in some embodiments is utilized:

in the model gas system with no gas-solid interfaces, by providing predefined dynamics of modification of an available set of external fields during the period from a pre-initial time until the given time;

in the model gas system bounded by gas-solid interfaces showing either purely diffuse or mixed diffuse and specular particles scattering, by providing predefined dynamics of modification of both an available set of external fields and boundary conditions on gas-solid interfaces; and

in the model gas system having an open-channel geometry providing model gas flow passage through a channel having an inlet opening and an outlet opening, by providing additional boundary conditions associated with an effect of surrounding (model gas pressure gradient, temperature gradient).

The step of establishing a dynamic history of the model gas system includes, for example, defining dynamics of the transported property modification during particle's ballistic traveling and defining the dynamic history of model gas properties modifications during the model gas system evolution.

We have recognized that if the property, Ψ0, acquired by the particle at the moment of original collision, ti′, or property, Ψ0b, acquired by the particle at the moment of original diffuse scattering from the gas-solid interface, tib′, may be vulnerable to some internal aging process during particle's ballistic traveling, then the value of the property upon arriving in point y at the given time t is changed. Internal radioactive decay, in which an unstable atomic nucleus is transformed into a lighter nucleus accompanied by the emission of particles or radiation, is an example of the internal aging process. The mass of the particle is decreased during ballistic traveling time.

By the method, for the particle having initial property Ψ0, the property at time t is calculated from Equation (2) given below:


Ψλ0e−λφi,  (2)

where Ψo is a starting function characterizing property value carried by each of the plurality of particles in the starting point of the ballistic trajectory at a starting time, Ψλ is an age function characterizing property value in the ending point of the ballistic trajectory, λ is an aging coefficient, which is in the range from negative to positive values including zero value, φi is a gas-gas ballistic traveling time defined as follows


φi=t−ti′.  (3)

A particle incident on the gas-solid interface is scattered back according to either a diffuse, or a specular, or a mixed diffuse-specular model. A gas-solid interface revealing particle scattering according to the mixed diffuse-specular model is characterized by a property accommodation coefficient, σ, which is treated as the probability of an incident particle to be “absorbed” into the surface with further its accommodation on the gas-solid interface by obtaining one or more of properties of specific values being intrinsic to a point of the incidence followed by “evaporation” back and carrying the obtained properties.

For the particle having initial property, Ψ0b, the property, Ψλb, at time t is calculated from Equation (4) given below:


Ψλb0be−λφib,  (4)

where φib is solid-gas ballistic traveling time defined as follows


Ψib=t−tib′.  (5)

Notoriously, when λ=0, then the property is conserved during the ballistic traveling time. It is to be understood the limitation that λ is constant in the equation above is made without departing from the claimed subject, and those skilled in the art may calculate the property, Ψλ or Ψλb by using time dependent decay or growth coefficient with no difficulty.

We have also recognized that the acceleration field g modifies the velocity of each particle during ballistic traveling. For clarity with no limitation of the invention, acceleration, g, is chosen to be a constant within the fluid system. An additional value of the property Ψg(ti′,t,g), in the velocity modification, vg, during the ballistic traveling time, φi, for example, is calculated from Equation (6) given below:


Ψg(ti′,t,g)≡vg=g(t−ti′).  (6)

An example of externally coupled force, which acts on gas particles directly through the field during particle's ballistic traveling and comes with particle displacement toward the force, is a gravitation force or electrostatic force if the particles are charged.

Under the method, the property delivered in the point sink at time t or the property, Ψin(ti′,y′,t,y), carried by each particle at the moment of the convergence in the point sink positioned in general non-moving point y at the given time t, includes both an acquired property, which is obtained by each particle in the point of the original collision in the model gas at the time ti′, Ψ0(ti′,y′), which, sometimes, can be a subject to decay or growth during the ballistic traveling time, and the generated property, which is accumulated or lost by each particle during its ballistic traveling time, Ψg(ti′,t,g) is the property, which is accumulated or lost during the ballistic traveling time because of interaction with an external field such as acceleration, g. For clarity, in this embodiment, Ψg(ti′,t,g) is a well-defined function having arguments associated with traveling time φi and with an external well defined field including acceleration, g.

Symbolically, if the preceding collision is within the model gas space, the discussed above is expressed:


Ψin(ti′,y′,t,y)=φλ(ti′,y′,λ,φi)+Ψg(ti′,t,g),  (7)

where Ψg is a field function characterizing property value of the known measure, which is changed during traveling time, φi, because of interaction with an external field including modification of momentum in a gravitation field Ψλ is an age function characterizing property value in an ending point of the ballistic trajectory, which is defined by Equation 2). Analogously, under the method, the property Ψb_in(ti′,y′,t,y) carried by each particle at the moment of the convergence in a point sink positioned in a general non-moving point y at the given time t, includes both the acquired property, which is obtained by each particle in point yb of its preceding diffuse scattering from the gas-solid interface at time tib′, Ψ0b(tib′,yb), which, sometimes, can be a subject to decay or growth during the ballistic traveling time, and the generated property, which is accumulated or lost by each particle during its ballistic traveling time, Ψg(tib′,t,g):


Ψb_in(tib′,yb,t,y)=Ψλb(tib′,yb,Δ,φi)+Ψg(tib′,t,g)  (8)

In Equation (8), Ψλb is defined by Equation (4). In this embodiment, the generated on the gas-solid interface property ΨOb(tib′,yb) is a well-defined function if the mentioned gas-solid interface is a part of the external surface bounding the system. The model gas flow is characterized microscopically by the group of particles of mass, m, having the number density of particles in the model gas, n, which are randomly moving and interacting by collisions and having the magnitude of the random component of velocity or thermal velocity, vT, and the particle's effective collision cross-section, σc. In addition, near any point of space occupied by the model gas, this group of particles is characterized by the vector of mass flow velocity, u.

By the method, each of the model gas properties, Ψ0(ti,y″) in each of the plurality of points in the space of the model gas system, is treated depending on the time of inquiry or the event time either as property, Ψ0−(ti,y″), when event time, ti, is advanced to local initial time, ti0, namely, ti<ti0, which is specified by establishing a spatial distribution of each of the model gas properties before the local initial time ti0, or as property, Ψ(ti,y″), when the event time is greater than or equal to local initial time ti0, namely, ti≥ti0, which generally has an unknown spatial distribution of the property greater than or equal to initial time ti0 and is the subject of determination. Using Iverson brackets, the discussed above is expressed:


Ψ0(ti,y″)=Ψ0−(ti,y″)[ti<ti0]+Ψ(ti,y″)[ti≥ti0],  (9)

where each of expressions with square brackets is Iverson bracket, which converts a statement in brackets into a number that is one if the statement is satisfied, and is zero otherwise, Ψ0− is a pre-established property value in each of the plurality of points in space of a model gas system at the starting time ahead of the local initial time, and Ψ is a present property value in each of the plurality of points in the space of a model gas system at the starting time greater than or equal to the local initial time.

1.2 the Model of Property Balance

The model of property balance is based on using analytical tools, which are constructed by applying the fluid model. Each of the analytical tools performs a specific and unique function within the model of property balance, which is, in turn, the basis for the computer simulation of the fluid flow.

1.2.1 a Combined Analytical Tool for Computing the Net Rate of Property Influx from the Model Gas in the General Non-Moving Point at the Given Time

In this specification, claims, and figures, a plain symbol is used for notating a scalar value and a symbol having a rightwards arrow above is used for notating a vector value in the three-dimensional configuration. In addition, by convention in this patent application and to simplify the notations, the terms relating to the vectors in one-dimensional configuration, which will appear later, are represented by the corresponding usual letters. For more clarity, each of the vector terms in one-dimensional configuration will be specifically denoted as a vector in the tables afterward in the column “Short description” or in the specification or the claims. Various terms used in the equations are listed in Table 1.

TABLE 1 Symbol Short description y the divergence operator in a one-dimensional configuration BinΨλ_F the net rate of property influx per unit volume from the surrounding model gas t the given time t′i the time of the original collision y position of the ending point of each of a plurality of converging ballistic particles y′ is a position of the starting point of one of the plurality of converging ballistic trajectories vT(t′i, y′) the average magnitude of thermal velocity in the starting point at the time of the original collision ZV(t′i, y′) rate of collisions per unit volume in the starting point at the time of the original collision v(t′i, y′, t, y) a velocity vector in the ending point at the given time, Qi(t, t′i) probability of traveling along the ballistic trajectory Ψin(t′i, y′, t, y a property value delivered in the ending point at the given time by one the first plurality of converging ballistic particles yb1 a lower limit of integration over the volume of space occupied by the model gas yb2 an upper limit of integration over the volume of space occupied by the model gas.

FIG. 1A is a block diagram employed to define different components of the net rate of property influx from the model gas system in a general non-moving point.

The step S103 of defining the net rate of property influx per unit volume from the model gas system further includes a step of defining a net rate of total property influx per unit volume from a surrounding model gas (S103A),

where the net rate of total property influx per unit volume is formed by way of a first plurality of converging ballistic particles, each of the first plurality of converging ballistic particles is selected from the plurality of converging ballistic particles by the ballistic trajectory having the starting point in one of a plurality of points of original collisions within space occupied by the model gas, and

where each of the plurality of points of original collisions is treated as a point source.

By the method, each particle traveling from the point of an original collision within the space occupied by the model gas to a destination point at the given time, t, is treated as property carrier delivering in this point some property obtained in the location and time of the original collision. Again, during the ballistic traveling time, the carried by the particle property may, however, be vulnerable to some internal aging process and be changed because of interaction with the external field.

It is recognized and is explained afterward that there exists a combination of a specific direction of an initial instant vector of thermal velocity vT(ti′,y′) and a vector of mass flow velocity u(ti′,y′), which provides an opportunity for each of the selected particles to arrive in a given non-moving point at a given time. These particles, which are from original collisions within the entire model gas system, form a converging flux in the given non-moving point of the space occupied by the model gas at the given time.

In these embodiments, for certainty, the magnitude of thermal velocity is chosen to be higher than the magnitude of mass flow velocity, namely, vT>|u|. This limitation is made without departing from the claimed subject.

FIG. 3 is a block diagram of an alternative approach employed to define major steps of step S103A needed to calculate the net rate of property influx from the model gas in the general non-moving point y at the given time t.

The step S103A of defining the net rate of total property influx per unit volume from the surrounding model gas includes steps of:

identifying, for each of the first plurality of converging ballistic particles, the ballistic trajectory (S103A1);

defining the probability of traveling along the ballistic trajectory (S103A2);

defining a net rate of particle efflux per unit volume from one of the plurality of points of original collisions at the time of the original collision (S103A3),

where the ballistic trajectory identifies the time of the original collision for each of the plurality of converging ballistic particles, and

where the velocity of the point source for each of the first plurality of converging ballistic particles is assigned to be equal to the mass flow velocity of the model gas in a corresponding point of original collisions at time of the original collision;

defining a net rate of property flux per unit area in the general point at the given time from one of a plurality of point sources (S103A4);

defining a net rate of total property flux per unit area in the general point at the given time from the plurality of point sources (S103A5); and

defining the net rate of total property influx per unit volume in the general point at the given time by applying the divergence operator to the net rate of total property flux (S103A6).

The step of identifying the converging ballistic trajectory includes:

determining one or more of characteristics of the converging ballistic trajectory including the time of the original collision, an appropriate instant unit vector defining the ballistic trajectory in starting point, and a velocity vector in the ending point of the ballistic trajectory at the given time; and

defining a size of an expansion zone.

FIG. 4 is an example of a schematic view of a one-dimensional configuration for explaining a ballistic movement of the particle in a field of the external force. In the example of FIG. 4, the observer's Cartesian coordinate system 200 is oriented with y-axis directed along the negative direction of the applied acceleration field, 400. FIG. 4 shows a particle 406 having a collision in the event point y″≡y′ at the event time ti ≡ti′, which resulted in acquiring by the particle thermal velocity, vT(ti′,y′) and mass flow velocity vector u(ti′,y′), which are intrinsic to the nearby volume of the model gas surrounding point y′ at time ti′.

1.2.1.1 Analytical Tool for Computing the Trajectory and Velocity of a Ballistic Movement of the Particle Converging in the General Non-Moving at the Given Time

In one embodiment, the step of identifying a trajectory of a ballistic movement of the particle that converges in the general non-moving point y at the given time t includes a step of formulating position vector {tilde over (y)} of particle 406 on trajectory 404 or particle 407 on trajectory 405 and velocity vector {tilde over (v)} (not shown) at time {tilde over (t)} by applying Equations (10) and (11), respectively, given below:


{tilde over (y)}=y({tilde over (t)})=y′+[vT(ti′,y′)ni+u(ti′,y′)]({tilde over (t)}−ti′)+½g({tilde over (t)}−ti′)2  (10)


and


{tilde over (v)}=v({tilde over (t)})=vT(ti′,y′)ni+u(ti′,y′)+g({tilde over (t)}−ti′).  (11)

where t≥{tilde over (t)}≥ti′. In the equations above, ni=±1 is a unit vector of arbitrary direction.

The step of determining the time of the original collision, ti′, in point y′ for each of the ballistic traveling particles includes a step of resolving the equation of motion, Equation (12) given below, with respect to the ballistic traveling time, φi:


½i2+vT(ti′,y′)ni+u(ti′,y′)φi+y′−y=0,  (12)

which is obtained by assigning {tilde over (t)}=t and substitution φi=t−ti′ in Equation (10) and rearrangement of the terms.

The step of defining an appropriate instant unit vector directing thermal velocity component of each particle in point y′ at time ti′ includes steps of:

presenting Equation (12) in the following form:


φivTni=y−yic,  (13)


where


yic=y′+φiu(ti′,y′)+½gi)2;  (14)

deriving ni from Equation (13), which is given as

n i = y - y i c y - y i c , ( 15 )

where referring to FIG. 4, ni is interpreted as a unit exterior facing outside of control volume or an expansion zone 401 having a point of origin yic at time t. In this, vector yic is interpreted as a position vector of the center of the expansion zone at time t or the position of a particle having zero magnitude of thermal velocity in point y′ at time ti′, which is observed at time t.

The step of defining the velocity of each particle reaching the general non-moving point y at the given time t includes a step of applying Equation (16) given below:


v(t,y)=vT(ti′,y′)ni+u(ti′,y′)+i,  (16)

which is obtained by assigning t=t and substitution of


φi=t−ti′  (17)

in Equation (11) given above and rearrangement of the terms.

The step of defining the size of the expansion zone includes a step of executing multiplication of Equation (13) on itself resulted and averaging as:


φi2vT2=(y−yic),  (18)

where the size or half width of the expansion zone 401 at time t is computed as follows


Yiexp=vT(ti′,y′)φi=|y−yic|  (19)

and the velocity of the center of the expansion zone, vic, 401 is computed as


vic=u(ti′,y′)+i.  (20)

1.2.1.2 Analytical Tool for Computing the Probability of Ballistic Traveling Along the Ballistic Trajectory of the Particle Converging in the General Non-Moving at the Given Time

The step of formulating the probability of ballistic traveling along the ballistic trajectory includes steps of:

defining the average magnitude of the relative velocity or the velocity of the traveling particle with respect to one of nearby particles at a particular point of a trajectory; and

representing the probability of traveling along the ballistic trajectory from the starting point to the ending point in the one-dimensional configuration by following Equation (21) given below:


Qi(t,ti′)=exp(−∫titPc({tilde over (y)}({tilde over (t)}))vrel({tilde over (y)}({tilde over (t)}))d{tilde over (t)}),  (21)

where {tilde over (t)} is a parametric time ti′<{tilde over (t)}≤t, {tilde over (y)}({tilde over (t)}) is a trajectory point of the ballistic trajectory at the parametric time {tilde over (t)}, vrel({tilde over (y)}({tilde over (t)})) is an average magnitude of relative velocity in the trajectory point, and Pc({tilde over (y)}({tilde over (t)})) is average number collisions per unit length in the trajectory point, and

where Equation (21) is obtained by

defining Q({tilde over (t)}+d{tilde over (t)}) and Q({tilde over (t)}) as probabilities that a given particle traveling along the ballistic trajectory has survived at times {tilde over (t)}+d{tilde over (t)} and {tilde over (t)}, respectively;

defining y({tilde over (t)}) as the position of the converging ballistic particle along the ballistic trajectory designated at time {tilde over (t)}, and ti′ is the time of the original collision,

representing Pc(y({tilde over (t)},ti′)) by Equation (22) given below:


Pc({tilde over (y)}({tilde over (t)}))=σcn({tilde over (y)}({tilde over (t)})),  (22)

where σc is the cross-section of collisions and n({tilde over (y)}({tilde over (t)})) is particle density in point {tilde over (y)}({tilde over (t)}) of the converging ballistic trajectory at time {tilde over (t)};

defining vrel as an average magnitude of the velocity of the traveling particle with respect to a nearby particle along the ballistic trajectory of the traveling particle in a particular point of the trajectory at the designated time {tilde over (t)};

establishing the following quantity:


Q({tilde over (t)}+d{tilde over (t)})=Q({tilde over (t)})[1−Pc(y({tilde over (t)}))vrel(y({tilde over (t)}))d{tilde over (t)}];  (23)

solving a differential based Equation (23) given above and applying limits for integration from ti′ to t.

1.2.1.3 Analytical Tool for Computing the Average Magnitude of the Relative Velocity of the Particle Traveling Along the Ballistic Trajectory

FIG. 5 is a schematic view for explaining a method for determining the average magnitude of the instant velocity of the traveling particle with respect to a nearby particle along the ballistic trajectory of the traveling particle in the one-dimensional configuration.

The embodiments of this and the following sub-sections dealing with the average magnitude of the relative velocity or the velocity of the traveling particle with respect to on of nearby particles are explained where traveling particles are non-relativistic. The present invention, however, is not limited to the case but can be generalized to the transport processes involving relativistic particles, as would be apparent to one skilled in the art.

