Platform for Providing Customizable User Brand Experiences
A computer-readable medium encoded with instructions that, when executed by a server, establish processes, for performing a computer-implemented method of providing customizable brand experiences that include end-user physical world interaction that is defined by a brand using a programmable configuration. The processes include receiving and storing at a given one of at least two modules at the server, each module associated with at least one brand, a programmable pattern defining, on behalf of the at least one of the brands with which the module is associated, conditions upon which a potential set of trigger messages when received would cause a change in end-user data, from one state to another state, pertinent to a specific one of the end-users, such conditions defining customization of the given one of the modules.
The present application is a continuation of U.S. patent application Ser. No. 14/960,005, filed Dec. 4, 2015, which is a continuation of U.S. patent application Ser. No. 14/253,621, filed Apr. 15, 2014 (now issued as U.S. Pat. No. 9,218,609), and having the above title. Each of these applications is hereby incorporated herein, in its entirety, by reference.
TECHNICAL FIELDThe present invention relates to the area of server-based software services, and more particularly to computer-implemented methods for providing customizable brand experiences in relation to usage of computer devices such as mobile smart phones.
BACKGROUND ARTSince the presently described invention touches on several fields, it is useful to discuss prior art in these separate areas.
MIT has produced an educational programming language called “Scratch which is meant to make it easier to program computers so that children can understand it.
Google and other companies have built mapping services which are based on a combination of tile servers as well as vector graphics. Google has integrated its mapping services with its “Street View” fleet of cars with cameras on the roofs in order to create a further ground-level view of the world's streets.
There are several advertising networks which specialize in mobile advertising, including AdMob, iAd, InMobi, and others. Their strategy is to advertise in existing apps and on mobile web pages using technology such as banners and interstitials.
Pebbling is an advanced topic in computer science, and an overview can be found in the Ph.D. theses of the inventors. For example, see Applications of Games to Propositional Proof Complexity. A. Hertel, University of Toronto, 2008, or Clause Learning, Resolution Space, & Pebbling. P. Hertel, University of Toronto, 2008.
SUMMARY OF THE EMBODIMENTSIn a first embodiment of the invention there is provided a computer-implemented method of providing customizable brand experiences. In this embodiment, the method includes providing a server, the server coupled to a storage system and coupled to a network, wherein the storage system stores end-user data, associated with a first plurality of brands, and a second plurality of end-users. Additionally the embodiment includes operating the sever to run a plurality of modules, each module associated with at least one of the brands and customized to provide an outcome message as an output, conditioned on a change in end-user data pertinent to a given one of the end-users with respect to the at least one of the brands, from one state to another state, wherein the change from the one state to the other state is further conditioned on receipt by the server of a programmable pattern of a set of trigger messages. Finally, the embodiment includes making the outcome message available over the network to an outcome destination client.
In a related embodiment, the set of trigger messages includes at least one trigger message, received over the network or as an interprocess communication within the server, in the group consisting of (i) a game event message from an electronically monitored game, (ii) a message, received from an application programming interface or via HTTP POST, pertinent to the at least one of the brands; (iii) a message pertaining to purchase of an item that is distinct from the outcome message itself; and (iv) a message, received from a device of the given one of the end-users pursuant to an application running on the device associated with the at least one of the brands.
In yet another related embodiment, the programmable pattern is established by stored configuration data and wherein the configuration data is modifiable by a representative of the at least one of the brands via a graphical user interface. Optionally, the stored configuration data associated with a given one of the modules includes source code for the given one of the modules. Alternatively or in addition, at least a portion of the stored configuration data associated with a given one of the modules is an input to the given one of the modules.
Optionally, the method includes receiving, by the server, updated configuration data, for a given one of the modules from a client computer coupled to the server, such data obtained by graphical manipulation, by a representative of the at least one of the brands, wherein distinct graphical elements represent triggers, states, and the output, and manipulation of the graphical elements in relation to one another defines the programmable pattern.
In a further related embodiment, using what we have called our Pebbling Language, the programmable pattern is defined by (i) a set of icons that graphically represent nodes, wherein each node is a potential state, and a transition from one potential state to another potential state is indicated by a directed edge between two node icons; (ii) a set of pebbles, wherein a pebble placed on a selected node icon indicates a change in state of the node corresponding to the selected node icon, and wherein the set of deployed pebbles collectively represents a machine state of the given one of the modules; and (iii) a set of trigger receivers, each trigger receiver representing a distinct trigger message, wherein a given trigger receiver associated with a given directed edge between two node icons causes a pebble to move in the direction of the given directed edge from a first one of the two node icons to a second one of the two node icons on receipt of the trigger message associated with the given trigger receiver.