The step of defining the average magnitude of relative velocity or average velocity of a traveling particle 505 with respect to one of nearby particles 506 at a particular point of the trajectory {tilde over (y)} at specified time {tilde over (t)} is calculated by steps of:

defining an instant magnitude of the velocity of one of the plurality of converging ballistic particles in the trajectory point with respect to one of nearby passed particles in the trajectory point, which includes:

defining in a rest frame the instant velocity vector of the traveling particle 505 in a particular point of the trajectory y({tilde over (t)}) at specified time {tilde over (t)}, v1, by Equation (24) given below:


v1=vT(ti′,y′)n1+u(ti′,y′)+g({tilde over (t)}−ti′),  (24)

where n1 is a unit vector of a specific direction having the point of origin y′;

specifying instant vector-velocity in the rest frame, v2({tilde over (t)},{tilde over (y)}), of the nearby particle 506 being passed by the traveling particle 505 at the same time {tilde over (t)} by Equation (25) given below:


v2=nivT({tilde over (y)}({tilde over (t)}))+u({tilde over (y)}({tilde over (t)})),  (25)

where vT({tilde over (y)}({tilde over (t)})) and u({tilde over (y)}({tilde over (t)})) are thermal and mass flow velocities in the rest frame of the model gas in point {tilde over (y)} at time {tilde over (t)}, which are acquired by the nearby particle 506, and ni is defined as a unit vector of an arbitrary direction having the point of origin in point {tilde over (y)} at time {tilde over (t)};

forming an instant vector of relative velocity, vrl, which is represented in the example of FIG. 5 as vrl1 or vrl2 by connecting the end of the instant vector-velocity, v2({tilde over (t)},{tilde over (y)}), positioned in point 501 or 502 and the end of the vector-velocity v1(ti′,y′,{tilde over (t)}) positioned in point 504, which is formulated by Equation (26) given below:


vrl({tilde over (t)},{tilde over (y)})=v1(ti′,y′,{tilde over (t)})−v2({tilde over (y)}({tilde over (t)})),  (26)


where


vr=v1(ti′,y′,{tilde over (t)})−u({tilde over (y)}({tilde over (t)}))  (27)

is the vector-velocity vr shown in FIG. 5 as 503;

defining the magnitude of the instant relative velocity between the traveling particle 505 and the nearby particle 506 by executing the square root of the scalar product of the velocity vector of Equation (26) with itself, which is expressed in formula form by Equation (28) given below:


|vrl|=√{square root over (vrlvrl)}=√{square root over (vr2+[vT({tilde over (y)}({tilde over (t)}))]2−2vrvr({tilde over (y)}({tilde over (t)}))ni)},  (28)

where ni is a unit vector of an arbitrary direction, namely, it accepts value +1 or −1, and where, in the example of FIG. 5, |vrl| is represented by vrl1 and vrl2; and

calculating the average magnitude of relative velocity of the particle traveling along the ballistic trajectory over all possible directions of the random instant relative velocity vector component of a passed nearby particle by applying Equation (29) given below:

v rel = v r - v T + v r + v T 2 , ( 29 )

which is obtained by averaging the instant magnitudes of two components of a relative velocity between the particles as of Equation (28) since ni accepts either value +1 or −1.

In most realistic situations, the magnitude of a mass flow velocity component of either traveling particle 505 or the magnitude of a mass flow velocity component of nearby particle 506 particle is insignificant in comparison with the magnitude of the thermal velocity of either particle 505 or particle 506.

In a one-dimensional configuration, for example, an approximated average magnitude of the relative velocity of the traveling particle at a particular point of a trajectory, {tilde over (y)}, at the time, {tilde over (t)}, is calculated from Equation (30) given below, which is obtained by substitution of |vr|≅vT(ti′,y′) in Equation (29):

v rel ( y ~ ( t ~ ) ) = v T ( t i , y ) - v T ( y ~ ( t ~ ) ) + ( v T ( t i , y ) + v T ( y ~ ( t ~ ) ) ) 2 , ( 30 )

where vrel({tilde over (y)}({tilde over (t)})) is the average magnitude of relative velocity in the trajectory point, vT(ti′,y′) is the average magnitude of the thermal velocity component in the starting point of the ballistic trajectory, and vT({tilde over (y)}({tilde over (t)})) is the average magnitude of the thermal velocity component of one of nearby particles in the trajectory point.

We have also recognized that, usually, the magnitudes of the thermal velocity of nearby particles are approximately identical. Under the method, in a one-dimensional configuration, the approximated average magnitude of relative velocity between each particle moving in arbitrary directions, which is originated from the proximity to each other, is calculated from Equation (31) given below, which is obtained by substitution of vT({tilde over (t)},{tilde over (y)})=vT(ti′,y′) in Equation (30):


vrel(ti′,y′)=vT(ti′,y′).  (31)

1.2.1.4 Analytical Tool for Computing the Net Rate of Property Influx Per Unit Volume in the General Non-Moving at the Given Time

A method for determining particle and property fluxes by ballistic particles retreated from a remotely located auxiliary control volume in a field of external forces is further illustrated in FIG. 4. As explained before, the model gas is characterized by the particle density, n, each particle diverges from a point of the original collision and converges in a point of the consecutive ending collision. Under the method, upon recognizing that each traveling particle is being in both diverging and converging conditions simultaneously, the particle density of diverging ballistic particles in the vicinity of point y′ at time ti′ is chosen to be n/2.

The step of defining the particle flux production rate, ZV, or the net rate of particle efflux per unit volume from a point source positioned in a point of the original collisions and moving with the mass flow velocity of the model gas in that point includes, for example, a step of representing ZV by applying Equation (32) given below:


ZV(ti′,y′)=½Pc(ti′,y′)vrel(ti′,y′)n(ti′,y′),  (32)

which is obtained by steps of:

defining the vector field of the particle flux, Jy′N, along each of the ballistic trajectories in a point of the space around the point of the original collision includes a step of representing Jy′N by applying Equation (33) given below:


Jy′Nn(ti′,y′)Qi(t,ti′)v(ti′,y′,t,y),  (33)

where v is defined by Equation (16), Qi is a survival probability defined by Equation (21), and n(ti′,y′) is particle density at a specific point y′ at time ti′;

representing, in a coordinate system associated with point yic moving with velocity vic, the vector field of the particle flux, JCVN, through the in a control surface 402 or 403 of FIG. 4 in the following form:


JCSNn(ti′,y′)Qi(t,ti′)[v(ti′,y′)−vic]=½n(ti′,y′)Qi(t,ti′)vT(ti′,y′)ni;  (34)

and applying and executing

y

operator to the one-dimensional vector field of Equation (34) followed by shrinking the volume of the auxiliary control volume to an infinitely small volume, which, in formula form, is expressed as:

Z V ( t i , y ) = { y [ J CS N ] } y y = 1 2 { y [ n ( t i , y ) Q i ( t , t i ) v T ( t i , y ) n i ] } y y . ( 35 )

The above is obtained by recognizing that auxiliary control volume 401 is confined by inflated control surface 402 and control surface 403 is isolated (see FIG. 4) therefore the total particle efflux through surface 402 and surface 403 at time t should be equal to the total particle efflux from the point at y′ at time ti′.

The step of formulating the net rate of the property flux originated from original collisions within entire space occupied by the model gas in a point sink positioned in a general non-moving point of the space occupied by the model gas at the given time includes steps of:

representing the property vector flux, Jy′→yΨ(t,y), originated from original collisions in point y′ at time ti′ and being sensed by a point sink positioned in a being at rest point y at the given time t by applying Equation (36) given below:

J y y Ψ ( t , y ) = Q i ( t , t i ) Z V ( t i , y ) v ( t i , y , t , y ) 2 v T ( t i , y ) Ψ i n ( t i , y , t , y ) dy ; ( 36 )

and defining the rate of the property vector flux, JFS→yΨ, in point y at the given time t, which is originated from preceding collisions within entire space occupied by the model gas, includes applying Equation (37) given below, which is obtained by integrating Equation (36) over the volume of the model gas system:

J FS y Ψ = 1 2 y b 2 y b 1 Q i ( t , t i ) Z V ( t i , y ) v ( t i , y , t , y ) v T ( t i , y ) Ψ i n ( t i , y , t , y ) dy , ( 37 )

where Ψin(ti′,y′,t,y) is the property carried by each of the converging ballistic particles at the moment of the entering the volume surrounding point y at the given time t.

FIG. 6 shows the model gas system schematically with a uniform model gas flow along the x-direction, in which a main control volume 614 of volume dV=Δxdy is at y within the model gas system confined by two parallel plates at yb1 and yb2. In the example of FIG. 6, the acceleration, 600, is directed in the negative to y-axis direction. The arrow 601 or 603 indicates schematically flux expressed by Equation (36) and associated with divergence of particles from an auxiliary control volume 602 or from an auxiliary control volume 604, respectively.

The step of defining the net rate of property influx per unit volume, BinΨ0_F, formed by the flow of ballistic particles carrying property and converging from the space occupied by the model gas in the general non-moving point of the space occupied by the model gas at the given time further includes a step of representing BinΨ0_F by applying Equation (38) given below, which is obtained by executing

y

operator to the one-dimensional vector field of Equation (37):

B i n Ψ_ F ( y , t ) = - 1 2 y y b 2 y b 1 Q i ( t , t i ) Z V ( t i , y ) v ( t i , y , t , y ) v T ( t i , y ) Ψ i n ( t i , y , t , y ) dy . ( 38 )

1.2.2 A Combined Analytical Tool for Computing the Net Rate of Property Influx in the General Non-Moving Point at the Given Time, which is Formed by Converging Ballistic Particles Originated from Gas-Solid Interfaces

FIG. 7 is a schematic view of the model gas system confined between parallel plates, shown to illustrate a variety of ballistic trajectories of particles in the model gas system having gas-solid interfaces with mixed diffuse and specular components of particle scattering. In the example of FIG. 7, the one-dimensional model gas system is confined between spaced a top plate 708 and a bottom plate 709. A channel formed by spaced plates has an inlet opening on the left side, shown in the schematic by line AB, and the outlet opening on the right side, shown by line CD. The schematic shows a variety of types of ballistic trajectories in a system with gas-solid interfaces revealing both diffuse and specular scattering components, which are arranged for illustration and do not intend to limit the invention. The first type, ballistic trajectory 701 shows a way for transporting property carried by the particle leaving an auxiliary control volume 706 in y′ and coming directly in point y of a main control volume 707. The second type, ballistic trajectories 702 or 703 show ways for transporting property carried by particles leaving after diffuse scattering from plate 708 and plate 709, respectively, and coming directly in point y of the control volume. The third type, ballistic trajectory 704 with the final segment 704A shows a possible way for transporting a property carried by the particle leaving auxiliary control volume 706 toward plate 708, then is specularly scattered back into model gas toward plate 709 and may follow one or more of specular scatterings from gas-solid interfaces until it finally makes final ending collision in point y of main control volume 707. The fourth type, ballistic trajectory 705 and the final trajectory segment 705A shows a way for transporting a property carried by particles leaving by diffusive scattering plate 709 toward plate 708, then is specularly scattered back into model gas toward plate 709 and may follow one or more of specular scatterings from gas-solid interfaces until it finally makes following final collision in point y being within the main control volume. Specifically, according to the example of FIG. 7, determining total influx of property delivered into main control volume 707 by traveling particles includes the integration of property intake according to 701, 702, 703, 704A and 705A ending segments of ballistic trajectories.

It is well known that since the solid surface is not ideal, it contains both diffuse and specular components of particle scattering. The diffuse scattering implies that each particle that hits a plate transfers its momentum/energy or other property completely to the plate and that all particles diffusively scattered from the plate leave it accepting streamwise velocity and temperature or other property of the plate. If particle collisions are specular the incident on a plate property, which is carried by the particle such as energy, will be returned entirely into the model gas system.

By the method, the diffuse reflection is characterized by the property accommodation coefficient 0<σ≤1, and the specular reflection is characterized by 1−σ. Each particle diffusively scattered from the plate 1 leaves it accepting one or more properties intrinsic to the gas-solid interface of the plate such as the thermal velocity.

For clarity, all gas-solid interfaces bounding the model gas flow are considered to have identical gas-solid interfaces, which are characterized by unchangeable property accommodation coefficient, σ. It is to be understood this limitation is made without departing from the claiming subject.

For diffuse scattering with no adsorption effects after colliding with the surface, the particle flux per unit time diffusively scattered back from the gas-solid interface into the model gas system equals to the particle flux per unit time incident on the surface of the boundary with a negative sign. Here we have also accepted that particles diffusively scattered back from the gas-solid interface will accommodate a thermal velocity and other properties at the moment of the contact with the surface of the boundary at a particular place of the boundary. Also, we have recognized that only a half of the particles near scattering surface had a recent departure from the surface with the magnitude of velocity equal to the magnitude of thermal velocity corresponding to the temperature of the reflecting gas-solid interface.

The step S103 of defining the net rate of property influx per unit volume from the model gas system further includes a step of defining a net rate of total property influx per unit volume from a gas-solid interface exhibiting mixed diffuse and specular particle scattering,

where the net rate of total property influx per unit volume from the gas-solid interface is formed by way of a second plurality of converging ballistic particles, each of the second plurality of converging ballistic particles is selected from the plurality of converging ballistic particles by the ballistic trajectory having the starting point in one of a plurality of points of original collisions on the gas-solid interface, and

where each of the plurality of points of original collisions resulted in diffuse particle scattering from the gas-solid interface is treated as a heterogeneous point source.

FIG. 8 is a block diagram of an alternative approach employed to define major steps needed to calculate the net rate of property influx per unit volume from the diffuse gas-solid interfaces of the boundary in the general non-moving point y at the given time t.

In some embodiments, the step S103B in the example of FIG. 1A of defining the net rate of property influx per unit volume in the general non-moving point at the given time from the gas-solid interface of the boundary includes steps of:

identifying the ballistic trajectory, for each of the second plurality of converging ballistic particles (S103B1),

where the velocity of the heterogeneous point source for each of the second plurality of converging ballistic particles is assigned to be equal to the velocity of the gas-solid interface in a corresponding point of original collisions on the gas-solid interface at the time of diffuse particle scattering;

defining the probability of traveling along the ballistic trajectory (S103B2);

defining a rate of collisions per unit area in one of a plurality of heterogeneous points on the gas-solid interface at the time of diffuse particle scattering (S103B3),

where the ballistic trajectory identifies the time of diffuse particle scattering for each of the second plurality of converging ballistic particles;

defining a net rate of property flux per unit area in the general point at the given time from one of a plurality of heterogeneous point sources (S103B4);

defining a net rate of total property flux in the general point at the given time from the plurality of heterogeneous point sources on one or more of gas-solid interfaces (S103B5); and

defining the net rate of total property influx per unit volume in the general point at the given time by applying the divergence operator to the net rate of total property flux (S103B1).

In the example of FIG. 6, plate 615 and plate 616 confine across y-axis a model gas flow along the x-axis and surfaces 611 and 612 positioned at a distance Δx bound a portion of the model gas system along the x-axis. In the model gas system having gas-solid interfaces with purely diffuse scattering of particles, each particle originated from preceding diffuse scatterings from the interfaces delivers in the main control volume 614 some property obtained from the location and time of the original diffuse scattering (ballistic trajectory 606 from plate 616 and ballistic trajectory 605 from plate 615 of FIG. 6).

To calculate property fluxes in a originated from diffuse particle scattering from the gas-solid interfaces of two stationary parallel plate s it is needed to determine the departing time tib1′ and tib2′ from plate 615 and plate 616, respectively, which provide an opportunity for departing the plate particles to arrive in point y at time t. We have also recognized that departing time from plate 615 or plate 616 is needed to indicate the time at which the departing particle has obtained a particular transported property. Referring again to the example of FIG. 6, determining the departing times tib1′ and tib2′ from plate 615 and plate 616, respectively, includes applying formulas:


tib1′=t−φib1′ and tib2=t−φib2,  (39)

where φib1′ and Φib2′ are ballistic traveling times from plate 615 and plate 616, respectively, to point y, which can be determined by solving corresponding equations of projectile motion with respect to corresponding traveling times φib1′ and φib2′.

Referring again to FIG. 6 showing schematically model gas flow confined by two being at rest parallel plates plate 615 and plate 616 at yib1′ and φib2′ and having normal vectors nb1 and nb2, respectively, upon recognizing that the property flux in a general non-moving point y at time t, is originated from the original collisions with gas-solid interfaces of plate 615 and plate 616, the property vector fluxes per unit time from plate 615 along ballistic trajectory 605 and plate 616 along ballistic trajectory 606 is calculated from Equations (40) and (41), respectively, given below:

J y b 1 y Ψ ( t , y ) = σ Q ib 1 ( t , t ib 1 ) Z b 1 ( t ib 1 , y b 1 ) v b 1 ( t ib 1 , y b 1 , t , y ) v Tb 1 ( t ib 1 , y b 1 ) Ψ λ b 1 ( t ib 1 , y b 1 , λ , ϕ ib 1 ) ( 40 ) and J y vb2 y Ψ ( t , y ) = σ Q ib 2 ( t , t ib 2 ) Z b 2 ( t ib 2 , y b 2 ) v b 2 ( t ib 2 , y b 2 , t , y ) v Tb 2 ( t ib 2 , y b 2 ) Ψ λ b 2 ( t ib 2 , y b 2 , λ , ϕ ib 2 ) , ( 41 )

where Zb1(tib1′,yb1) or Zb2(tib2′,yb2) is the total number of collisions per unit area per unit time on surfaces positioned in yb1 or yb2 at time tib′ or tib2′, respectively; Qib1(t,tib1′) or Qib2(t,tib2′) is the probability of ballistic traveling along the trajectory beginning from yb1 or yb2 at time tib1′ or tib2′, respectively, allowing each of the traveling particles to arrive in point y at time t, Ψλb1(tib1′,yb1,λ,φib1) or Ψλb2(tib2′,yb2,λ,φib2) is property obtained by the traveling particle from plate 615 or plate 616, respectively; vb1(tib1′,yb1,t,y) or vb2(tib2′,yb2,t,y) is the velocity of the traveling particle targeting point y at the time t which is originated from the particle's original diffuse scattering from point yb1 or yb2 at time tib1′ or tib2′, respectively; vTb1(tib1′,yb1) or vTb2(tib2′,yib2) is the magnitude of the thermal velocity of the particle leaving the gas-solid interface of plate 615 or plate 616 at time tib1′ or tib2′, respectively.

In the model gas confined between two infinite parallel plates, the particles diffusively scattered from one plate have a chance to be delivered to the other plate without intermediate collisions in the model gas space.

In some embodiments, referring again to FIG. 6, defining the total number of collisions per unit area per unit time on a gas-solid interface of one of two stationary parallel plates confining the model gas flow and revealing the purely diffuse mechanism of the particle scatterings, i.e., σ=1, includes steps of:

(1) determining particle vector flux, N21, 607 incident on plate 615 at time tib1′, which is originated from diffuse scattering from the gas-surface interface of plate 616, by calculating Equation (42) given below, which is obtained by assigning Ψb1=1, y=yb1, u=0, and t=tib1′ in Equation (41):

N 2 1 = Q ib ( t ib 1 , t ib 1 - ϕ b 2 - b 1 ) Z b ( t ib 1 - ϕ b 2 - b 1 , y b 2 ) v b ( t ib 1 - ϕ b 2 - b 1 , y b 2 , t ib 1 , y b 1 ) v Tb 1 ( t ib 1 - ϕ b 2 - b 1 , y b 2 ) , ( 42 )

where φb2−b1 is traveling time from plate 616 to plate 615;

(2) determining the particle vector flux per unit time, N211, shown schematically as 608 incident on plate 615 at time tib1′, which is associated with the incident on the gas-solid interface of plate 615 of ballistic particles from the gas in the range from yb2 to yb1, is calculated from Equation (43) given below, which is obtained by assigning t=tib1′, ti′=tib1′, −φi1, y=yb1, Ψin=1, and u=0 in Equation (37):

N 21 1 = 1 2 y b 2 y b 1 Q i ( t ib 1 , t ib 1 - ϕ i 1 ) Z V ( t ib 1 - ϕ i 1 , y ) v ( t ib 1 - ϕ i 1 , y , t ib 1 , y b 1 ) v T ( t ib 1 - ϕ i 1 , y ) dy , ( 43 )

where φi1′ is traveling time between y′ and plate 615, Qi(tib1′,tib1′−φi1′) is the survival probability of the particle ballistic traveling along the ballistic trajectory from the point of the preceding collision on the boundary at yb2 to the boundary at yb1 at time tib1, which, is expressed as follows


Qi(tib1′,tib1′−φi1′)exp(−∫tib1−φi1tib1Pc(y({tilde over (t)},tib1′−φi1))vrely({tilde over (t)},tib1′−φi1))d{tilde over (t)});  (44)

(3) determining the impingement rate, JFSib1, or the total particle vector flux per unit time incident at time tib1′ on the surface of the plate 615 at yb1, by calculating Equation (45) given below, which is obtained by summing Equations (42) and (43):


JFSyb1=N211+N21;  (45)

(4) determining the rate of collisions Zb1 at time tib1′ on a surface of plate 615 having normal nb1 or the impingement rate is calculated from Equation (46) given below:


Zb1=JFSyb1nb1  (46)

Analogously, the impingement rate, JFSyb2, or the total vector flux of particles per unit area incident at time tib2′ on the surface of the plate at yb2 is calculated as follows


JFSyb2=N122+N12,  (47)

where N12 is particle flux 609 on plate 616 at time tib2′, which is formed by ballistic traveling particles diffusively scattered from the plate 615, N122 is the particle flux 610 incident at time tib2′ on the surface of plate 616;

Finally, the rate of collisions Zb2 at time tib2′ on a surface of plate 616 having normal nb2 or the impingement rate is calculated from Equation (48) given below:


Zb2=−JFSyb2nb2.  (48)

The step S103B of defining the net rate of property influx per unit volume from the diffuse gas-solid interface of the boundary in the same general non-moving point at the same time includes, for example, a step of quantifying property supplied by converging ballistic particles originated from diffuse scatterings from gas-solid interfaces of plate 615 having normal nb1=−1 and positioned at yb1 and plate 616 having normal nb2=1 and positioned at yb2 by applying Equations (49) and (50), respectively, given below, which is obtained by executing

y

operator to the one-dimensional vector field of Equations (40) and (41) and multiplying by a negative sign, respectively:

B i n Ψ λ_ bd 1 = - y [ J y b 1 y Ψ ] ( 49 ) and B i n Ψ λ_ bd 2 = - y [ J y b 2 y Ψ ] , ( 50 )

where BinΨλ_bd1 and BinΨλ_bd2 are the net rate of property influx per unit volume from the diffuse gas-solid interface of the boundary formed by converging ballistic particles originated from diffuse scatterings from gas-solid interfaces of plate 615 and plate 616, respectively.

For the model gas system established to be a bounded model gas system providing a model gas flow passage through a channel formed by a boundary confining the channel and being in contact with the model gas through a model gas-solid interface exhibiting mixed diffuse and specular particle scattering, the step S103 in the example of FIG. 1A of defining the net rate of property influx per unit volume in the general non-moving point of the space occupied by the model gas at the given time from the surrounding model gas system in some embodiments includes steps of:

defining the net rate of property influx per unit volume in the general non-moving point at the given time from the surrounding model gas, which is formed by the converging ballistic traveling particles originated from the original collisions within the space occupied by the model gas (S103A in the example of FIG. 3);

defining the net rate of property influx per unit volume in the general non-moving point at the given time from the diffuse gas-solid interface of the boundary, which is formed by the converging ballistic traveling particles originated from the original scatterings from the gas-solid interface exhibiting diffuse particle scattering (S103B);

defining the net rate of property influx per unit volume in the general non-moving point at the given time via the mixed diffuse-specular gas-solid interfaces of the boundary (S103C),

where the value of property delivered in the general non-moving point at the time by each of the converging ballistic traveling particles in the model gas system is evaluated regarding whether the value of the property is conserved or changed because of aging such as change of mass with internal radioactive decay during the ballistic traveling time,

where the value of property delivered in the general non-moving point at the given time by each of the converging ballistic particles in the model gas system is evaluated regarding whether the value of the property is modified because of interaction with an external field such as change of the velocity with a gravitational field during the ballistic traveling time;

defining the net rate of property generation per unit volume in the general non-moving point originated from the effect of surrounding such as the model gas pressure gradient or the temperature gradient (S103D); and

summing influxes of steps S103A, S103B, 103C, and S103D according to step S103E.

The step S103D of defining the net rate of property generation per unit volume in the general non-moving point originated from the effect of surrounding such as the model gas pressure gradient or the temperature gradient includes, for example, a step of adding contribution of transported quantity within the model gas system, which is resulted from transmitting property across interfaces separating the model gas of the system and the model gas of the surroundings such as the surfaces of inlet and outlet openings.

In some embodiments of a bounded model gas system having an open-channel geometry providing fluid flow passage through a channel having an inlet opening and an outlet opening, which is defined by approximating to an identical bounded model gas system providing model gas flow passage through a channel formed by a boundary confining the channel and being in contact with the model gas through a gas-solid interface, additional generation of transported quantity within the model gas system is resulted from transmitting property across the surfaces of inlet and outlet openings. Symbolically, the net rates of property generation originated from the effect of the surrounding (model gas pressure gradient, temperature gradient) is expressed as QT.

If the property transport is the momentum transport, then the generation term in a confined model gas system results from forces acting on the model gas in the form of the external pressure force, P, applied across the surface bounding the system. We have also recognized that normal gradient pressure force acting on the model gas and prompting model gas flow represents the effect of surrounding on the momentum change. Particularly, referring to FIG. 6, if external pressure Px is applied to surface 611 in the positive x-direction and external pressure Px+Δx is applied to surface 612 in the negative x-direction and the length of the model gas system is Δx, then the negative pressure gradient along the x-axis,

- P x + Δ x - P x Δ x ,

is treated as the force per unit volume motivating the model gas movement toward the resulting force, i.e.:

Q . Ψ = - lim ( P x + Δ x - P x Δ x ) Δ x 0 . ( 51 )

If property transport is energy transport, the generation terms result from energy flow through the main control volume because of induced temperature gradients.

The embodiments of the following part of the specification are explained where property acquired by the particle in the point of the preceding collision or preceding diffuse scattering is not aged during a particle's ballistic traveling time, which implies that transported property is conserved during ballistic traveling and aging coefficient λ=0

FIG. 9 is a block diagram of an alternative approach employed to define major steps of step S103C needed to calculate the net rate of property influx per unit volume via one or more of mixed diffuse-specular gas-solid interfaces in the general non-moving point y at the given time t. The step S103C includes steps of:

defining the net rate of property influx per unit volume formed by the converging ballistic particles providing delivery of property obtained by each from a corresponding to it point source in the space occupied by the model gas through at least one preceding sequential specular scattering from the gas-solid interface (S103C1);

defining the net rate of property influx per unit volume formed by converging ballistic particles delivering property obtained by each from a corresponding to it point source on the gas-solid interface through at least one preceding sequential specular scattering from said gas-solid interface (S103C2),

where point source strength on the gas-solid interface having both diffuse and specular particle scattering components must be proportional to the property accommodation coefficient σ;

summing influxes of steps S103C1 and S103C2 according to step S103C3.

Further, the embodiments of this and the following sub-sections dealing with mixed diffuse and specular scattering are explained in a case of one-dimensional incompressible steady-state model gas flow between being at rest infinite parallel plates having gas-solid interfaces with mixed both diffuse and specular particle scattering and at the uniform temperature implying that the thermal velocity of the particles is a constant. The present invention, however, is not limited to the case but can be preferably applied to numerous variations and modifications.

FIG. 10 is a schematic view of the one-dimensional model gas system between parallel infinite plates, shown to illustrate a schematic of defining diffuse and specular components of the impingement rate on the gas-solid interfaces the plates. Specifically, the impingement rate on the gas-solid interface of plate 1009 is associated with the particles incident on plate 1009, which are originated from preceding collisions within of both the model gas confined between the interfaces of two parallel plates, plate 1009 at yb1 and plate 1010 at yb2 with the property accommodation coefficient on both gas-solid interfaces, σ. The schematic shows also various particle paths from the model gas system on the plates and paths between the confining plates. In the example of FIG. 10, which shows the model gas system having gas-solid interfaces with mixed diffuse and specular components of particle scattering, a variety of particle paths are involved in the transport of the particles on a gas-solid interface, with each path being characterized by the probability of the ballistic traveling. Defining the impingement rate on a specific location of the gas-solid interface at the given time includes, for example, steps of:

defining a bulk component of an impingement rate formed by particles chosen from the plurality of converging ballistic particles originated from the original collisions in space occupied by the model gas (trajectory 1001);

defining a bulk-specular component of the impingement rate formed by particles chosen from the plurality of converging ballistic particles originated from the original collisions in space occupied by the model gas (trajectory 1003) and having at least the last preceding specular scattering (trajectory 1005);

defining a diffuse component of the impingement rate formed by particles chosen from the plurality of converging ballistic particles originated from one or more of heterogeneous point sources (trajectory 1002); and

defining a diffuse-specular component of the impingement rate formed by particles chosen from the plurality of converging ballistic particles originated from original diffuse scatterings from one or more of heterogeneous point sources (trajectory 1004) and having at least the last preceding specular scattering (trajectory 1006); and

summing the bulk component, the bulk-specular component, the diffuse component, and the diffuse-specular component of the impingement rate,

where each of a plurality of impinging particles is selected by an impinging trajectory allowing to target the gas-solid interface in a specific location of the gas-solid interface at a specific time.

In the model gas confined between two infinite parallel plates, some of the particles having original collisions within the model gas volume and some particles diffusively scattered from plate 1010 have a chance to travel to the other plate 1009 without intermediate collisions in the model gas space (according to ballistic trajectories 1001 and 1002, respectively). Some of particles having original collisions within the model gas volume and some particles diffusively scattered from plate 1009 have a chance to be delivered to plate 1010 without intermediate collisions in the model gas space (according to ballistic trajectories 1003 and 1004, respectively) and then specularly scattered again back to plate 1009 (according to ballistic trajectories 1005 and 1006, respectively. Also, since both gas-solid interfaces confining the model gas have specular components, some particles scattered back have a chance to bounce between the plates (as shown in FIG. 10 schematically by bouncing cycles 1007 and 1008.

Since the model gas system is kept at the uniform constant temperature, all particle fluxes per unit time within the model gas system are stable. Under the method, property accommodation coefficient σ on the gas-solid interface having both diffuse and specular particle scattering is treated as the probability of incident particles to be “absorbed” into the surface with further its “evaporation” back with properties being acquired by the particle at the gas-solid interface at the moment of “absorption”.

Referring again to FIG. 10, upon recognizing that the total number of particles colliding with a surface of a plate per unit area per unit time or the impingement rate is formed by the impinging particles according to ballistic trajectories described above and bouncing ballistic trajectories (shown as the first and the second bouncing cycles 1007 and 1008, respectively), the impingement rates or the particle vector fluxes on plate 1009, JFSyb1, and plate 1010, JFSyb2 are obtained from solving a system of Equations (52) and (53), given below


JFSyb1=[N211−(1−σ)N122 exp(−PcH)−σJFSyb2 exp(−PcH)+σ(1−σ)JFSyb1 exp(−2PcH)]  (52)


and


JFSyb2=[N122−(1−σ)N211 exp(−PcH)−σJFSyb1 exp(−PcH)+σ(1−σ)exp(−2PcH)JFSyb2]  (53)

where, in the equations above, the first terms are N211 and N122, which are particle fluxes per unit time incident on plate 1009 and plate 1010 formed by the particles following ballistic trajectories 1001 and 1003, respectively, the second terms are −(1−σ)N122 exp(−PcH) and −(1−σ)N211 exp(−PcH), which are specular scattered back fluxes per unit time from plate 1010 and incident on plate 1009 (trajectory 1005) and from plate 1009 (top) and incident on plate 1010, respectively, the third terms are −σJFSyb2 exp(−PcH) and −σJFSyb1 exp(−PcH), which are the particle fluxes per unit time emitted diffusively from point sources, point source strength of each is directly proportional to σ, of plate 1010 and incident on plate 1009) (trajectory 1002) from plate 1009 and incident on plate 1010, respectively, and the fourth terms are σ(1−σ)JFSyb1 exp(−2PcH) and +σ(1−σ)exp(−2PcH)JFSyb2, which are the particle fluxes per unit time scattered diffusively from plate 1009 to plate 1010 and then specularly scattered back to plate 1009 (trajectory 1006) and from plate 1010 to plate 1009 and then specularly scattered back to plate 1010, respectively. In the equations above, is the bouncing coefficient or a coefficient characterizing the total impact of the sequential specular bouncing on the impingement rates on both plate 1009 and plate 1010. Under the method, the bouncing coefficient is calculated from Equations (54) given below:

= n = 0 ( 1 - σ ) 2 n exp ( - 2 nP c H ) = 1 1 - ( 1 - σ ) 2 exp ( - 2 P c H ) , ( 54 )

where (1−σ)2 exp(−2PcH) is the impact of one cycle of bouncing starting from both plate 1009 or plate 1010.

Referring again to FIG. 10, upon recognizing that, the model gas is confined between two infinite parallel plates having identical properties on the gas-solid interfaces, so that


N122=−N211 and JFSyb2=−JFSyb1,  (55)

and N211 is calculated according to Equation (56) given below, which is obtained by integrating Equation (43) with Pc=constant and ZV=constant at the uniform temperature:

N 21 1 = Z V 2 P c [ 1 - exp ( - P c H ) ] , ( 56 )

then the impingement rate on plate 1009 or the rate of collisions, JFSyb1 is calculated from Equations (57), given below, which is obtained by substitution of Equations (56) and (55) in Equation (52) or (53) and executing algebra operations:

Z b = J FS yb 1 = - J FS yb 2 = + Z V 2 P c . ( 57 )

FIG. 11 is a schematic view of the one-dimensional model gas system, shown to illustrate a method for analytical representation of the net rate of property influx in a general non-moving point y, which is formed by converging ballistic particles, each having at least one specular scattering from a gas-solid interface of plate 1105 or plate 1106.

In a stable or steady-state model gas system, any property characterizing model gas flow depends on only the position in space, y′, but not time, i.e., Ψ(y′) and properties characterizing the gas-solid interfaces of plate 1105 positioned at yb1=H and plate 1106 positioned at yb2=0, Ψb1 and Ψb2, respectively, are constants. The embodiments of this part of the specification are explained where the values of the property on the plate is assigned to be zero, namely, Ψb1b2=0. This will cause eliminating fluxes associated with converging ballistic particles chosen from the group of particles originated from original diffuse scatterings from plate 1105 and plate 1106. This limitation is made for clarity without limiting the present invention.

In the stable system with the incompressible model gas flow, the probability of ballistic traveling, Qi, between points y′ and y is calculated from Equation (58) given below, which is obtained by substitution of vrel=vT, {tilde over (y)} of Equation (10) with g=0 and u=0, and Pc=constant in Equation (21):


Qi(y,y′)=exp(−Pc|y−y′|).  (58)

Concerning the example of FIG. 11, the net rate of property influx, BinΨ0_F_bs, formed by converging ballistic particles chosen from the group of particles originated from initial collisions within the model gas volume and having at least the last preceding specular scattering from gas-solid interfaces of both plate 1105 and plate 1106 is calculated from Equation (59) given below


BinΨ0_F_bs=BinΨ0_F_bs1+BinΨ0_F_bs2,  (59)

where BinΨ_F_bs1 and BinΨ_F_bs2 are the net rate of property influxes associated with the last specular scatterings from plate 1105 and plate 1106, respectively. Specifically, BinΨ_F_bs1 is formed by particles having ballistic trajectories 1101 and 1102, which are continued by segmented trajectory 1103 with the last trajectory segment 1104 released from plate 1105, as shown in FIG. 11 and is calculated from Equation (60) given below:

B i n Ψ 0 _F _bs 1 = y { [ [ 1 - σ ] J 21 1 - [ 1 - σ ] 2 J 12 2 exp ( - P c H ) ] exp ( - P c ( H - y ) ) } , ( 60 )

where J211 and J122 are the property fluxes per unit time, which are formed by ballistic particles incident on plate 1105 and plate 1106, respectively, and is calculated from Equation (54).