Optionally, each node is configurable to have 0 or more types and each distinct type of node performs a distinct action when such node changes state, as indicated by placement of a pebble thereon. Also optionally, a plurality of node icons may be arranged graphically in a group, and the group of nodes is deemed to be pebbled when a designated threshold number of node icons have been pebbled.
In a further related embodiment, the method includes receiving by the server over the network a stream of sourced trigger messages from a server of a partnering brand and relaying the stream of sourced trigger messages to an account of a subscribing brand for use by the subscribing brand with respect to at least one of the modules.
In another related embodiment, the method further includes in connection with a trigger-monitorable activity, storing by the server a selection of a sponsoring brand applicable to a participating end-user; responsive to the stored sponsor selection, receiving by the server an activity trigger stream pertinent to the trigger-monitorable activity and relaying the received activity trigger stream to the account of the sponsoring brand.
Optionally, the method includes, before storing by the server the selection of a sponsoring brand applicable to the participating end-user, receiving the selection by the server over a network from a device of the participating end-user. Also optionally, the method further includes before storing by the server the selection of a sponsoring brand applicable to the participating end-user, making the selection by the server. As a further option, making the selection by the server includes evaluating by the server data characterizing bids received from an auction.
In another related embodiment, the activity trigger stream is defined by a default set of triggers applicable to the trigger-monitorable activity.
In another embodiment, the invention provides a computer-implemented method of providing customizable brand experiences. The method of this embodiment includes:
providing a server, the server coupled to a storage system and coupled to the Internet, wherein the storage system stores end-user data, associated with a first plurality of brands, and a second plurality of end-users;
wherein the server receives trigger messages over the Internet from heterogeneous sources and transmits them to a Logic Engine, operating on the server, that executes a plurality of modules, each module associated with at least one of the brands and customized to provide an outcome message as an output, conditioned on a change in end-user data pertinent to a given one of the end-users with respect to the at least one of the brands, from one state to another state, wherein the change from the one state to the other state is further conditioned on receipt by the server of a programmable pattern of the trigger messages;
so that the server, acting as a cloud-based operating system which executes the modules, implements a universal Internet event bus that receives the trigger messages, and, responsive to them and to the modules, provides outcome messages.
In another embodiment, the invention provides a computer-implemented method of providing brand sponsorship opportunities, and the method includes in connection with a trigger-monitorable activity, storing a selection of a sponsoring brand applicable to a participating end-user. The method additionally includes, responsive to the stored sponsor selection, receiving by the server an activity trigger stream pertinent to the trigger-monitorable activity and relaying the received activity trigger stream to the account of the sponsoring brand. Optionally, the method further includes before storing by the server the selection of a sponsoring brand applicable to the participating end-user, receiving the selection by the server over a network from a device of the participating end-user. Also optionally, the method further includes, before storing by the server the selection of a sponsoring brand applicable to the participating end-user, making the selection by the server. Optionally, making the selection by the server includes evaluating by the server data characterizing bids received from an auction.
In another embodiment, the invention provides a computer-implemented method of providing an exchange for consumers having brand loyalty accounts that store brand loyalty points. In this embodiment, the method includes storing, in an exchange store, a set of current exchange rates for transfer of points from one brand loyalty account to another brand loyalty account. Additionally, the method includes receiving over a network by a server from a client computer of a consumer, a transfer request to transfer a selected number of points from a first selected brand loyalty account to a second selected brand loyalty account. The embodiment includes, in a verification computer process, verifying that (i) the consumer is authorized to perform the transfer and (ii) the first account has stored a sufficient amount of points to enable the transfer to be effectuated. Additionally, the embodiment includes retrieving from the exchange store, a current rate for transfer of points from the first selected brand loyalty account to the second selected brand loyalty account; in an exchange calculation computer process, using the retrieved exchange rate for transfer of points, determining the number of debit points to be debited from the first brand loyalty account and the number of credit points to credited to the second brand loyalty account; and in a transfer computer process, transmitting over the network a debit post message causing the first brand loyalty account to be debited by the debit points number and a credit post message causing the second brand loyalty account to be credited by the credit points number.
Optionally, the exchange calculation computer process also includes calculating an exchange commission that is debited from at least one of the first brand loyalty account and the second brand loyalty account.