The property vector fluxes J211 and J122 are calculated from Equations (61) and (62) given below:


J211zV0HΨ(y′)exp(−Pcy′)dy′  (61)


and


J122=−½ exp(−PcH)zV0HΨ(y′)exp(Pcy′)dy′,  (62)

respectively. Analogously, using Equation (60) given above as a template, we obtain

B i n Ψ 0 _F _bs 2 = y { [ - [ 1 - σ ] J 12 2 + [ 1 - σ ] 2 J 21 1 exp ( - P c H ) ] exp ( - P c y ) } . ( 63 )

Next, to define and formulate the net rate of property efflux per unit volume into surroundings from the general non-moving point y at the given time, t, the linear dimensions of the main control volume surrounding point y are selected to be sufficiently small for avoiding two and more consecutive collisions of the same particle within the main control volume.

1.2.3 A Combined Analytical Tool for Computing the Net Rate of Property Efflux from the General Non-Moving Point at the Given Time, which is Formed by Diverging Ballistic Particles

FIG. 12 is a schematic shown to illustrate a method for analytical representation of the net rate of property efflux from a stationary point in one-dimensional space occupied by the model gas. According to the schematic, a particle 1200 in point y at the given time t diverges from the point source in this point and achieves velocity v+ in point y′ at time ta′ while crossing a control surface 1201 or 1202 of a control volume 1203 surrounding the point source. We assume that property, Ψλ+ carried by the diverging ballistic particle at time ta′ of crossing in point y′ enclosing control surface 1201 or 1202 was initially obtained by the particle at the moment of the original collision in point y at time t. Specifically, in a point source in y at time t, (1) each particle diverging from a general non-moving point y at the time, t, has acquired the thermal velocity vT(t,y), mass flow velocity u(t,y), and one or more specific properties, Ψλ+(t,y), of particular values including mass, momentum, and energy; (2) each traveling particle is being simultaneously in the states of both divergence from the point of preceding collision and convergence in the point of sequential collision; (3) equal number of converging and diverging ballistic particles is maintained at any point of collisions at any time, which provides maintaining continuity in the model gas. In the example of FIG. 12, the observer's coordinate system is oriented with y-axis directed along the negative direction of the applied acceleration field 1204 with acceleration g for each particle. The particle having a collision in point y at time t acquires a magnitude of thermal velocity, vT(t,y) and mass flow velocity u(t,y), which are intrinsic to the nearby volume of the model gas surrounding point y at time t. After a collision in point y at time t, the particle may move in any direction because of the arbitrary nature of the unit vector n+c, thus forming an expansion zone 1203.

The step S104 of defining the net rate of property efflux per unit volume from the general point of the plurality of non-moving points at the given time in the model gas system in one-dimensional configuration includes steps of:

for each of the plurality of diverging particles, identifying the ballistic trajectory starting from the general point of the plurality of non-moving points at the given time and ending in one of the plurality of points in space surrounding the general point of the plurality of non-moving points;

defining the probability of traveling along the ballistic trajectory from the point of the divergence y to point y′ on the control surface 1201 or 1202;

defining a vector field of a property flux per unit area in the ending point of one of the plurality of points in space surrounding the general point;

defining the net rate of property efflux per unit volume by applying a divergence operator to the vector field of the property flux per unit area in the ending point; and the shrinking volume of space surrounding the general point to the general point.

The step of identifying a trajectory and trajectory characteristics, for each particle diverging from the general non-moving point at the time, includes, for example, steps of:

defining a diverging ballistic trajectory of each particle diverging from the general non-moving point y at time, t;

determining traveling time needed, for each particle diverging from non-moving point y at the given time, t, to cross a control surface enclosing point y in point y′ of control surface;

defining an appropriate instant unit vector directing thermal velocity component along the diverging ballistic trajectory of each particle diverging from the general non-moving point y at time t;

defining the velocity vector of each particle at the moment of crossing the control surface in point y′.

1.2.3.1 Analytical Tool for Computing the Trajectory and Velocity of a Ballistic Movement of the Particle Diverging from the General Non-Moving at the Given Time

The step of defining the diverging ballistic trajectory of each particle diverging from the general non-moving point y at time t includes a step of formulating position vector {tilde over (y)}′ 1205 or 1206 of the particle on trajectory 1207 or 1208, respectively, and velocity vector {tilde over (v)}′ (not shown) at time {tilde over (t)} by applying Equations (64) and (65), respectively, given below:


{tilde over (y)}′=y′(t,y,{tilde over (t)})=y+[vT(t,y)n+c+u(t,y)]({tilde over (t)}−t)+½g({tilde over (t)}−t)2,  (64)


and


{tilde over (v)}+′({tilde over (t)})=v+′(t,y,{tilde over (t)})=vT(t,y)n+c+u(t,y)+g({tilde over (t)}−t),  (65)

where n+c=±1 is a unit vector of arbitrary direction with the initial point of origin y at time t.

The step of determining a traveling time needed, for each particle diverging from non-moving point y at the given time, t, to cross a control surface enclosing point y in point y′ of control surface includes a step of resolving the equation of projectile motion, Equation (66) given below, with respect to the ballistic traveling time, φ+:


y′=y+[vT(t,y)n+c+u(t,y)]φ+g+)2,  (66)

which is obtained by assigning {tilde over (t)}=ta′ and substitution of φ+=ta′−t in Equation (64) and rearrangement of the terms. Traveling time φ+ is needed to indicate time ta′ at which the departing particle has reached point y′ on control surface 1201 or 1202 enclosing point y.

The step of defining an appropriate instant unit vector directing thermal velocity component along the diverging ballistic trajectory of each particle diverging from the general non-moving point y at time t in some embodiments includes the steps of:

presenting Equation (66) in the following form:


φ+vTn+c=y′−yac,  (67)

where n+c is a unit vector and yac (not shown) is a virtual position of a particle having zero magnitude of an arbitrary or thermal velocity at point y at time t, which is observed at time ta′, and, in formula form, is expressed as:


yac=y+u(t,y+g+)2;  (68)

and deriving n+c from Equation (67), which is given as:

n + c = y - y a c y - y a c , ( 69 )

where referring to FIG. 12, n+c (not shown) is interpreted as a unit vector of origin yac at time ta′, which directs the vector of the thermal velocity component and ta′ is the time of positioning in point y′, which is on the control surface 1201 or 1202.

The step of defining the velocity vector, v+, of each particle at the moment of crossing the control surface in point y′ includes representing v+ by applying Equation (70) given below:


v+(t,y,ta′,y′)=vT(t,y)n+c+u(t,y)++,  (70)

which is obtained by assigning {tilde over (t)}=ta′ and substitution of ta′−t=φ+ in Equation (65).

1.2.3.2 Analytical Tool for Computing the Probability of Ballistic Traveling Along the Ballistic Trajectory of the Particle Diverging from the General Non-Moving at the Given Time

The step of formulating the probability, Q+, of ballistic traveling along the trajectory from the point of the divergence y to point y′ on the control surface 1201 or 1202 includes a step of representing Q+(ta′,t) by applying Equation (71) given below:


Q+(ta′,t)=Q+(0,φi+)=exp(−∫ttaPc({tilde over (y)}′({tilde over (t)}))vrel({tilde over (y)}′({tilde over (t)}))d{tilde over (t)}),  (71)

where ta′=t+φ+ is a time of the particle positioning in point y′ within the volume of the model gas system, Pc({tilde over (y)}′({tilde over (t)})) is the number of particles within a collision tube placed in the model gas having particle density of n({tilde over (y)}′({tilde over (t)})) at time {tilde over (t)}, vrel({tilde over (y)}′({tilde over (t)})) is an average magnitude of the relative velocity between the particle traveling along the diverging ballistic trajectory and another nearby particle being within the collision tube along the diverging ballistic trajectory at time {tilde over (t)}, with the method of its determining described above, {tilde over (y)}′(t) is defined by Equation (64).

1.2.3.3 Analytical Tool for Computing the Net Rate of Property Efflux Per Unit Volume from the General Non-Moving at the Given Time

The step of defining the vector field of the property flux, JyΨ, along each of the ballistic trajectories in point {right arrow over (r)}′ of the trajectory includes a step of representing JyΨ by applying Equation (72) given below:


JyΨn(t,y)Q+(ta′,t)v+(t,y,ta′,y′)Ψλ(t,y,ta′,y′),   (72)

where

y

    •  is the divergence operator in one-dimensional configuration,
    • t is the given time,
    • y is the position of the starting point of a plurality of ballistic trajectories of diverging ballistic particles,
    • y′ is the position of the ending point of one of the plurality of ballistic trajectories of diverging ballistic particles,
    • ta′ is a time of positioning in the ending point,
    • v+(t,y,ta′,y is a velocity vector of each of the plurality of diverging ballistic particles at the time of positioning the ending point, which is defined by Equation (70),
    • Q+(ta′,t) is the probability of traveling along the ballistic trajectory of one of the plurality of diverging ballistic particles, which is defined by Equation (71),
    • Ψλ(t,y,ta′,y is property value carried by one of the plurality of diverging ballistic particles at the time of positioning the ending point, and
    • n(t,y) is particle density in point in the starting point at the given time.

The step of defining the net rate of property efflux per unit volume, BoutΨ_FS, from a point source positioned in the general non-moving point y at the given time t includes a step of representing BoutΨ_FS by applying Equation (73) given below:

B out Ψ_ FS ( t , y ) = ( y J y Ψ ) y y = 1 2 { y [ n ( t , y ) Q + ( t a , t ) v + ( t , y , t a , y ) Ψ λ ( t , y , t a , y ) ] } y y , ( 73 )

which is obtained by executing the operator

y

to the vector field of Equation (72) followed by executing limit y′→y, which also leads to the limit yac→y.

1.2.4. Defining the Temporal Rate of the Property Change Per Unit Volume in the General Non-Moving at the Given Time

The step S105 of defining the temporal rate of the property change per unit volume, {dot over (A)}fl, in the same general non-moving at the same time includes a step (not shown) of calculating by applying Equation (74) given below:

A . fl = t [ n ( t , y ) Ψ λ ( t , y ) ] , ( 74 )

where Ψλ is scalar or vector property possessed by each particle in point y at time t; n is particle density in point y at time t.

1.2.5. Analytical Tool for Defining an Integral Property Balance Equation in the General Non-Moving Point at the Given Time

The step S106 includes establishing an integral property balance equation for each of one or more properties being transported by the plurality of particles in each of the plurality of non-moving points in a way that, in the general point at the time, a term of the net rate of property influx per unit volume is equated to sum of the first term of temporal rate of a property change per unit volume and a second term of the net rate of property efflux per unit volume.

What is needed to form property balance in the model gas system is to recognize that each point of collisions is both a collector of property delivered by converging ballistic particles from the entire model gas system and a disperser of property into surrounding taken away by diverging ballistic particles.

FIG. 13 is a block diagram of a word equation of a general property balance in a model gas system according to the principles of the method. According to the method, it is constructed in such a way that the net rate of property influx per unit volume from the surrounding model gas system, BinΨ_FS, is equated to the temporal rate of property change per unit volume in the same point

t [ n Ψ λ ] ,

and the net rate of property efflux per unit volume from the same point which is a source point for the diverging ballistic particles originated from the collisions in this point, each taking away property intrinsic to the model gas near the same point simultaneously and dispersing it into surrounding model gas, BoutΨ_FS, which is expressed in formula form as:

B i n Ψ_ FS ( y , t ) = B out Ψ_ FS ( y , t ) + t [ n ( t , y ) Ψ λ ( t , y ) ] . ( 75 )

In a steady-state model gas system, the equation above is reduced to Equation (76) given below,


BinΨ_FS(y,t)=BoutΨ_FS(y,t).  (76)

Concerning FIG. 1 and FIG. 1A, steps S103A, S104, and S105 are needed to define the property balance equation for a model gas system with no gas-solid interfaces. In this, the step S103 of defining the net rate of property influx per unit volume from the surrounding model gas system, BinΨ_FS, includes a step of representing BinΨ_FS by applying Equation (77) given below:


BinΨ_FS=BinΨ_F  (77)

where BinΨ_F is computed according to step S103A.

In this embodiment, formulation of the integral form of the property balance equation in a one-dimensional model gas system with no boundaries includes applying Equation (78) given below, which is obtained by substitution of Equations (38) and (73) in Equation (75):

- 1 2 y y b 2 y b 1 Q i ( t , t i ) Z V ( t i , y ) v ( t i , y , t , y ) v T ( t i , y ) Ψ i n ( t i , y , t , y ) dy = t [ n ( t , y ) Ψ λ ( t , y ) ] + 1 2 { y [ n ( t , y ) Q + ( t a , t ) v + ( t , y , t a , y ) Ψ λ ( t , y ) ] } y = y , ( 78 )

where in the left-hand of the equation, Qi(t,ti′), ZV(ti′,y′), v(ti′,y′,t,y) are obtained from Equations (21), (32), and (16), respectively, and, in the second right-hand term, Q+(ta′,t) and v+(t,y,ta′,y′) are expressed by Equations (71) and (70), respectively.

In the first term of the equation above, the probability of ballistic traveling a distance from point y′ to point y is a limiting factor defining the range of the property influx impact in the property balance. When executing numerical calculations by any suitable computer system, the values of the probability of ballistic traveling are stored and executed if they fall above the minimum absolute value (MAV) corresponding to a suitable format such as Single, Double, or Extended. Symbolically, the above is represented:


Qi(t,ti′)=exp(−∫titPc(y({tilde over (t)},ti′))vrel(y({tilde over (t)},ti′))d{tilde over (t)})≥MAV.  (79)

The corresponding estimate of the non-equality above is given by:

ϕ i max - ln ( MAV ) P c ( y , t ) v rel ( y , t ) , ( 80 )

where φi_max is an approximate value of the longest traveling time for the particle to reach point y at time t and being detected in the numerical calculation by the computer system.

Also, we have recognized that a predetermined dynamic history during some period immediately preceding the initial time t0 (“past”) will maximize the accuracy of prediction of the dynamic evolution of the model gas system especially in the most recent times following the initial time t0 (“future”). Under the method, an approximate reliable period of time, φi0rel, with an established dynamic history, which has immediately preceded the initial time t0, is calculated according to Equation (81):

ϕ i 0 rel = - ln ( MAV ) [ P c v rel ] max , ( 81 )

where φi0rel is the reliable period before the initial time, MAV is a minimum absolute value corresponding to a precision format supported by computer hardware, Pc is a number of particles within a collision tube of a unit length placed in the model gas, vrel is an average magnitude of the velocity of a traveling particle with respect to one of the plurality of nearby particles, and [Pcvrel]max is the highest value of the product of Pcvrel in the model gas system.

Here we have recognized that if a period with a pre-established dynamic history is less than the approximate reliable period then not all possible property flux or information from the “past” (t<t0) will be reliably transported in the “future” (t≥t0). Therefore, the period of the pre-established dynamic history is set to be not less than the approximate reliable period of time, φi0rel.

Adding to steps S103A, S104, and S105 of steps S103B and S103D will provide defining the property balance equation for the model gas system with gas-solid interfaces revealing a purely diffuse scattering of the particles in the “open channel” geometry.

FIG. 6 shows schematically a one-dimensional model gas system, in which the main control volume of the unit length volume dV=ΔxΔy is at y within the model gas flow confined by two parallel plates at yb1 and yb2 and having normal vectors nb1 and nb2, respectively, that are directed toward the confined model gas. Here we assume diffusive scattering with no adsorption effects after colliding with the surface.

For further clarity, the property balance of model gas flow in one-dimensional configuration with a lack of the external field of force in the y-direction (BinΨg_FS=0) is analyzed.

In this, the step S103 of defining the net rate of property influx per unit volume from the surrounding model gas system, BinΨ_FS, includes, for example, a step of representing BinΨ_FS by applying Equation (82) given below:


BinΨ_FS=BinΨλ_F+BinΨλ_bd1+BinΨλ_bd2+{dot over (Q)}Ψ,  (82)

where BinΨλ_F, BinΨλ_bd1+BinΨλ_bd2, and {dot over (Q)}Ψ are the net rate of property influxes calculated by performing steps S103A, S103B, and S103D, respectively.