In yet another embodiment, the invention provides a computer-implemented method of generating source code for a module that, when executed on a computer, provides an output conditioned on a change, in end-user data pertinent to a given end-user, from one state to a another state, wherein the change from the one state to the other state is further conditioned on receipt by the computer of a programmable pattern of a set of inputs. The method of this embodiment includes providing a graphical user interface wherein distinct graphical elements represent the inputs, states, and the output, and manipulation of the graphical elements in relation to one another defines the programmable pattern; and using the graphical user interface to define graphically the programmable pattern of the set of inputs upon which the change from the one state to the other state is further conditioned.
In a further related embodiment, the programmable pattern is defined by (i) a set of icons that graphically represent nodes, wherein each node is a potential state, and a transition from one potential state to another potential state is indicated by a directed edge between two node icons; (ii) a set of pebbles, wherein a pebble placed on a selected node icon indicates a change in state of the node corresponding to the selected node icon, and wherein the set of deployed pebbles collectively represents a machine state of the module; and (iii) a set of trigger receivers, each trigger receiver representing a distinct trigger message, wherein a given trigger receiver associated with a given directed edge between two node icons causes a pebble to move in the direction of the given directed edge from a first one of the two node icons to a second one of the two node icons on receipt of the trigger message associated with the given trigger receiver.
Optionally, each node is configurable to have 0 or more types and each distinct type of node performs a distinct action when such node changes state, as indicated by placement of a pebble thereon. Also optionally, a plurality of node icons may be arranged graphically in a group, and the group of nodes is deemed to be pebbled when a designated threshold number of node icons have been pebbled.
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context otherwise requires:
A “server” includes a hardware-implemented server, a cluster of computers configured to operate as a hardware-implemented server, and a set of logical processes configured to perform functions associated with a hardware-implemented server.
A “set” includes at least one member.
A “brand” is a trademark or an affinity group.
An “affinity group” is a grouping of individuals having a shared interest, which may, for example, be (1) an interest in goods or services from a particular source, which in turn may be identified by a trademark, (2) an interest in celebrating the birthday of a particular child, or (3) an interest in a program of a school in rewarding performance or participation by students in some activity, such as a spelling bee, an athletic competition, academic achievement, etc.
A “module” is a program, created using the embodiment of the present system that provides a customized user brand experience. Specifically, a module when deployed runs on the server, and portions of the module run on a device of a user have the customized brand experience. Contrast this definition with that of the definition for “application”.
“Source code” for a program is human readable code, that, when compiled or interpreted, can be executed by a device; “source code” therefore includes a module written in our Pebbling Language.
An “end-user” is a consumer using any device which is running a module created with the embodiment of the present system by a brand.
A “trigger message” is a message that encodes and communicates the occurrence of an event previously defined and stored by a brand in the Logic Engine as a trigger event. The message is transmitted either (1) over a network from an Internet-connected device or server to the Universal Event Bus 120 of
A “trigger” is a configuration of an apparatus to cause generation and sending of a trigger message on the occurrence of a trigger event. (See “trigger message”.) A trigger is typically configured by a brand in connection with development of at least one module by the brand. However, once a brand has configured a set of triggers, the resulting stream of trigger messages may be made available to another brand by subscription, in which case the resulting stream of trigger messages is termed a stream of “sourced trigger messages”.)
A “trigger-monitorable activity” is an activity wherein events in the course of the activity can be monitored according to machine state of a relevant set of monitoring devices, so that, among the events, a trigger may be associated with each type of event. One such trigger-monitorable activity is a web-based electronic game. Another is wherein an individual has traveled to a specific geolocation and confirmed the geolocation with the individual's mobile device. Yet another includes participation in a virtual reality or augmented reality experience, in which certain actions cause triggers to be fired. In effect, a trigger-monitorable activity is any type of activity in which participation or action by an end user, can be detected by a trigger created so that, its being fired by an end-user indicates that the end-user is indeed participating in that activity or performing that action. It is not necessary that end-user be aware that a specific trigger monitorable activity is in fact being monitored by a trigger, even though the end-user might be purposefully engaged in the activity. As an example, a user may intentionally use a credit card by swiping it while being unaware that the swiping action also fires a trigger. As another example, an end-user may purchase a specific brand of beverage at a kiosk and a camera may be harnessed to a computer system by which the end-user is identified by facial recognition, so that the purchase by the end-user of the specific brand of beverage may be employed as an activity that fires a trigger. As such, any type of trigger can be used to monitor an activity, and additional trigger-monitorable activities are discussed below.