In this embodiment, formulation of the integral form of the property balance equation in a one-dimensional model gas system having boundaries with diffuse scattering from model gas-surface interfaces includes applying Equation (83) given below, which is obtained from Equation (75) by substitution of it's the first left-hand term by Equation (82):

B in Ψ λ_ F ( y , t ) + B in Ψ λ_ b 1 ( y , t ) + B in Ψ λ_ b 2 ( y , t ) + Q . Ψ ( y , t ) = B out Ψ λ_ FS ( y , t ) + t [ n ( t , y ) Ψ λ ( t , y ) ] , ( 83 )

which further expands by substitution of the first, second, and the third left-hand terms by Equations (38), (49), and (50), respectively, and by substitution of the first right-hand terms by Equation (73):

- 1 2 y y b 2 y b 1 Q i ( t , t i ) Z V ( t i , y ) v ( t i , y , t , y ) v T ( t i , y ) Ψ in ( t i , y , t , y ) dy - y [ Q ib ( t , t ib 1 ) Z b ( t ib 1 , y b 1 ) v b 1 ( t ib 1 , y b 1 , t , y ) v Tb ( t ib 1 , y b 1 ) Ψ λ b 1 ( t ib 1 , y b 1 , λ , ϕ ib 1 ) ] - y [ Q ib ( t , t ib 2 ) Z b ( t ib 2 , y b 2 ) v b 2 ( t ib 2 , y b 2 , t , y ) v Tb ( t ib 2 , y b 2 ) Ψ λ b 2 ( t ib 2 , y b 2 , λ , ϕ ib 2 ) ] + Q . Ψ ( y , t ) = 1 2 { y [ n ( t , y ) Q + ( t a , t ) v + ( t , y , t a , y ) Ψ λ ( t , y , t a , y ) ] } y y + t [ n ( t , y ) Ψ ( t , y ) ] ( 84 )

1.3 the Fluid Model of Fluids in a Stable Condition

We have also recognized that the model gas system can be in a stable condition or a steady state, in which properties or variables characterizing the model gas system and defining its behavior are unchanged in time. It implies that properties or variables characterizing the model gas system are dependent on the position in space but not time. We have recognized the model gas system may be in a steady state before the initial time and become a temporal model gas system at times after the initial time if it is affected by an external force or geometry modification at the moment of the initial time. Approximating fluid by the model gas in a stable condition in some embodiments further includes:

treating each point of the plurality of points in space occupied by the model gas as a point of collisions for each of the plurality of particles having the ballistic trajectory having the ending point in one of the plurality of points;

treating each of a plurality of the points of collisions as either a point source for each of a plurality of diverging particles or a point sink for each of a plurality of converging particles; and

treating each particle of the plurality of particles moving from the point source to the point sink as a property carrier created in the point source by obtaining one or more of properties of specific values being intrinsic to the model gas surrounding the point source, and ended in the point sink by transferring one or more of properties of specific values in the point sink,

where each of the plurality of particles is assigned to travel with a probability between any of two points of a plurality of points of consecutive collisions in space occupied by the model gas by following a ballistic trajectory governed by a law of motion in free space, the ballistic trajectory having a starting point in one of a plurality of points of original collisions and an ending point in one of a plurality of points of ending collisions, and

where the velocity of each of a plurality of point sources is assigned to be equal to the mass flow velocity of the model gas in each of a plurality of corresponding points of original collisions;

treating each of a plurality of collisions on a gas-solid interface of the model gas system, which has resulted in diffuse particle scattering from the gas-solid interface, as an act of interaction involving a property transfer from the gas-solid interface to a scattered particle; and

treating each of a plurality of points of diffuse particle scattering on the gas-solid interface as a heterogeneous point source for each of a plurality of scattered particles,

where the gas-solid interface reveals mixed diffuse and specular particle scatterings,

where the velocity of each of a plurality of heterogeneous point sources on the gas-solid interface is assigned to be equal to the velocity of the gas-solid interface in each of a plurality of corresponding points of diffuse particle scattering, and

where point source strength of each of the plurality of heterogeneous point sources on the gas-solid interface is assigned to be directly proportional to a property accommodation coefficient in each of the plurality of corresponding points of diffuse particle scattering, the property accommodation coefficient which is probability, for an incident particle, to accommodate one or more of properties intrinsic to the gas-solid interface and to scatter back in the model gas as a diffuse particle, the property accommodation coefficient being in a range from zero to one.

1.4 the Model of the Property Balance in a Stable Condition

In some embodiments, modeling transport processes for model gas flow in a stable condition includes the steps of:

specifying geometry model and boundary conditions;

defining a net rate of property influx per unit volume from the model gas system in a general point of a plurality of non-moving points in space occupied by the model gas, the net rate of property influx per unit volume, which is formed by way of a plurality of converging ballistic particles, each of the plurality of converging ballistic particles is selected from the plurality of particles by the ballistic trajectory having the ending point in the general point of the plurality of non-moving points in space occupied by the model gas,

defining a net rate of property efflux per unit volume from the general point, the net rate of property efflux per unit volume, which is formed by way of a plurality of diverging particles, each of the plurality of diverging ballistic particles is selected from the plurality of particles by the ballistic trajectory having the starting point in the general point of the plurality of non-moving points;

forming an integral property balance equation for each of one or more properties being transported by the plurality of particles in each of the plurality of non-moving points,

where the integral property balance equation is established in a way that, in the general point, a term of the net rate of property influx per unit volume is equated a term of the net rate of property efflux per unit volume; and

computing the flow of the model gas,

where computing the flow of the model gas includes resolving a system of one or more of integral property balance equations in each of the plurality of non-moving points.

In the stable model gas system not affected by the external field of force, with model gas confined between two infinite parallel plates having gas-solid interfaces with identical mixed diffuse and specular scattering components, formulating the property balance includes applying Equation (85) given below:

B in Ψ_ F + B in Ψ0_ F _ bs 1 + B in Ψ0_ F _ bs 2 + Q . Ψ ( t , y ) = 1 2 { y [ n ( t , y ) Q + ( y , y ) v + ( y , y ) Ψ ( y , y ) ] } y y , ( 85 )

which is obtained by substitution of Equations (73) and (59) in Equation (75) and considering that

t [ n ( t , y ) Ψ ( t , y ) ] = 0 ( 86 )

The specific embodiments of the method for modeling transport processes in fluids are disclosed more fully in the following model of the computer for simulating the fluid flow and non-limiting examples (Simulation 1 and Simulation 2) of the best mode of carrying out the invention.

1.5 the Model of the Computer for Simulating the Fluid Flow

The present analytical tools and method are further described by way of the following one-dimensional fluid flow computer simulations, which are provided by way of illustration and are not intended to limit the present invention.

The computer for simulating the fluid flow includes a computer readable medium for storing data associated with a computer program, and a processor for executing a sequence of instructions from the computer program, in which the computer program is configured to use the fluid model and the model of property balance.

These embodiments are limited to a one-dimensional model gas system, including incompressible model gas at a uniform temperature with no external field of the force applied in y direction. The present invention, however, is not limited to the case, but can be preferably applied to two- and three-dimensional configurations of the model gas system with no limitations mentioned above. The method can also be generalized to the model gas flow affected by the external field of force with no difficulty.

In these simulations and computations, consideration has been made that transported properties that are not vulnerable to any aging process. By other words, the property acquired by each particle in a point during the preceding collision is delivered unchangeable in the point of the following collision. However, the method can be generalized to the transport of property/properties having limited life expectancy with no difficulty.

FIG. 6 illustrates the diversity of ballistic trajectories of particles involving in the property transport by the present method in the one-dimensional configuration. Ballistic trajectories 603 and 606 show movement of particles in a positive direction. Ballistic trajectories 601 and 605 show movement of the particles in the negative direction.

Ballistic trajectories 601 and 603 show movement of particles from the model gas volume into targeting point, y. Ballistic trajectories 605 and 606 show movement of particles from plate 615 and plate 616, respectively, into targeting point y.

Usually, the magnitude of the thermal velocity of the particles is much higher than the magnitude of mass flow velocity vector along the y-direction, |u|<<vT.

The following Table 2, referring to FIG. 6, summarizes symbols and their meanings, which are applicable to the simulations and calculations described below with additional reference to the figures and the specification.

TABLE 2 Symbol Value Short description vT constant uniform temperature; thermal velocity is uniform within the model gas system n constant particle density σc constant the cross-section of collisions λ 0 aging or decay coefficient u 0 mass flow velocity along y axis ni y - y y - y arbitrary unit vector with the point of origin y′ v vTni the velocity of the particle in point y′ n+ y - y y - y arbitrary unit vector with the point of origin y v+ the velocity of the particle reaching point y′ after its original collision in point y at time t vrel vT the average magnitude of the relative velocity at the uniform temperature ZV = ZV′ ½nPcvrel the rate of collisions per unit volume per unit time or the particle flux production strength Pc σcn the number of particles within a collision tube of a unit length Qi exp(−Pc|y−y′|) the probability of ballistic traveling between y′ and y Q+ exp(−Pc|y′−y|) the probability of ballistic traveling between y and y′ yb1 = H the position vector of plate 615 yb2 = 0   the position vector of plate 616 nb1 = −1 the normal vector to plate 615 nb2 = +1 the normal vector to plate 616 nib1 = −1 the direction vector of the particle scattered from plate 615 nib2 = +1 the direction vector of the particle scattered from plate 616 vTb1, vTb2 vTb1 = vTb2 = vT the magnitude of the velocity of particles scattered from being at rest plate 615 and plate 616 at the uniform temperature vb1 vTnib1 the velocity vector of the particle scattered from plate 615 vb2 vTnib2 the velocity vector of the particle scattered from plate 616 Zb1 = Zb2 Z V 2 P c the rate of collisions on plate 615 or plate 616 at the uniform temperature Qib1 exp(−Pc(H − y)) the probability of ballistic traveling from yb1 = H to y Qib2 exp(−Pcy) the probability of ballistic traveling from yb2 = 0 to y t′ib2 t - y v T the time of scattering from plate 616 for the particle targeting point y and time t t′i t - y - y v T the time of an original collision in point y φ′i y - y v T a traveling period needed to travel from y′ to y φ′ar y v T a traveling period needed for the converging ballistic particle to deliver property from plate 616 to point y′ φar y v T a traveling period needed for the converging ballistic particle to deliver property from plate 616 to point y Ψ0b2 the value of property obtained by adiffusely scattered particle from plate 616.

To formulate a general integral form of the property balance adapted to a particular model gas system in a general non-moving point y at the given time, t, there is need to perform the following.

First, using 1.2.1.1 “Analytical tool for computing the trajectory and velocity of a ballistic movement . . . ,” a trajectory and associated with it both an appropriate instant unit vector directing thermal velocity component, the point of the original collision in y′, the time, ti′, of the original collision are formulated. This is done by the steps of:

(1) formulating the velocity of the particle along y-direction arriving in point y at time t is calculated from Equations (87) given below, which is obtained from Equation (16):


v(t,y)=vTni,  (87)

where ni is a unit vector of arbitrary direction and is expressed:

n i = y - y y - y , ( 88 )

(2) determining the position of the particle at traveling time {tilde over (t)} is calculated from Equation (89) given below, which is obtained from Equation (10):


{tilde over (y)}=y′+vT({tilde over (t)}−ti′)ni=vT{tilde over (t)}+y′−vTti′  (89)

for the particles traveling in the positive direction and


{tilde over (y)}=y′−vT({tilde over (t)}−ti′)=−vT{tilde over (t)}+y′+vTti′  (90)

for the particles traveling in the negative direction;

(3) determining ballistic traveling time from point y′ to point y, φi, by applying Equation (91) given below, which is obtained from Equation (12) in which the impacts of g and u are neglected:

ϕ i = y - y v T ; ( 91 )

(4) finding the departing time of the particle at y′, ti′, which is calculated from Equation (92) given below:


ti′=t−φi.  (92)

Second, using 1.2.1.2 “Analytical tool for computing the probability of ballistic traveling . . . ,” probability function quantifying the probability of the ballistic traveling along the ballistic trajectory is formulated.

Here, upon recognizing the magnitude of the relative velocity between the component of the mass flow velocity of the traveling and one of nearby particles is insignificant in comparison with the magnitudes of thermal velocities of the particles, we obtain:

(1) the average magnitude of relative velocity between the particles at the uniform temperature is calculated from Equation (93) given below, which is obtained from Equation (30):


vrel=vT;  (93)

(2) the survival probability that a particle will have traveled along the ballistic trajectory in incompressible model gas at the uniform temperature from y′ and y is calculated from Equation (94) given below, which is obtained by substitution of Equation (93) in Equation (21) and considering that Pc=constant:


Qi(y,y′)=exp(−Pc|y−y′|);  (94)

(3) the survival probability, Qib1(y,H), that a particle will have traveled along the ballistic trajectory in incompressible model gas at the uniform temperature from yb1=H and y is calculated from Equation (95) given below:


Qib(t,tib1′)=Qib1(y,H)=exp(−Pc(H−y));  (95)

(4) the survival probability, Qib2(y,0), that a particle will have traveled along the ballistic trajectory in incompressible model gas at the uniform temperature from yb2=0 and y is calculated from Equation (95) given below:


Qib(t,tib2′)=Qib2(y,0)=exp(−Pcy).  (96)

Third, using 1.1.3 The model of the geometry model and the dynamic history, a functional representation of property being transported by ballistic particles is adapted to the particular model gas system, which is characterized by uniform temperature and lack of external field of force and internal aging processes. Equation (7) is modified as:


Ψin(ti′,y′,t,y)=Ψ0(ti′,y′).  (97)

For clarity, the value of the property on the upper plate 615, is chosen to be


Ψ0b1=0;  (98)

The value of the property on the lower plate 616 is defined as:


Ψ0b2≡=Ψ0b2−[tib2′<t0]+Ψ0b2+[tib2′≥t0],  (99)

where t0 is initial time for the model gas system, which is associated with a time of modification of property Ψ0b2 on the gas-solid interface of plate 616. We have recognized that scattered from plate 616 diffuse particles will travel and initiate a modification of property Ψ0(ti′,y′) upon arriving in point y′. Symbolically, this is expressed according to Equation (100), which is obtained by substitution of ti0=t0ar′ in Equation (9):


Ψ0(ti′,y′)=Ψ0−(ti′,y′)[ti′<t0ar′]+Ψ(ti′,y′)[ti′≥t0ar′].  (100)

Finally, using 1.2.5 “Analytical tool for defining an integral property balance equation in the general non-moving point at the given time,” a modified integral form of the property-balance equation, adapted to a particular model gas system, is formulated. Specifically, for incompressible model gas expanding in y-direction between parallel infinite plates being spaced at a distance H in the open channel geometry at the uniform temperature the modified integral for of the property-balance equation is formulated by Equation (101) given below, which is obtained by substitution of symbols or corresponding values of Table 2 and of Equations (87)-(100) in Equation (84), then executing differentiation while considering that y′≠y:

n t [ Ψ ( t , y ) ] + Z V Ψ ( t , y ) = - 1 2 Z V y 0 H exp ( - P c y - y ) Ψ 0 - ( t i , y ) [ t i < t 0 + ϕ ar ] dy + Z V 2 exp ( - P c y ) [ Ψ 0 b 2 - [ t ib 2 < t 0 ] + Ψ 0 b 2 + [ t ib 2 t 0 ] ] - 1 2 Z V y 0 H exp ( - P c y - y ) Ψ ( t i , y ) [ t i t 0 + ϕ ar ] dy . ( 101 )

In the equation above, the first right-hand term quantifies a pre-established rate of the property influx formed by converging ballistic particles, each delivering property obtained from a corresponding point source being advanced to the initial time. The second right-hand term quantifies a pre-established rate of the property influx formed by converging ballistic particles, each delivering property obtained from a corresponding heterogeneous point source on the gas-solid interface of plate 616. The third right-hand term formulates a rate of the property influx formed by converging ballistic particles, each delivering property obtained from a corresponding point source being the same as or later than the initial time.

In some embodiments, the step of forming the integral property balance equation further includes an approximating step of approximating the integral property balance equation by neglecting the first term of the temporal rate of the property change.

Specifically, by if, in the general non-moving point at the given time, a temporal rate of the property change per unit volume is negligible compared to the rate of collisions in the general non-moving point, which is true in majority of realistic conditions in the model gas system, then Equation (101) is reduced to:

Ψ ( t , y ) 1 2 P c 0 H exp ( - P c y - y ) Ψ 0 - ( t i , y ) [ t i < t 0 + ϕ ar ] dy + 1 2 exp ( - P c y ) [ Ψ 0 b 2 - [ t ib 2 < t 0 ] + Ψ 0 b 2 + [ t ib 2 t 0 ] ] + 1 2 P c 0 H exp ( - P c y - y ) Ψ ( t i , y ) [ t i t 0 + ϕ ar ] dy . ( 102 )

A step of formulating a solution for the first approximation of a modified integral form of the property-balance equation includes steps of:

(1) modify Equation (101) by assignment, in the last right-hand term of


Ψ=0,  (103)

which is a zero approximation for a solution of Equation (101);

(2) resolve the modified Equation (101) and obtain a solution Ψ1(t,y) for each of a plurality of points in space occupied by the model gas, which quantifies established effects of external fields capable of modifying the property content, prehistoric conditions of the model gas flow, and an established effect of an available gas-solid interface. Based on Equation (102), the first approximation, Ψ1(t,y), has a form:


Ψ1(t,y)≅½Pc0H exp(−Pc|y−y′|)Ψ0−(ti′,y′)[ti′<t0ar′]dy′+½ exp(−Pcy)[Ψ0b2−[tib2′<t0]+Ψ0b2+[tib2′≥t0]].  (104)

A step of formulating a solution for a kth approximation of a modified form of the property-balance equation includes presenting an approximated solution for the kth approximation, Ψk(t,y), for each of the plurality of points of the space occupied by the model gas in such form that the left-hand of an equation defines kth approximation that Ψk(t,y) and the right-hand of the equation is defined by (k−1)th approximation, which has been obtained in the preceding cycle of the approximation, which is explained symbolically by Equation (105) given below:


Ψk(y,t)=Ψ1(y,t)+Ψak(y,t),  (105)

where Ψak(y,t) is an adjustment to the first approximation of velocity Ψ1(y,t), which is associated with the mutual effect of the property exchange between particles surrounding point y at time t, which is expressed as follows


Ψak(y,t)=½Pc0H exp(−Pc|y−y′|)Ψk−1(ti′,y′)[ti′≥t0ar′]dy′.  (106)

The property value in a specific point of space occupied by the model gas at the given time results from the impact of both the rate of property influx formed by particles being directly scattered from confining one or more of gas-solid interfaces and the rate of property influx formed by particles that have acquired the property from each of their preceding collision being within the space occupied by the model gas.

2. Performing Flow Computation by Using the Computer for Simulating the Fluid Flow

The step S107 of performing flow calculation is further embodied in these two numerical simulations, which are provided for the illustration of the method and are construed not to limit the scopes of the invention. Simulation 1 and Simulation 2 of the following section provide detailed steps of computation of velocity profiles in the one-dimensional incompressible flow. However, the method can be generalized to a three-dimensional model gas with no difficulty.

Embodiments within the scope of the present invention also include computer program means including the computer readable medium having represented in that program code means. Program code means includes executable instructions and data that cause a computer to perform a certain function of a group of functions either directly or by conversion to another language, including reproduction in a different material form. All these simulations suggest the applicability of the innovative analytical tools to construct specific Computational Fluid Dynamics models.