A “programmable pattern” is a pattern of trigger messages that form a condition for the generation of an outcome message. A programmable pattern may be determined when the module is itself programmed or otherwise built into the Logic Engine; alternatively the programmable pattern may be defined separately from programming of the module or of the Logic Engine.
An “outcome message” is a message, provided as an output of a module, made available to an outcome destination client, wherein the output is conditioned on a change in end-user data pertinent to a given one of the end-users with respect to at least one brand.
An “outcome destination client” is a device coupled over a network to the Logic Engine and configured to receive outcome messages.
“End-user data” is data, providing, for each of n end-users, a value of each of a set of attributes, but the data for any given end-user may lack values for some of the attributes.
A “brand representative” is an individual acting on behalf of a brand in configuring a customized module to provide, to a set of end-users, an outcome message in connection with the brand.
A “module template” is the definition of a module which is not associated with any particular end-user. By contrast, a “module instance” is the product of instantiating a module template for a particular end-user, so there can be only one template, but many instances of it.
The act of “minting” a module or other digital object is the process of instantiating an instance of that module's template.
An “application” is a program that is written for deployment on a device running in its regular native mode.
A “device” is a machine or product, containing a CPU and memory that can execute programs. A “mobile device” is a device that is readily portable.
A “computer process” is the performance of a described function in a computer using computer hardware (such as a processor, field-programmable gate array or other electronic combinatorial logic, or similar device), which may be operating under control of software or firmware or a combination of any of these or operating outside control of any of the foregoing. All or part of the described function may be performed by active or passive electronic components, such as transistors or resistors. In using the term “computer process” we do not necessarily require a schedulable entity, or operation of a computer program or a part thereof, although, in some embodiments, a computer process may be implemented by such a schedulable entity, or operation of a computer program or a part thereof. Furthermore, unless the context otherwise requires, a “process” may be implemented using more than one processor or more than one (single- or multi-processor) computer.
A “splice” is a utility program that can be incorporated, using an API, into a stand-alone application, which runs on an end-user device, in order to configure the stand-alone application to provide a brand experience to the end-user.
OverviewThis ecosystem creation platform is in many ways much more powerful than any previously envisioned compiler or integrated development environment (IDE). It can be used by brands, companies, stores, or even individuals to create simple but compelling applications, programs (i.e. modules), and games which can be deployed via a wide variety of devices including, but not limited to smart phones, tablet computers, laptops, desktop computers, smart watches, optical head-mounted displays and other wearable computers, onboard vehicle computers, gaming platforms, and so forth. However, unlike typical IDEs which are only capable of creating software applications, the embodiment of the presently-described platform also creates the ecosystems in which they will operate.
For instance, present system can be used to create or augment a mobile app as well as creating and deploying a broad set of heterogeneous real-world triggers with which that app will interact. In that sense, this embodiment of the presently-described invention is a universal Internet event bus and programming platform, but can also be viewed as a marketing platform which is capable of tying together all existing advertising channels. For instance, by creating and deploying triggers to a wide variety of standard advertising channels such as print, television, bus stops, billboards, radio, and digital mediums, the embodiment of this invention upgrades all traditional advertising to become digital and interactive, in effect creating a rich ecosystem in which the end-user of a brand's app can interact with that brand's sophisticated marketing campaign that spans both cyberspace as well as the real world.
The embodiment of the presently-described programming platform differs radically from previous and existing programming environments and IDEs in several respects described immediately below, and then in much greater detail later in this exposition:
1. IDE Vs. Ecosystem Creation Platform:
One key difference between traditional IDEs and this embodiment of the presently-described invention is that the former consist almost entirely of compilers or interpreters, with peripheral services such as Eclipse's Android simulator, and Microsoft Visual Studio's Azure cloud deployment functionality. These are used mostly to create, debug, test, and deploy software applications. By contrast, the embodiment of the present invention has all of this standard functionality for creating modules, but also has the ability to create the ecosystem in which these software modules will be used. For instance, in one embodiment, the presently-described platform provides a web-based programming environment which can be used through any web browser. It not only provides tools for the creation, deployment, and hosting of applications as well as their support services, but also for building the components of the real-world ecosystem (i.e. triggers) in which those applications will function. In addition, once a module has been deployed and is operating, the platform provides the analytics tools for reporting both vital and subtle usage details through charts, graphs, heat maps, and so on. It exposes all of these powers and functionality within one unified and integrated service in which the parts are joined seamlessly and efficiently. Although a portion of the present invention can also be implemented as a stand-alone application like Microsoft Visual Studio or Eclipse, the preferred embodiment is for it to be implemented as a cloud-based service, providing further differentiation from existing means of creating programs.
Traditional programming environments and IDEs typically allow for the creation and manipulation of applications whose inputs reside on devices such as desktop computers, and end-users typically interact with these applications while indoors, most often seated in front of these devices. More recently, the same programming environments have made it possible to create mobile applications which are instead deployed to devices such as smart phones, allowing end-users to run these applications outdoors. However, the predominant input mode on mobile devices is still largely identical to that of laptops and desktop computers in that in all of these cases, end-users input their wishes and commands into a screen. The means of input (e.g., keyboard vs. mouse vs. touch screen) may vary greatly, but the paradigm of inputting commands directly into a graphical user interface remains the same.
By contrast, the presently-described programming platform enables the creation and manipulation of modules which, in addition to having standard graphical user interfaces, also have an additional new set of possible inputs called triggers. These input/interaction points are also created and hosted using the embodiment of the presently-described platform, and they can be situated in the physical (real) world, although they can also exist on servers or in cyberspace. Previous IDEs of course also make it possible to access a device's sensors, but what they do not do, and what is unique to the embodiment of the presently-described platform, is the high-level ability to easily create and deploy an entire network of heterogeneous triggers so that programmers don't have to write low-level code every time they want to create a real-world interaction. In that sense, previous attempts to adapt traditional programming languages, compilers, and methodologies to the new mobile world have completely failed to recognize the importance of a mobile device's multitude of sensors in order to greatly extend the input signals available to applications. They make it possible to access and use a device's sensors, but they fail to bring them to the forefront where it becomes easy to create and use them.
The embodiment of the present invention therefore creates a new paradigm of ecosystem-centric computing. Rather than depending on inputs being located mostly within the software and hardware user elements of a device, the embodiment of the present system is characterized by also easily exposing and providing many more inputs (triggers), many of which can be located in the physical world. In order to get inputs from the triggers in the physical world, the end-user interacts with them using a computing device so that rather than end-user inputs being initiated internally from within the device, they exist outside of it and are triggered externally using the device's sensors. In addition, other types of triggers can be located in software or in cyberspace rather than in the real world. This creates a universe in which modules running on a variety of devices have vastly more and vastly richer opportunities for interaction.
2. User-Friendliness:
In one embodiment, the system's most unexpected characteristic which differentiates it from existing programming environments is its user-friendliness. This is achieved by a surprising and radical departure from the core feature of traditional programming languages in that ours does not have a grammar or syntax. Standard programming languages, such as Java, C, C++, C#, etc. each have a syntax defined by a context-free grammar that can be captured using Backus-Naur form, which means that these are all text-based programming languages. By contrast, the embodiment of the presently-described new programming “language” is entirely visual, and not text-based at all. Rather than being based on syntax and grammar, the presently-described language at its core is based on an entirely different concept from unrelated area of computer science: Pebbling Games. An interested reader is referred to the Ph.D. theses of the inventors. For example, see Applications of Games to Propositional Proof Complexity. A. Hertel, University of Toronto, 2008, or Clause Learning, Resolution Space, & Pebbling. P. Hertel, University of Toronto, 2008. Unlike programming languages, which comprise their own distinct area of computer science, pebbling games are an advanced topic which come from the areas of graph theory and computational complexity. They are simple one-player games that are typically used to prove logical results in these areas, and are of interest to us because they have two very useful properties: The first is that they are games which are so simple that even a child can quickly understand and master the rules. The second is that pebbling is immensely powerful from a computational complexity point of view and is particularly good at capturing the notion of state. This contrast is important because it goes against the typical trend in nature that power and flexibility usually come at the expense of simplicity, but in this case we find them entwined together and are able to exploit this remarkable fact by using pebbling as the basis for building a unique graphical programming language which is Turing-Complete.
In one embodiment of the presently-described graphical programming language, the programmer uses the embodiment's web-based interface to build graphical diagrams that encode the workings of a computer module. The key characteristic of this new way of programming is that it is extremely visual, intuitive, and requires little or no prior training in computer science. This stands in stark contrast with traditional syntax/grammar-based programming languages which require a great deal of expertise, education, and experience before programmers are able to achieve proficiency. In other words, using the embodiment of the presently-described Pebbling-based Programming Language, even people without technical backgrounds can use it to create sophisticated and compelling modules. This Pebbling Language is only one embodiment, and of course it is possible to use a more traditional language such as Java (or any other programming language) instead.