A method for modeling transport processes and computerized simulating the flow of the model gas includes, for example, steps of:

establishing an initial time,

where the initial time is treated as a time of specific modification of the model gas system in a specific location including specific modification of one or more of temperature, the velocity of the gas-solid interface, and application of an external field that modifies property content;

specifying the given time,

where the given time is greater than or equal to the initial time;

specifying the model gas system,

where the model gas system is specified by defining model gas properties including gas material, pressure, temperature and by establishing a geometry model,

where establishing the geometry model includes setting geometry and boundary conditions during a period from a pre-initial time until the given time;

establishing discretization parameters including a set of discretization points in space occupied by the model gas,

where the set of discretization points includes a set of non-moving points;

calculating, for each of the set of discretization points in space occupied by the model gas, a local initial time,

where the local initial time is greater than or equal to the initial time;

obtaining, for each of the set of discretization points in space occupied by the model gas at a given advanced time, which is ahead of the local initial time, a past property content,

where the past property value is obtained by calculations or by measurements;

formulating, for each of the set of discretization points at the given time, an approximated integral form of property balance,

where the approximated integral form of property balance is established in a way that, in a selected point of the set of discretization points at the given time, a net rate of property influx per unit volume from the model gas system, which is formed by a set of converging particles and calculated by summing a rate of property influx from the set of discretization points surrounding the selected point is equated to a net rate of property efflux per unit volume from the selected point of the set of discretization points,

where the set of converging particles converging in the selected point of the set of discretization points at the given time includes a set of converging ballistic particles and a second set of converging ballistic particles, each of the set of converging ballistic particles is delivered one or more of past property contents from the model gas system and each of the second set of converging ballistic particles is delivered one or more of present property contents,

where each of present property contents, Ψ, is obtained from a corresponding point of original collisions at a time, which is greater than or equal to the local initial time,

where Ψ is treated as a variable; and

resolving with respect to the variable, for each of the set of discretization points in space occupied by the model gas, the approximated integral form of property balance and calculating the value of the transported property,

where resolving and calculating is performed by an approximation method, including a successive approximation method.

Specific examples of the execution of velocity profile in model gas using Microsoft Visual Basic for Applications with Excel and computed on a PC are shown in FIG. 15 and FIG. 16.

FIG. 14 is an example of a flowchart of the flow calculation by the numerical method. The numerical method of flow calculation includes the application of the computer and is applicable to both Simulation 1 and Simulation 2. The numerical calculation, for example, includes steps of:

specifying the model gas system (S1401);

forming ux-momentum balance equation (S1402);

formulating a solution for the first approximation (S1403);

formulating a solution for the kth approximations (S1404);

establishing discretization parameters (S1405);

providing an error estimation rule (S1406);

computing and storing the values for the first approximation ux1s for corresponding Ys as an array (S1407):

executing computation by the sequential approximations (S1408); and

displaying the results (S1409).

2.1 Example 1: Simulation 1

In the first simulation, Simulation 1, transient plane Couette flow is calculated.

FIG. 6 is a schematic view in section of a Newtonian model gas between parallel infinite plates in the open channel at uniform temperature and no external field of force applied in y direction and a lack of internal aging processes, namely, λ=0, each particle conserves properties acquired by it at a point and time of the original collision and deliver that properties unchanged to another location upon its final collision with another particle in a point sink. The following simulation is shown to illustrate the inventive approach in determining velocity profiles ux(y,t) or velocity distribution across the space between the plates.

A simulation is performed for incompressible model gas expanding in the y-direction between parallel infinite plates being spaced at the distance H in the open channel at the uniform temperature where the top and bottom plates and the model gas are initially at rest. Then, at time t0=0 the bottom plate starts a sudden movement in x-direction along its plane with constant speed vx0. The velocity profile induced in the model gas due to the sudden motion of the bottom plate 616 is to be determined. Referring to FIG. 14, more detailed description of the steps of performing flow calculation by the computer is given below.

Step S1401 of specifying the model gas system, for example, is given:

Referring again to FIG. 6, which shows a schematic view in section of a Newtonian model gas between parallel infinite plates in the open channel at a uniform temperature, a case when the top and bottom plates and the liquid are initially at rest is considered. For simplicity, the particles are considered to have a unit mass.

These parameters describing the model gas system are specified:

kind of model gas (providing a mass of molecules, effective cross-section of the collisions);

T, pressure P;

the distance between parallel plates, H;

the magnitude and direction of the velocity of the bottom plate in x-direction, which begins the movement at time t≥0 with constant velocity vx0; and allowable error of computation, Max_Er.

The upper plate is at rest, which implies that the velocity of the upper plate in x-direction is zero, namely, vxH=0. At time t<0 the incompressible model gas had uniform temperature T and pressure P.

Step S1402 of forming ux-momentum balance equation includes, for example, steps of:

(1) defining ux0 momentum, which is acquired by each particle in a point during its preceding collision and transported into a point of the following collision at the given includes applying Equation (107) given below, which is obtained by substitution in Equation (100) of Ψ0 ≡ux00−≡ux0−=0, a predetermined initial or prehistoric x-momentum in each point y′ at the time of the departure ti′<0 and Ψ≡ux, the x-momentum in each point y′ at the time of the departure ti ≡ti′≥0, which is a function to be determined:


ux0(ti′,y′)=ux(ti′,y′)[ti′≥0];  (107)

(2) defining momentum, which is acquired by each particle in a point during its preceding diffuse scattering from the gas-solid interface of the confining plate 615 and transported into a point of the following collision at the given time includes applying Equation (108) given below:


Ψ0b2≡=vx0[tib2′≥0].  (108)

The upper plate 615 is at rest all the time, which implies that


Ψ0b1≡vxH≡0;  (109)

(3) forming an integral form of the ux momentum balance equation applied to a specific point in space at the given time includes applying Equation (110) given below, which is obtained by substitution in Equation (101) of {dot over (Q)}Ψ=0, and Ψ0 ≡ux(ti′,y′)[ti′≥0], Ψ0b1=0, and Ψ0b2=vx0[tib2′≥0] in the right-hand of the equation and to Ψ0≡ux, in the left-hand of the equation:

n t u x ( t , y ) + Z V u x ( t , y ) = + Z V 2 v x 0 exp ( - P c y ) [ t ib 2 0 ] + 1 2 Z V P c 0 H exp ( - P c y - y ) u x ( t i , y ) [ t i t 0 ] dy . ( 110 )

The equation above is further reduced by executing some algebra operation, which results in:

t u x + Z V n u x = Z V 2 n P c 0 H exp ( - P c y - y ) u x ( t i , y ) [ t i 0 ] dy + g 0 ( y , t ) , ( 111 )

where a is a frequency factor quantified as

a = Z V n = 1 2 P c v T , and ( 112 ) g 0 ( y , t ) = a 2 v x 0 exp ( - P c y ) H ( t - y v T ) . ( 113 )

Step S1403 of formulating solutions for the first approximation includes, for example, steps of:

(1) assigning in the first right-hand term of Equation (111)


ux=0,  (114)

which is zero approximation for the velocity of each particle surrounding point y, and which results in a reduction of Equation (111) to

t u x 1 + a u x 1 = g 0 ( y , t ) with u x 1 ( y , t = 0 ) = 0 ; ( 115 )

(2) formulating a solution to the equation above by applying Equation (116):


ux1(y,t)=exp(−at)∫0t exp(as)g0(y,s)ds  (116)

which upon integration results in:

u x 1 ( y , t ) = 1 2 v x 0 exp ( - P c y ) [ t - y v T 0 ] { 1 - exp ( - 1 2 P c v T ( t - y v T ) ) } ; ( 117 )

Step S1404 of formulating solutions for the kth approximation includes, for example, steps of:

(1) modifying the ux-momentum balance equation, which is shown by Equation (111) in such form that ux in the left-hand of the equation defines kth approximation, uxk, and ux(ti′,y′) in the right-hand of the equation defines (k−1)th approximation, ux(k−1), so Equation (111) is modified to

t u x k + a u x k = g ( k - 1 ) + ( y , t ) + g 0 ( y , t ) , where ( 118 ) g ( k - 1 ) + ( y , t ) = a 2 P c 0 H exp ( - P c y - y ) u x ( k - 1 ) ( t i , y ) [ t i - y v T 0 ] dy , ( 119 )

where g0(y,t) is a well-defined function at any y and t, which defines established effects of both external fields and prehistoric conditions of the model gas and model gas flow and g(k−1)+(y,t) is a function characterizing the effect from the events of the original collisions taken place following the initial time;

(2) presenting an approximated solution for the kth approximation, uxk, for each point of the space occupied by the model gas by Equation (120) given below:


uxk(y,t)=ux1(y,t)+uak(y,t),  (120)

where uak(y,t) is the adjustment to the first approximation of velocity ux1(y,t), which is associated with the mutual effect of the momentum exchange between particles surrounding point y at time t, which is expressed as follows

u ak ( y , t ) = 1 2 P c 0 H exp ( - P c y - y ) u x ( k - 1 ) + ( t i , y ) [ t i - y v T 0 ] dy . ( 121 )

Equation (121) is obtained by analytical integration. However, numerical integration of a general function g0(y,t) over the time can be performed with no difficulty, as apprehended by those skilled in the art.

Step S1405 of establishing discretization parameters includes, for example, steps of:

specifying discretization parameters including the dimension of the system for calculation [0,H], the number of space intervals S, testing time t, and the number of time intervals j; and

dividing the space intervals [0,H] into S equal parts of length l, so that, for ys ≡y′=sl>y, the range is divided as y=ys<ys+1< . . . <yS=H and, for ys ≡y′=sl<y, the range is divided as 0=y0<y1< . . . <ys=y. Analogously, the time interval [0,t] is divided into j equal parts of length h: 0=t0<t1 . . . <ts< . . . <tj=t. In the above, s is the index of a discretization point positioned in y′.

Step S1406 of providing an error estimation rule includes, for example, a step of providing the error estimation rule for kth cycle of the sequential approximation from Equation (122) given below

Er = 1 s 1 s ( u ak ( y s , t ) - u a ( k - ) ( y s , t ) u xk ( y s , t ) ) 2 ( 122 )

Step S1407 of computing and storing the values ux1s(yi,t) for corresponding ys as an array includes, for example, presenting Equation (121) in a discrete form by computing the values ux1s for corresponding yi surrounding point:

u x 1 s = 1 2 v x 0 exp ( - P c y s ) [ t i - y s v T 0 ] [ 1 - exp ( - 1 2 P c v T ( t i - y s v T ) ) ] . ( 123 )

Step 1408 of executing computation for each cycle k of the sequential approximations includes, for example, steps of:

assigning uxks+=ux1s (S1408A);

storing the values of uxks+ for corresponding ys (S1408B);

computing uaks−uak(ys,t) for corresponding ys according to Equation (121) (S1408C);

computing uxks=uaks+ux1s according to Equation (120) and storing the values of uxks for corresponding ys (S1408D);

computing Er according to Equation (122) given above (S1408E);

defining a condition for ending approximations (S1408F),

where If Er>Max_Er, assigning uxks+=uxks, and go to (S1408B) and

if ≤Max_Er, the cycle of the sequential approximations is stopped, then copying uxks for corresponding ys, and

displaying the results of computation (S1409).

The sign + in the subscript indicates that the function is used for the following integration with y′ as an argument.

FIG. 15 is a chart showing the velocity profiles across between the plates at different moments of time, which are obtained by a computer simulation performed under the steps listed above, and a comparative analytical velocity profile, which is obtained independently by using the analytical tools disclosed in the specification for simplified stable conditions involving incompressible gas at the uniform temperature. As shown, the result of 160 sequential approximations computed according to Simulation 1 for the testing time t=100 ms coincides with the analytical velocity profile. The computer simulation was made for the nitrogen gas flow in a channel confined by parallel plates spaced at the distance of 1 meter at the uniform temperature of 300K and pressure of 0.6 Pa. The computer simulation by the method demonstrates the feasibility of the method and shows significant improvement from the prior art, which consists, first, in the capability to model and compute flows in rarefied and dilute gases, second, in the improvement of time resolution of computations for unsteady flows. Specifically, the results of the numerical calculations demonstrate the capability of the method to compute the velocity flow profiles at the testing time as short as one millisecond.

2.2 Example 2: Simulation 2

In the second simulation, Simulation 2, the steady velocity profile across between the parallel plates with mixed diffuse and specular particles scatterings from the plates being at rest is calculated.

The particular embodiment is limited to a simulation of incompressible stable model gas flow confined in the y-direction between parallel infinite plates at a uniform temperature with no external field of the force applied in y-direction where the top and bottom plates are at rest. However, the method can be generalized to the model gas flow affected by the external field of force or kept at non-uniform temperature with no difficulty, as apprehended by those skilled in the art. The pressure gradient is constant along with the model gas flow in he x-direction. The velocity profile induced in the model gas due to the pressure gradient is to be determined. Referring to FIG. 14, more detailed description of the steps of performing flow calculation by the computer is given below.

Step S1401 of specifying a model gas system is given, for example:

Referring again to FIG. 6 showing a schematic view in section of the model gas in the stable between parallel infinite plates in the open channel at the uniform temperature, a case when both the lower plate 616 and the upper plate 615 plates are at rest. The model gas is Newtonian with constant viscosity. The pressure gradient is constant along with the model gas flow in the x-direction. The main control volume has dimensions Δx-length, Δy-thickness, and Δz-width. The pressure applied to the main control volume at x and x+Δx are Px and −Px+Δx, respectively. The velocity profile induced in the model gas due to the motion of the plates and pressure gradient is to be determined.

In a stable incompressible model gas system at the uniform temperature and with a lack of internal processes, (1) each particle conserves properties acquired by it at a point and time of the preceding collision and deliver that properties unchanged in another location upon its second collision with another particle, (2) particle density n=constant, (2) temperature T and the magnitude of thermal velocity vT are constant. (3) We also accept, from Simulation 1, that the mass flow velocity vector along y-direction u=0. For simplicity, the particles are considered to have a unit mass.

These parameters describing the model gas system are specified:

kind of the model gas including the mass of particles and an effective cross-section of the collisions;

temperature T, pressure P;

the distance between parallel plates, H;

The pressure gradient along the channel,

dP dx ,

and

allowable error of computation, Max Er.

Step S1402 of forming ux-momentum balance equation includes, for example, steps of:

(1) calculating the net rate of property influx, BinΨ0_F, which is formed by converging ballistic particles chosen from the group of particles originated from preceding collisions within space occupied by the model gas (ballistic trajectories 601 and 603 in FIG. 6), from Equation (124) given below, obtained by substitution of Equation (58) and assigning λ=0, ZV=constant, u=0, BinΨλ_F≡BinΨ0_F, Ψinλ≡Ψ(y′), and v(ti′,y′,t,y)≡vTni in Equation (38):

B in Ψ 0 _ F ( y , t ) = - 1 2 Z V y 0 H exp ( - P c y - y ) n i Ψ ( y ) d y , where ( 124 ) n i = y - y y - y , ( 125 )

(2) representing a general integral form of the property balance by applying Equation (126) given below, which is obtained by substitution of Equations (124), (60), (63) in Equation (85):

- 1 2 Z V y 0 H Q i ( y , y ) n i Ψ ( y ) dy + exp ( - P c ( H - y ) ) P c 1 - σ 1 - ( 1 - σ ) 2 exp ( - 2 P c H ) 1 2 Z V 0 H Ψ ( y ) exp ( - P c y ) dy + exp ( - P c y ) P c 1 - σ 1 - ( 1 - σ ) 2 exp ( - 2 P c H ) 1 2 exp ( - P c H ) Z V 0 H Ψ ( y ) exp ( P c y ) dy + Q . Ψ ( y ) = Z V u x ( y ) ; ( 126 )

(3) forming ux-momentum balance equation by forming an integral form of the ux momentum balance equation in a stable model gas flow confined between two parallel plates with mixed diffuse and specular scatterings from the plates being at rest includes applying Equation (127) given below, which is obtained by substitution in Equation (126) of Ψ≡ux,

Q . Ψ = - dP dx ,

J211 as of Equation (61), J122 as of Equation (62), as of Equation (54), and following differentiation and normalization by zV≠0:

u x = - 1 z V dP dx + 1 2 P c 0 H exp ( - P c y - y ) u x ( y ) dy + 1 2 P c ( 1 - σ ) exp ( - P c H ) [ exp ( - P c ( H - y ) ) + exp ( - P c y ) ] 1 - ( 1 - σ ) exp ( - P c H ) 0 H u x ( y ) exp ( P c y ) dy . ( 127 )

Step S1403 of formulating solutions for the first approximation includes, for example, steps of:

(1) assigning in the right-hand term of Equation (127)


ux=0,  (128)

which is the velocity of each particle surrounding point y to be equal zero,

so Equation (127) is reduced to

u x 1 ( y ) = g 0 = - 1 z V dP dx , ( 129 )

which is a solution for the first order approximation;

(2) modification of the ux-momentum balance equation, which is shown by Equation (127) in such form that ux in the left-hand of the equation defines kth approximation, uxk, and ux(ti′,y′) in the right-hand of the equation defines (k−1)th approximation, ux(k−1), so Equation (127) is modified to

u xk = g ( k - 1 ) ( y ) + g 0 , where ( 130 ) g 0 = - 1 z V dP dx , and ( 131 ) g ( k - 1 ) + ( y ) = + 1 2 P c 0 H exp ( - P c y - y ) u x ( k - 1 ) ( y ) dy + 1 2 P c ( 1 - σ ) exp ( - P c H ) [ exp ( - P c ( H - y ) ) + exp ( - P c y ) ] 1 - ( 1 - σ ) exp ( - P c H ) 0 H u x ( k - 1 ) ( y ) exp ( P c y ) dy . ( 132 )

Here g0(y) is a well-defined function.

Step S1404 of formulating solutions for the kth approximation includes, for example, steps of:

(1) presenting the approximated solution for the nth approximation, uxn, for each point of the space occupied by the model gas by Equations (133) given below:


uxk(y)=ux1(y)+uak(y),  (133)

where ua_n(y) is the adjustment to velocity ux(n−1)(y) associated the velocities of particles surrounding point y, ux(n−1)+ (y′), which is expressed as follows

u ak ( y ) = 1 2 P c 0 y exp ( - P c ( y - y ) ) u x ( k - 1 ) + ( y ) dy + 1 2 P c y H exp ( P c ( y - y ) ) u x ( k - 1 ) + ( y ) dy + 1 2 P c ( 1 - σ ) exp ( - P c H ) [ exp ( - P c ( H - y ) ) + exp ( - P c y ) ] 1 - ( 1 - σ ) exp ( - P c H ) 0 H u x ( k - 1 ) + ( y ) exp ( P c y ) dy ( 134 )

The magnitude of ux-momentum in a specific point in the model gas space results from the impact of both the rate of momentum influx formed by particles being directly affected by the pressure force and the rate of momentum influx formed by particles that have acquired the property from each of their preceding collision being within the space occupied by the model gas.