3. Additional Components:
In addition to the core functionality and characteristics described above, the embodiment of the present system also contains several additions to this core functionality which are deeply-integrated and will also be described in greater detail below. In brief, they are:
Sponsorship Junctions:
Since the embodiment of the present system can been used to build rich ecosystems of applications and triggers, the question then becomes how to construct the most efficient ecosystems to achieve certain goals. For instance, brands might build a trigger-based ecosystem in order to create more compelling interactive experiences for customers using their apps. Similar ecosystems could be built in order to allow brands to sponsor people for doing normal everyday activities such as playing video games or visiting theme parks. In this type of relationship, an experience provider such as a video game maker or theme park owner may wish to create a Sponsorship Junction in which this owner defines a number of triggers, and then invites various brands with their apps to sponsor that event. These brands define logic that makes use of the incoming triggers from the game to offer sponsorship benefits in the form of rewards and in-app state changes to end-users who are participating in the experience. The end-user then selects his/her favorite sponsor from those who have signed up, and receives rewards from that sponsor as he/she plays the video game or goes on rides at the theme park. Part of the Sponsorship Junction's role is to facilitate the mechanics of sponsorships and rewards, linking the event's triggers to events in a brand's app, but the other main function is to simplify the required business development so that rather than having, say, every game developer have to make a separate deal with every sponsor, each entity only makes one deal with the Sponsorship Junction, thereby drastically reducing the business complexities involved. The overall embodiment of the presently-described system includes these Sponsorship Junctions and their functionalities as a sub-component.
Loyalty Points Exchange:
One standard type of loyalty program involves brands awarding loyalty points to customers, and since the presently-described programming language is Turing-Complete, it can easily implement this type of program for many brands, all within the same system. Because of this, and unlike current brand loyalty points systems, which are siloed from each other, the embodiment can enable new functionality in the form of a Loyalty Points Exchange. This is a service which acts something like a currency exchange, except for loyalty points. For instance, an end-user might have accounts and loyalty points with both Brand 1 and Brand 2 within the embodiment of the present system, and wants to redeem points from Brand 1 in order to receive some kind of reward, but doesn't quite have the required number of points. This end-user can then convert points from Brand 2 to those of Brand 1 according to the system's current exchange rate in order to then be able to afford the reward. The system does this in a way such that both brands as well as the end-user end up profiting from the transaction. The overall embodiment of the present invention includes a Loyalty Points Exchange and its functionality as a sub-component.
Trigger Streams:
In the same way that Twitter allows individual users to broadcast messages, there is value in the ability for individuals or entities to broadcast triggers, and the embodiment of the present invention contains a sub-component enabling this functionality which we call “Trigger Streams”. For instance, a company or information provider can use the embodiment of the present system to broadcast a stream of triggers to which brands or other information consumers using the embodiment can subscribe, and then react to some or all of the triggers in that stream.
Detailed ArchitectureThe system's Logic Engine 110 is the nerve center of the embodiment of the present invention and includes database tables 211 containing account data for one or more partners (brands, companies, individuals, etc.) who use this system. This embodiment is used to define a module template, which in turn is then used to instantiate an instance of the module for an individual end-user. This allows different end-users' modules to be in different states. Each account contains the logic and data for one or more modules 212 as well as end-user data 213, 214, 215 for each of their end-users in the context of each module. This feature saves the system's partners from having to host and manage all of their own end-user data, and will also help them to decrease latency. Note that every end-user does not necessarily have an account with every partner, and within each partner, each end-user does not necessarily have data associated with every module, since every end-user might not even have each of the modules.
The system's Logic Engine 110 is connected via the Internet to various partner servers 221 which are running software allowing data to be shared with the present system such that individual partner servers 222, 223, and 224 are associated with their corresponding account data within the Logic Engine. This allows partners who for privacy or other reasons require that the end-user data be stored on their own systems to work with us.
The system Logic Engine is also connected to its Trigger Network 130. Much like module and end-user data, trigger definitions are stored with a partner's account data 211 in the system's Logic Engine. Triggers are heterogeneous in that there are many diverse types which can work in various different ways. More information on these different trigger types will be given later in this exposition, but their commonality is that they all define a data message which can be sent from various different sources to the system's Logic Engine 110, where one or more modules are registered to listen for them and in turn change state or react to that message. Some trigger types consist largely of data and exist in the Logic Engine, with a low-tech representation such as a QR code in the real world. When the end-user interacts with that representation, the module being run on the end-user's device causes the logical aspect of that trigger to be found and fired. In that sense, the visual call-to-action associated with triggers does not necessarily have a technological hardware component. However, in some cases they do, and in other cases they can exist as software on third party servers 221. In many cases, triggers are user-initiated, but in some they are not. One aspect that they all share is that they help to create the ecosystem in which a module 212 has many interaction points. Triggers can contain metadata such as the geolocation or IP address from where they originated. They can also have restrictions on them indicating that they cannot be fired from certain locations or under certain circumstances such as outside of specific time windows.
The system's Logic Engine is also connected by way of the Internet 200, 240 to individual end-user devices 241. These devices run applications created by the system's partners, and these applications can be partially programmed by them using traditional IDEs, but can also be entirely defined using the embodiment of the present system. In the hybrid case, we make an API available to them which can be spliced into their native applications 242, 243, 244 in order to run the modules 212 which they created in the system's Logic Engine, and to the end-user this will all seamlessly appear as native code. In this manner of creating sophisticated modules using the system and then splicing them into their native applications, even partners without strong technical expertise can very easily add the system's powerful functionality to their apps.
Finally, the system's Logic Engine is connected via the Internet 210, 250 to a user-friendly graphical interface 251 running in a web browser on an ordinary computer 252. This user interface has different access levels and is used to control all aspects of the system's Logic Engine. For instance, it is used to define modules as well as triggers, launch them, provide analytics data regarding their usage, and so on.
System User InterfaceThe system's Pebbling-based Programming Language is best described together with its user interface.
In one embodiment, the system uses an extreme version of object-oriented programming in which a programmer creates self-contained atomic objects 340 such as Modules 310, Triggers 320, and Variables 330, which are respectively shown as squares, hexagons, and circles in this view. The system also supports many other types of objects which are not shown, such as, but not limited to receivers. The system has facilities for defining the scope and visibility of each object.
Each of these objects performs a different function, and objects of similar type are grouped together, arranged in horizontal bands. In order to create one of these objects, the programmer clicks on a creation button 350 located in the appropriate band, at which point a wizard walks that programmer through steps appropriate to the creation of the object for that band, requesting information when necessary.
Although these objects are created independently and are self-encapsulated, they act as building blocks, which can be combined and used by other objects. For instance, as has already been described in previous sections, Triggers 320 form the ecosystem of inputs through which the final modules(s) created within an account using the embodiment of this system will interact. First they are created independently, and then they are referenced by the modules(s). Similarly, Variables 330 act very much like variables in typical programming languages and have types such as integers, Booleans, strings, dates, and so on. Much like Triggers, Variables are first created independently, and then referenced by the modules(s). Receivers can similarly be created independently and then be referenced by modules. The purpose of receivers is to allow a module to register to listen for specific triggers.
Modules 310 are the most important and complicated objects in the system, and as already mentioned, they are the system's equivalent of programs. They are created within the present embodiment of the system and then deployed to end-user devices such as smart phones, tablets, web pages, and so on. Modules are the entities within the system that are programmed using the system's Pebbling Language, or some other equivalently expressive programming language. In order to program a module using the system's Pebbling Language, a programmer clicks on the square icon of a module and opens the Module Editor. The system's Pebbling Language is based on state-diagrams, and pebbles are placed on these diagrams in order to record which state the modules written using this language are in.
The Module Editor is a mouse-driven graphical user interface which implements an editor for creating pebbling state diagrams. It contains a gridded canvas 400 on which the programmer places different components in order to create a state diagram. The canvas has standard controls on the lower left corner such as a zoom slider 401 and a full-screen mode toggle 402.
In order to create pebbling state diagram components, the programmer uses the controls in floating edit menu 410. These controls include standard tools such as a grabber 411, which is used to grab and scroll the canvas using the mouse as well as a selection tool 412 which is used to select an existing component. This menu also includes an undo tool 413 for undoing the last action performed, and a redo tool 414 for undoing an undo.
Below those tools we find the tools for creating the components of the pebbling state diagram. The node creation tool 415 is used to place a generic pebbling node anywhere on the canvas. It has a dropdown menu which allows the programmer to first select a specific rather than a generic type of node to place. Next we find an edge creation tool 416 which is used to create a standard edge between two or more nodes. Its dropdown menu acts similarly to the one previously mentioned, and allows the programmer to create a specific type of edge rather than a generic one. Finally, below this we have a group creation tool 417, which is used to create a default group out of two or more nodes. It also has a dropdown menu, allowing the programmer to select a specific type of group to be created.