Step S1405 of establishing discretization parameters includes, for example, steps of:

specifying discretization parameters including the dimension of the system for calculation [0,H] and the number of space intervals S; and

dividing the space intervals [0,H] into s equal parts of length l, so that, for yi ≡y′=sl>y, the range is divided as y=ys<ys+1< . . . <ys=H and, for ys ≡y′=sl<y, the range is divided as 0=y0<y1< . . . <ys=y.

Step S1406 of providing an error estimation rule includes, for example, the step of providing the error estimation rule for kth cycle of the sequential approximation from Equation (135) given below:

Er = 1 s 1 k ( u ak ( y s ) - u a ( k - 1 ) ( y s ) u xs ( y s ) ) 2 . ( 135 )

Step S1407 of computing and storing the values ux1s(ys) for corresponding ys is done by applying Equation (129) given above;

Step 1408 of executing computation for each cycle k of the sequential approximations includes, for example, steps of:

assigning uxks+=ux1s (S1408A);

storing the values of uxks+ for corresponding Ys (S1408B);

computing uaks ≡uak(ys) for corresponding Ys according to Equation (134) (S1408C);

computing uxks=uaks+ux1s according to Equation (133) and storing the values of uxks for corresponding ys (S1408D);

computing Er according to Equation (135) given above (S1408E);

defining a condition for ending approximations (S1408F),

where If Er>Max_Er, assigning uxks+=uxks, and go to (S1408B) and

if ≤Max_Er, the cycle of the sequential approximations is stopped, then copying uxks for corresponding ys, and

displaying the results of computation (S1409).

The sign + in the subscript indicates that the function is used for the following integration with y′ as an argument.

FIG. 16 is a chart showing the gas flow velocity profiles across between the plates at different numbers of the sequential approximations with mixed diffuse and specular scattering from the plates, which are obtained by computer simulations performed by the steps listed above, for stable conditions involving incompressible gas at the uniform temperature. The computation involves the case of mixed diffuse and specular scattering from the plates. Also, a comparative analytical velocity profile is obtained independently by using the analytical tools disclosed in the specification. As shown, the result of 120 sequential approximations computed according to Simulation 2 coincides with the analytical velocity profile. The numerical calculations were made for the nitrogen gas flow in a channel confined by parallel plates, which are characterized by the property accommodation coefficient of 0.7 and spaced at the distance of 0.1 meters, at the uniform temperature of 300K and pressure of 1 Pa. The simulations demonstrate significant improvement from the prior art, which in addition to the capability to model and compute flows in rarefied gases also consists in the ability to interpret the effect of the property/momentum accommodation coefficient quantitatively.

In the above, Simulation 1 and Simulation 2 and comparative flow calculations by a method of differentiation show an implementation of embodiments of the which can be used for simulating transport processes in model gas systems.

The simulations set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the methods and systems for predicting the evolution of the model gas fluid, which is based on the dynamic evolution of the model gas system in some period of time preceding the initial time and do not limit the present invention. Modifications of the above-described modes for carrying out the disclosure may be used by persons of skill in the art and are within the scope of these claims.

2.3 Example 3: A Special Purpose Computer for Implementing the Method for Simulating Fluid Flow

In some embodiments, the calculations are performed by using a computer program that directs a general purpose computer system to perform the actions of the above-described methods and analytical tools with, so the general purpose computer is adapted by the computer program to operate as a special purpose computer for simulating the fluid flow. FIG. 17 is a schematic representation of the special purpose computer for implementing the method for simulating the fluid flow. The special purpose computer 1700, for example, includes: a processor 1705, which can be any suitable computer processor; a non-transitory computer readable memory coupled to the processor 1704, which can be any suitable computer readable and programmable memory; one or more user input devices such as a keyboard 1702 and/or a pointing device such as a mouse 1703 operatively coupled to the processor via any suitable user I/O interface 1701; a display 1706, which can be any suitable computer display, operatively coupled to the processor; the computer program, which is configured to use the fluid model and the model of property balance, may be stored in the non-transitory computer readable memory 1704 and executable by the processor 1705. The computer program is operable to run on the computer to execute a sequence of instructions including:

setting parameters specifying geometry model of a fluid system, which is approximated to a model gas system, including configurations, dimensions, materials, transferring temperature, pressure, and temporal characteristics involving a pre-initial time and an initial time;

transferring into memory a set of discretization parameters, wherein the set of discretization parameters comprises a set of points including a set of space points in space occupied by a model gas and a set of surface points on one or more of gas-solid interfaces being in contact with the model gas, the set of points in which the model gas system is identified by defining model gas material, pressure, temperature, external forces, and other pre-established properties comprising one or more of mass, momentum, and energy during a time period from the pre-initial time until the initial time;

creating databases linking a selected non-moving point of the set of space points to each of the other points of the set of points;

computing, for each of links, a corresponding converging ballistic trajectory of a particle having a starting point in one point of the set of points and targeting the selected non-moving point at a given time;

computing for each of corresponding converging ballistic trajectories a starting time;

computing a local initial time in each of the set of points;

specifying property value obtained by each of converging ballistic particles at the starting time, wherein, when the starting time is less than the local initial time, then obtained property value is defined by a pre-established property content;

computing probability of traveling along each of corresponding converging ballistic trajectories;

computing a net rate of property influx per unit volume, which is formed by way of a plurality of converging ballistic particles, in each of a set of non-moving points at the given time from the model gas system;

computing for each link a corresponding diverging ballistic trajectory of a diverging ballistic particle escaping the selected non-moving point at the given time; identifying property obtained by each of diverging ballistic particles at the given time;

computing probability of traveling along each of corresponding diverging ballistic trajectories;

computing a net rate of property efflux per unit volume, which is formed by way of a plurality of diverging ballistic particles, from each of the set of non-moving points at the given time into the model gas;

establishing a property balance equation by formulating balance between the net rate of property influx and the net rate of property efflux in each of the set of non-moving points at the given time, thereby formulating a system of mutually dependent integral property balance equations; and

resolving the system of mutually dependent integral property balance equations and obtaining property value comprising flow velocity value in each of the set of space points, thereby reliably predicting gas flow, including rarefied gas flows.

The method, for example, is implemented in software in any suitable software language, including C++, Visual C, Visual C++, Visual Basic, Java, C, and FORTRAN. The software program may be stored on any computer readable medium, including a floppy disk, a hard disk drive, a magneto-optical disk drive, CD-ROM, magnetic tape or any other of several non-volatile storage devices well known to those skilled in the art for storing a computer software program in such a form that the instructions may be retrieved and executed by a processor.

INDUSTRIAL APPLICABILITY

The most significant improvements in CFD technology by the method disclosed above will advance the following applications and industries:

1. Efficient and accurate modeling of transport processes in rarefied gases according to the inventive approach will benefit airspace industries, astrophysics, microelectronics and nanoelectronics processing, and plasma processing.

2. Enhancement in time resolution of computations for unstable flows according to the inventive approach will advance applications for turbulence, shockwave, and detonation analysis, which in turn will boost supersonic aircraft and spacecraft development.

3. Innovative quantitative interpretation of the aging factor according to the inventive method will enhance applications for radiation and nuclear physics, physics of chemical reactions, and plasma physics processing.

4. Finally, an improvement associated with the disclosed method of taking into account a pre-established or known dynamic history of the fluid system during a pre-initial period will benefit any application by providing increased certainty and accuracy of prediction of the fluid system evolution.

A new generation of Computational Fluid Dynamics software products, which are based on the disclosed analytical tools and method, are anticipated having capability to modeling gases from the continuum flow regime (Kn<0.01) to the rarefied and free molecular flow regime (Kn>10), considerably higher accuracy of prediction, and lower computation cost.

It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

Claims

1. A computer implemented method for modeling transport processes in fluids comprising:

approximating fluid flow in a fluid system as a flow of a model gas in a model gas system being identical to the fluid system;
assuming that each of a plurality of particles, which compose the model gas, travels with a probability between any points in a space occupied by the model gas by following a ballistic trajectory governed by a law of motion in free space, the ballistic trajectory having a starting point in one of a plurality of points of original collisions and an ending point in one of a plurality of points of ending collisions;
treating each of the plurality of points of original collisions as a point source;
treating each of the plurality of points of ending collisions as a point sink;
treating each of a plurality of ballistic particles moving from the point source to the point sink as a property carrier created in the point source at a time of an original collision by obtaining one or more of properties comprising one or more of mass, momentum, and energy of specific values being intrinsic to the point source, and ended in the point sink at the time of an ending collision by transferring one or more of properties of specific values in the point sink;
forming an integral property balance equation for each of one or more properties being transported by the plurality of ballistic particles in each of a plurality of non-moving points at a given time,
wherein the plurality of ballistic particles in each of the plurality of non-moving points at the given time comprises a plurality of converging ballistic particles and a plurality of diverging ballistic particles, and
wherein each of the plurality of non-moving points is treated as the point sink for each of the plurality of converging ballistic particles and as the point source for each of the plurality of diverging ballistic particles; and

1. A computer implemented method for modeling transport processes in fluids comprising:

using a fluid model,
wherein the fluid model comprises treating a fluid flow including a flow of rarefied gases in a fluid system as a flow of a model gas in a model gas system being identical to the fluid system,
wherein the model gas is composed of a plurality of particles including molecules, which move randomly and interact by collisions,
wherein each of the plurality of particles is assigned to travel with a probability between any points in a space occupied by the model gas by following a ballistic trajectory governed by a law of motion, the ballistic trajectory having a starting point in a point of original collision and an ending point in a point of ending collision,
wherein each of the plurality of points of original collision is treated as a point source,
wherein each of the plurality of points of ending collision is treated as a point sink, and
wherein each of a plurality of ballistic particles moving from the point source to the point sink is treated as a property carrier created in the point source at a time of an original collision by obtaining one or more of properties comprising one or more of mass, momentum, and energy of specific values being intrinsic to the point source, and ended in the point sink at a time of an ending collision by transferring one or more of properties of specific values in the point sink; and
using a computer for simulating the fluid flow,
wherein the computer for simulating the fluid flow comprises a computer readable medium for storing data associated with a computer program, and a processor being connected for accessing the computer program and operable to run the computer, wherein the computer program is configured to use the fluid model and a model of property balance,
wherein the model of property balance in a combination the fluid model transforms parameters characterizing motion of a plurality of ballistic particles into parameters characterizing the fluid flow,
wherein the model of property balance comprises establishing an integral property balance equation for a property being transported by a plurality of converging ballistic particles and a plurality of diverging ballistic particles in each of a plurality of non-moving points in the space occupied by the model gas at a given time, and
wherein the computer program is operable to run on the computer for simulating the fluid flow to compute the flow of the model gas in each of the plurality of non-moving points at the given time and to display results of computing, thereby reliably predicting the fluid flow including the flow of rarefied gases.

2. The method of claim 1, wherein a value of property delivered in the point sink by each of the plurality of converging ballistic particles is evaluated regarding whether the value of property is conserved, whether the value of property is changed because of aging, and whether the value of property is modified because of interaction with an external field during a ballistic traveling time.

3. The method of claim 1, wherein

each of a plurality of collisions on a gas-solid interface of the model gas system, which has resulted in diffuse particle scattering from the gas-solid interface, is treated as an act of interaction involving a property transfer from the gas-solid interface to a scattered particle,
wherein each of a plurality of points of diffuse particle scattering on the gas-solid interface is treated as a heterogeneous point source for each of a plurality of scattered particles,
wherein velocity of each of a plurality of heterogeneous point sources on the gas-solid interface is assigned to be equal to the velocity of the gas-solid interface in each of a plurality of corresponding points of diffuse particle scattering at time of diffuse particle scattering, and
wherein point source strength of each of the plurality of heterogeneous point sources on the gas-solid interface is assigned to be directly proportional to a property accommodation coefficient in each of the plurality of corresponding points of diffuse particle scattering at the time of diffuse particle scattering, the property accommodation coefficient which is the probability, for an incident particle, to accommodate one or more of properties intrinsic to the gas-solid interface and to scatter back in the model gas, the property accommodation coefficient being in a range from zero to one.

4. The method of claim 1, further comprising steps of:

establishing an initial time,
wherein the initial time is treated as
the time of a specific modification of the model gas system in a specific location comprising specific modification of one or more of temperature, velocity of a gas-solid interface, and application of an external field that may modify a property value;
specifying the given time,
wherein the given time is greater than or equal to the initial time;
specifying the model gas system,
wherein the model gas system is specified by defining model gas properties comprising a gas material, pressure, temperature and by establishing a geometry model,
wherein establishing the geometry model comprises setting geometry and boundary conditions during a period from a pre-initial time until the given time;
establishing discretization parameters comprising a set of discretization points in the space occupied by the model gas,
wherein each of the set of discretization points is assigned to a corresponding point of the plurality of non-moving points;
calculating, for each of the set of discretization points in the space occupied by the model gas, a local initial time,
wherein the local initial time is greater than or equal to the initial time;
obtaining, for each of the set of discretization points in the space occupied by the model gas at a given advanced time, which is ahead of the local initial time, a past property value;
formulating, for each of the set of discretization points at the given time, an approximated integral form of property balance,
wherein the approximated integral form of property balance is established in a way that, in a selected point of the set of discretization points at the given time, a net rate of property influx per unit volume from the model gas system, which is formed by a set of converging particles and calculated by summing a rate of property influx from the set of discretization points surrounding the selected point is equated to a net rate of property efflux per unit volume from the selected point of the set of discretization points, separating the plurality of converging ballistic particles on a first plurality of converging ballistic particles and on a second plurality of converging ballistic particles,
where each of the first plurality of converging ballistic particles delivers one or more of past property values from the model gas system,
where each of the second plurality of converging ballistic particles delivers one or more of present property values from the model gas system,
where each of past property values is obtained from one of the plurality of points of original collisions at the time ahead of the local initial time,
where each of past property values is well defined in each of the plurality of points of original collision at time of original collision,
where each of present property values is obtained from one of the plurality of points of original collisions at the time which follows the local initial time, and
where a present property value in each of the plurality of points of the original collision is treated as an unknown property value; and
computing the flow of the model gas by considering an impact of a plurality of initial converging ballistic particles and taking into account an effect of mutual dependence of property exchange between particles interacting by collisions, which comprises a sequential approximation method.

5. The method of claim 1, wherein the integral property balance equation is established in a way that, in a general point of the plurality of non-moving points in the space occupied by the model gas at the given time, a net rate of property influx per unit volume, which is formed by the plurality of converging ballistic particles, each of the plurality of converging ballistic particles is selected from the plurality of ballistic particles by the ballistic trajectory having the ending point in the general point at the given time, is equated to sum a temporal rate of a property change per unit volume and a net rate of property efflux per unit volume, which is formed by the plurality of diverging ballistic particles, each of the plurality of diverging ballistic particles is selected from the plurality of ballistic particles by the ballistic trajectory having the starting point in the general point at the given time.

6. A computer implemented method for modeling transport processes in fluids comprising:

using a fluid model,
wherein using the fluid model comprises treating a fluid flow including a flow of rarefied gases in a fluid system as a flow of a model gas in a model gas system being identical to the fluid system,
wherein the model gas is composed of a plurality of particles, including molecules, which move randomly and interact by collisions,
wherein each of the plurality of particles is assigned to travel with a probability between any of two points in a space occupied by the model gas by following a ballistic trajectory governed by a law of motion, the ballistic trajectory having a starting point in a point of original collision and an ending point in a point of ending collision, and
wherein each of a plurality of ballistic particles transports a combination of one or more of properties comprising one or more of mass, momentum, and energy from the starting point to the ending point;
using a model of property balance,
wherein the model of property balance in a combination the fluid model transforms parameters characterizing motion of a plurality of ballistic particles into parameters characterizing the fluid flow,
wherein the model of property balance comprises:
specifying a geometry model,
defining a net rate of property influx per unit volume in a general non-moving point in the space occupied by the model gas at a given time, the net rate of property influx per unit volume, which is formed by a plurality of converging ballistic particles, each of the plurality of converging ballistic particles is selected from the plurality of ballistic particles by the ballistic trajectory having the ending point in the general non-moving point at the given time,
defining a net rate of property efflux per unit volume from the general non-moving point at the given time, the net rate of property efflux per unit volume, which is formed by a plurality of diverging ballistic particles, each of the plurality of diverging ballistic particles is selected from the plurality of ballistic particles by the ballistic trajectory having the starting point in the general non-moving point at the given time, and
establishing an integral property balance equation for each of one or more properties being transported by the plurality of ballistic particles in the general non-moving point; and
using a computer for simulating the fluid flow,
wherein the computer for simulating the fluid flow comprises a computer readable medium for storing data associated with a computer program, and a processor for executing a sequence of instructions from the computer program,
wherein the computer program is configured to use the fluid model and the model of property balance, and
wherein the computer program is operable to run on the computer for simulating the fluid flow to compute the flow of the model gas in every general point of a plurality of non-moving points in the space occupied by the model gas at the given time and to display results of computing, thereby reliably predicting the fluid flow including the flow of rarefied gases.

7. The method of claim 6, wherein the step of specifying the geometry model further comprises:

establishing geometry and boundary conditions,
wherein geometry and boundary conditions are established during a period from a pre-initial time until the given time; and
establishing a dynamic history of the model gas,
wherein the dynamic history of the model gas, which is in form of one or more of instant distribution patterns of model gas properties within the model gas system at a set of different sequential moments in time, is established during a pre-initial period, and
wherein the pre-initial period is set to be not less than a reliable period before an initial time,
wherein the initial time is treated as a time before which the fluid system is described,

8. The method of claim 7, wherein the reliable period before the initial time is estimated as ϕ i   0 rel ≅ - ln  ( MAV ) [ P c  v rel ] m,

where φi0rel is the reliable period before the initial time, MAV is a minimum absolute value corresponding to a precision format supported by a computer hardware, Pc is a number of particles within a collision tube of a unit length placed in the model gas, vrel is an average magnitude of velocity of a traveling particle with respect to a nearby particle, and [Pcvrel]max is a highest value of product of Pcvrel in the model gas system.

9. The method of claim 6, wherein the plurality of converging ballistic particles comprises a first plurality of converging ballistic particles,

where the ballistic trajectory of one of the first plurality of converging ballistic particles has the starting point in the space occupied by the model gas,
wherein the step of defining the net rate of property influx per unit volume from the model gas system further comprises a step of defining a net rate of total property influx per unit volume from a surrounding model gas,
wherein the net rate of total property influx per unit volume is formed by a first plurality of converging ballistic particles, each of the first plurality of converging ballistic particles is selected from the plurality of converging ballistic particles by the ballistic trajectory having the starting point in one of a plurality of points of original collisions within the space occupied by the model gas, and
wherein each of the plurality of points of original collisions is treated as a point source.

10. The method of claim 9, wherein the step of defining the net rate of total property influx per unit volume from the surrounding model gas comprises:

identifying, for each of the first plurality of converging ballistic particles, the ballistic trajectory;
defining the probability of traveling along the ballistic trajectory;
defining a net rate of particle efflux per unit volume from one of the plurality of points of an original collision at time of the original collision,
wherein the time of the original collision for each of the plurality of converging ballistic particles is identified by the ballistic trajectory, and
wherein velocity of the point source for each of the first plurality of converging ballistic particles is assigned to be equal to mass flow velocity of the model gas in a corresponding point of the original collision at the time of the original collision;
defining a net rate of property flux per unit area in the general point at the given time from one of a plurality of point sources;
defining a net rate of total property flux per unit area in the general point at the given time from the plurality of point sources; and
defining the net rate of total property influx per unit volume in the general point at the given time by applying divergence operator to the net rate of total property flux.

11. The method of claim 10, wherein the step of the identifying the ballistic trajectory comprises:

determining one or more of characteristics of the ballistic trajectory comprising the time of the original collision, an appropriate instant unit vector defining the ballistic trajectory in the starting point, and a velocity vector in the ending point of the ballistic trajectory at the given time; and
defining a size of an expansion zone.

12. The method of claim 10, wherein the step of defining the net rate of total property influx per unit volume in a one-dimensional configuration further comprises a step of formulating the net rate of total property influx as B in Ψ   λ   _   F  ( y, t ) = - 1 2  ∂ ∂ y  ∫ yb   2 yb   1  Q i  ( t, t i ′ )  Z V  ( t i ′, y ′ )  v  ( t i ′, y ′, t, y ) v T  ( t i ′, y ′ )  Ψ in  ( t i ′, y ′, t, y )  dy ′, ∂ ∂ y

wherein
is the divergence operator in one-dimensional configuration, BinΨλ_F is the net rate of property influx per unit volume, t is the given time, ti′ is the time of the original collision, y is position of the ending point in one of the plurality of points of ending collisions, y′ is position of the starting point in one of the plurality of points of original collisions, vT(ti′,y′) is average magnitude of thermal velocity in the starting point at time of original collision, ZV(ti′,y′) is rate of collisions per unit volume in the starting point at the time of original collision, v(ti′,y′,t,y) is a velocity vector in the ending point at the given time, Qi(t,ti′) is the probability of traveling along the ballistic trajectory, Ψin(ti′,y′,t,y) is a property value delivered in the ending point at the given time by one of the first plurality of converging ballistic particles, yb1 is a lower limit of integration over volume of space occupied by the model gas, yb2 is an upper limit of integration over volume of space occupied by the model gas, and
ZV(ti,y′) is calculated as Zv(ti′,y′)=½Pc(ti′,y′)vrel(ti′,y′)n(ti′,y′),
where n(ti′,y′) is particle density, Pc(ti′,y′) is an average number of collisions per unit length, and vrel(ti′,y′) is an average magnitude of relative velocity.

13. The method of claim 12, wherein the probability of traveling along the ballistic trajectory in one-dimensional configuration is calculated as

Qi(t,ti′)=exp(−∫ti′tPc({tilde over (y)}({tilde over (t)}))vrel({tilde over (y)}({tilde over (t)}))d{tilde over (t)}),
where {tilde over (t)} is a parametric time in a range of ti′<{tilde over (t)}≤t, {tilde over (y)}({tilde over (t)}) is a trajectory point of the ballistic trajectory at parametric time {tilde over (t)}, vrel({tilde over (y)}({tilde over (t)})) is the average magnitude of relative velocity in the trajectory point, and Pc({tilde over (y)}({tilde over (t)})) is average number of collisions per unit length in the trajectory point.

14. The method of claim 13, wherein the average magnitude of relative velocity in the trajectory point is calculated by steps of:

defining an instant magnitude of velocity of one of the plurality of converging ballistic particles in the trajectory point with respect to a nearby particle in the trajectory point; and
averaging the instant magnitude of velocity over a plurality of directions of a thermal velocity component of a nearby particle.

15. The method of claim 6, wherein a property value delivered in the ending point by each of the plurality of converging ballistic particles is calculated as

Ψin=Ψλ+Ψg,
where Ψin is the property value delivered in the ending point, Ψg is a field function characterizing property value of known measure, which is changed during traveling time, φ, because of interaction with external field comprising modification of momentum in gravitation field,
Ψλ is an age function characterizing the property value in the ending point of the ballistic trajectory, which is calculated as Ψλ=Ψ0e−λφ,
where Δ is an aging coefficient, which is in range from negative to positive values including zero value, and where Ψ0 is a starting function characterizing the property value carried by each of the plurality of ballistic particles in the starting point of the ballistic trajectory at a starting time, ti, which is calculated as Ψ0(ti′,y′)=Ψ0−[ti<ti0]+Ψ[ti≥ti0],
where ti0 is a local initial time, each of expressions with square brackets is Iverson bracket, which converts a statement in brackets into a number, the number is one if the statement is satisfied, and the number is zero otherwise, Ψ0− is a pre-established property value in each of the plurality of points in space of the model gas system at the starting time ahead of the local initial time, and Ψ is a present property value in each of the plurality of points in space of the model gas system at the starting time greater than or equal to the local initial time.

16. (canceled)

17. The method of claim 6, wherein the plurality of converging ballistic particles comprises a second plurality of converging ballistic particles,

where the ballistic trajectory of one of the second plurality of converging ballistic particles has the starting point on a gas-solid interface,
wherein the step of defining the net rate of property influx per unit volume from the model gas system further comprises a step of defining a net rate of total property influx per unit volume from a gas-solid interface exhibiting mixed diffuse and specular particle scattering,
wherein the net rate of total property influx per unit volume from the gas-solid interface is formed by way of a second plurality of converging ballistic particles, each of the second plurality of converging ballistic particles is selected from the plurality of converging ballistic particles by the ballistic trajectory having the starting point in one of a plurality of points of original collisions on the gas-solid interface, and wherein each of the plurality of points of original collisions resulted in diffuse particle scattering from the gas-solid interface is treated as a heterogeneous point source.

18. The method of claim 17, wherein the step of defining the net rate of total property influx per unit volume from the gas-solid interface comprises:

identifying the ballistic trajectory, for each of the second plurality of converging ballistic particles,
wherein velocity of the heterogeneous point source for each of the second plurality of converging ballistic particles is assigned to be equal to the velocity of the gas-solid interface in a corresponding point of original collisions on the gas-solid interface at a time of diffuse particle scattering;
defining the probability of traveling along the ballistic trajectory;
defining a rate of collisions per unit area in one of a plurality of heterogeneous point sources on the gas-solid interface at the time of diffuse particle scattering,
wherein the time of diffuse particle scattering for each of the second plurality of converging ballistic particles is identified by the ballistic trajectory;
defining a net rate of property flux per unit area in the general point at the given time from one of the plurality of heterogeneous point sources;
defining a net rate of total property flux in the general point at the given time from the plurality of heterogeneous point sources on one or more of gas-solid interfaces; and
defining the net rate of total property influx per unit volume in the general point at the given time by applying divergence operator to the net rate of total property flux.

19. The method of claim 18, wherein the step of defining the rate of collisions comprises:

defining a bulk component of an impingement rate, which is formed by particles chosen from the plurality of converging ballistic particles originated from the original collisions in the space occupied by the model gas;
defining a bulk-specular component of the impingement rate, which is formed by particles chosen from the plurality of converging ballistic particles originated from the original collisions in the space occupied by the model gas and having at least the last preceding specular scattering;
defining a diffuse component of the impingement rate, which is formed by particles chosen from the plurality of converging ballistic particles originated from one or more of heterogeneous point sources;
defining a diffuse-specular component of the impingement rate, which is formed by particles chosen from the plurality of converging ballistic particles originated from original diffuse scatterings from one or more of heterogeneous point sources and having at least the last preceding specular scattering; and
summing the bulk component, the bulk-specular component, the diffuse component, and the diffuse-specular component of the impingement rate,
wherein each of a plurality of impinging particles is selected by an impinging trajectory allowing to target the gas-solid interface in a specific location of the gas-solid interface at a specific time.

20. The method of claim 18, wherein the step of defining the net rate of total property influx per unit volume further comprises a step of formulating the net rate of total property influx as B in Ψ   λ   _   b = - ∂ ∂ y  [ Q ib  ( t, t ib ′ )  σ   Z b  ( t ib ′, y b )  v b  ( t ib ′, y b, t, y ) v Tb   1  ( t ib ′, y b )  Ψ inb  ( t ib ′, y b, λ, ϕ ib   1 ) ],

wherein BinΨλ_b is the net rate of total property influx from the gas-solid interface in one-dimensional configuration, t is the given time, tib′ is a time of scattering from the gas-solid interface, y is position of the ending point, yb is position of the starting point in one of the plurality of points of original collisions on the gas-solid interface, vTb(tib′,yb) is a magnitude of thermal velocity obtained in the starting point at the time of scattering from the gas-solid interface, Zb(tib′,yb) is the rate of collisions per unit area in the starting point at the time of scattering from the gas-solid interface, vb(tib′,yb,t,y) is a velocity vector in the ending point at the given time, Qib(t,tib) is the probability of traveling along the ballistic trajectory of the second plurality of converging ballistic trajectories, Ψinb(tib′,y′,λ,t,y) is a property value delivered in the ending point at the given time by one of the second plurality of converging ballistic particles, λ is aging coefficient, and σ is a property accommodation coefficient.

21. The method of claim 6, wherein the step of defining the net rate of property efflux per unit volume from the general point of the plurality of non-moving points at the given time in the model gas system comprises:

identifying, for each of the plurality of diverging ballistic particles, the ballistic trajectory starting from the general point of the plurality of non-moving points at the given time and ending in one of the plurality of points of ending collisions surrounding the general point;
defining the probability of traveling along the ballistic trajectory;
defining a vector field of a property flux per unit area in the ending point of the ballistic trajectory of a diverging ballistic particle; and
defining the net rate of property efflux per unit volume by applying a divergence operator to the vector field of the property flux per unit area in the ending point; and
shrinking volume of space surrounding the general point to the general point.

22. The method of claim 21, wherein the step of defining the net rate of property efflux per unit volume in one-dimensional configuration comprises a step of formulating the net rate of property efflux as B out Ψ_  FS  ( t, y ) = 1 2  { ∂ ∂ y  [ n  ( t, y )  Q + ( t a ′, t )  v + ( t, y, t a ′, y ′ )  Ψ λ  ( t, y, t a ′, y ′ ) ] } y ′ → y, ∂ ∂ y

where
is the divergence operator in one-dimensional configuration, BoutΨ_FS is the net rate of property efflux per unit volume, t is the given time, y is position of the starting point of a plurality of ballistic trajectories of diverging ballistic particles, y′ is position of the ending point of one of the plurality of ballistic trajectories of diverging ballistic particles, ta′ is a time of positioning in the ending point, v+(t,y,ta′,y′) is a velocity vector of each of the plurality of diverging ballistic particle at the time of positioning the ending point, Q+(ta′,t) is the probability of traveling along the ballistic trajectory of one of the plurality of diverging ballistic particles, Ψλ(t,y,ta′,y′) is property value carried by one of the plurality of diverging ballistic particles at the time of positioning the ending point, and n(t,y) is particle density in the starting point at the given time.

23. A computer implemented method for modeling transport processes in fluids being in a stable condition comprising:

using a fluid model,
wherein using the fluid model comprises treating a fluid flow including a flow of rarefied gases in a fluid system as a flow of a model gas in a model gas system being identical to the fluid system,
wherein the model gas is composed of a plurality of particles, including molecules, which move randomly and interact by collisions,
wherein each of the plurality of particles is assigned to travel with a probability between any of two points in a space occupied by the model gas by following a ballistic trajectory governed by a law of motion, the ballistic trajectory having a starting point in a point of original collision and an ending point in a point of ending collision, and
wherein each of a plurality of ballistic particles transports a combination of one or more of properties comprising one or more of mass, momentum, and energy from the starting point to the ending point;
using a model of property balance,
wherein the model of property balance in a combination the fluid model transforms parameters characterizing motion of a plurality of ballistic particles into parameters characterizing the fluid flow,
wherein the model of property balance comprises:
specifying geometry and boundary conditions,
defining a net rate of property influx per unit volume in a general non-moving point in the space occupied by the model gas, the net rate of property influx per unit volume, which is formed by a plurality of converging ballistic particles, each of the plurality of converging ballistic particles is selected from the plurality of ballistic particles by the ballistic trajectory having the ending point in the general non-moving point,
defining a net rate of property efflux per unit volume from the general non-moving point, the net rate of property efflux per unit volume, which is formed by a plurality of diverging ballistic particles, each of the plurality of diverging ballistic particles is selected from the plurality of ballistic particles by the ballistic trajectory having the starting point in the general non-moving point, and
establishing an integral property balance equation for each of one or more properties being transported by the plurality of ballistic particles in the general non-moving point; and
using a computer for simulating the fluid flow,
wherein the computer for simulating the fluid flow comprises a computer readable medium for storing data associated with a computer program, and a processor for executing a sequence of instructions from the computer program,
wherein the computer program is configured to use the fluid model and the model of property balance, and
wherein the computer program is operable to run on the computer for simulating the fluid flow to compute the flow of the model gas in every general point of a plurality of non-moving points in the space occupied by the model gas and to display results of computing, thereby reliably predicting the fluid flow including the flow of rarefied gases.

24. The method of claim 23, further comprising:

treating each point of a plurality of points in the space occupied by the model gas as a point of collisions for each of the plurality of ballistic particles having the ballistic trajectory with a same ending point;
treating each of a plurality of points of collisions as either a point source for each of the plurality of diverging ballistic particles or a point sink for each of the plurality of converging ballistic particles; and
treating each of the plurality of ballistic particles moving from the point source to the point sink as a property carrier created in the point source by obtaining one or more of properties of specific values being intrinsic to the model gas surrounding the point source, and ended in the point sink by transferring one or more of properties of specific values in the point sink,
wherein a value of property delivered by each of the plurality of ballistic particles converging in the point sink is evaluated regarding whether the value of property is conserved, whether the value of property is changed because of aging, and whether the value of property is modified because of interaction with an external field during a ballistic traveling time.

25. The method of claim 23, further comprising:

treating each of a plurality of collisions on a gas-solid interface of the model gas system, which has resulted in diffuse particle scattering from the gas-solid interface, as an act of interaction involving a property transfer from the gas-solid interface to a scattered particle; and
treating each of a plurality of points of diffuse particle scattering on the gas-solid interface as a heterogeneous point source for each of a plurality of scattered particles,
wherein the gas-solid interface reveals mixed diffuse and specular particle scatterings, wherein velocity of each of a plurality of heterogeneous point sources on the gas-solid interface is assigned to be equal to the velocity of the gas-solid interface in each of a plurality of corresponding points of diffuse particle scattering, and
wherein point source strength of each of the plurality of heterogeneous point sources on the gas-solid interface is assigned to be directly proportional to a property accommodation coefficient in each of the plurality of corresponding points of diffuse particle scattering, the property accommodation coefficient which is the probability, for an incident particle, to accommodate one or more of properties intrinsic to the gas-solid interface and to scatter back in the model gas as a diffuse particle, the property accommodation coefficient being in a range from zero to one.

26. (canceled)

27. (canceled)

28. A special purpose computer, comprising:

a processor;
a non-transitory computer readable memory coupled to the processor;
a user interface coupled to the processor;
a display coupled to the processor; and
a program stored in the non-transitory computer readable memory and executable by the processor,
wherein the program is operable to use a fluid model and a model of property balance,
wherein the fluid model comprises treating a fluid flow including a flow of a rarefied gas as a flow of a model gas in a model gas system, the model gas in which particles including molecules are treated as randomly interacting by collisions ballistic particles traveling with a probability between points in a space occupied by the model gas by following a ballistic trajectory governed by a law of motion,
wherein the model of property balance in a combination the fluid model transforms parameters characterizing motion of a plurality of ballistic particles into parameters characterizing the fluid flow, and
wherein the program is operable when executed to:
compute a trajectory and a velocity of a ballistic particle converging in a general non-moving point at a given time;
compute a probability of ballistic traveling along a converging ballistic trajectory;
compute a net rate of property influx per unit volume in a general non-moving point in a space occupied by the model gas at the given time, which is formed by a flow of converging ballistic particles, each having a preceding collision in the space occupied by the model gas;
compute the net rate of property influx per unit volume in the general non-moving point of at the given time, which is formed by flow of converging ballistic particles, each having a preceding scattering from a gas-solid interface;
compute the trajectory and the velocity of the ballistic particle diverging from the general non-moving point at the given time;
compute the probability of ballistic traveling along a diverging ballistic trajectory; and
compute a net rate of property efflux per unit volume, which is formed by diverging ballistic particles from the general non-moving point at the given time,
thereby upon formulating a system of mutually dependent integral property balance equations in each of a plurality of non-moving points at the given time and resolving the system of mutually dependent integral property balance equations, obtaining property value in each of the plurality of non-moving points at the given time, and
thereby reliably predicting the fluid flow including the flow of the rarefied gas.
Patent History
Publication number: 20190354650
Type: Application
Filed: Dec 14, 2018
Publication Date: Nov 21, 2019
Inventor: Nikolai KISLOV (Tampa, FL)
Application Number: 16/332,276
Classifications
International Classification: G06F 17/50 (20060101);