These three types of components—nodes, edges, and groups—constitute the main building blocks of a pebbling state diagram, and after they are created, their properties can be changed by using the edit tool 418. How these components function together in order to create a module will be described in greater detail below in
The final tool in the edit menu is a template selector tool which allows the programmer to quickly and easily create useful common pebble state diagram patterns in order to save time.
The Module Editor's floating view menu 420 is used to change the view of the pebbling state diagram. For instance, 421 is the component list view, and clicking on it will open a dialog box which provides an interactive list of all of the existing components. Below that we have the grid view controls 422, which allow the programmer to toggle the grid on and off, change grid spacing, toggle snap-to-grid functionality, and so on. Next we find the layer tool 423, which is used to create and select layers in the editor so that the programmer can better organize the components being created. Each component has a z-order field, which can also be used for the purpose of hiding components within the layer tool's controls. Finally we have the image toggle tool 424, which is used to toggle Image Nodes to show and hide the images that they contain.
Edges 510 constitute the second major class of components which make up pebbling state diagrams, and they form the paths along which pebbles may move from node to node. Edges always lead to at least one node, and their point of origin may be a node or a group. Edges may lead to more than one node, as is the case with edge 511, which splits into three. The split is based on a probability, which is illustrated by the icon 512 at its split point. When a pebble moves down this edge, it has a certain probability 513 of taking any one of the three paths. In addition to probability edges 511, the system also has other types of split edges, which will be described later.
Edges may have receivers 520 associated with them. Receivers capture the messages which are sent by triggers, and they contain icons indicating the type of trigger to which they are bound. A receiver capturing a message from a trigger is the impetus which causes a pebble to move across the edge with which it is associated. Receivers on edges are therefore the mechanism that ties the Pebbling Programming Language to the system's external triggers out in the real (as well as virtual) world, and they are what cause pebbles to move and to change in state. An edge may also have no receivers on it, in which case a pebble will simply move across that edge as soon as it arrives at the node constituting the edge's start point. Edges may also have variable conditions 530 associated with them. These allow the programmer to define additional conditions based on previously-created variables which must be satisfied before a pebble can move along that edge. So, for instance, it is possible for a receiver on an edge to capture a message from a trigger, but for the pebble at its start point not to move because the variable condition on that edge has not yet been met. Similarly, it is possible for a pebble to arrive at an edge without a receiver on it but not cross it since its variable condition has not yet been met.
The final type of component in this embodiment of the system's Pebbling Programming Language is a group 540. Groups contain two or more nodes, and can have two conditions on them. The first is the group condition 542, which defines how many nodes in the group must have pebbles on them in order for the group to be satisfied. In this case, the group condition is an “AND”, which means that the group is satisfied only when all nodes in the group have pebbles on them. Other types of group conditions include “OR”, which means that the group is satisfied when any one of the nodes in the group has a pebble on it, and yet another type of group condition is a threshold, in which, say, any two out of the three nodes would have to have pebbles on them in order to be satisfied. Other types of group conditions are described later. In addition to group conditions, groups can also have variable conditions 541 on them which perform the same function as variable conditions on edges 530, as well as edges leaving them 560.
Located at the bottom of the Pebbling State Editor screen is a button 550, which starts the system's Simulator.
The Simulator's purpose is to provide the programmer with a means of running and testing a module that was created using the Pebbling Language.
The Simulator screen additionally contains two other panes. On the left is the Triggers pane 640 which provides an interactive list of all triggers which are associated with any receivers within the pebbling state diagram. The right-hand pane 600 contains the actual Simulator screen and controls. At the top are Simulator options 610 which allow the programmer to select a fake test user for this simulation and to perform all relevant actions on that end-user such as resetting the user's data, create another fake user, and so on. In the center of the Simulator pane we find the preview area 620, which is dedicated to providing a graphical software simulation of a device such as a mobile smart phone or tablet 621. This simulated screen will show the running module, and preview exactly what an end-user with a real device would see if the module were deployed in earnest. Below this we find a menu 622 for selecting from many different devices and screen resolutions so that the module can be tested exhaustively on all hardware that is relevant to the market at that time. Next, we find the actual Simulator controls 630, which allow the programmer to proceed through the computational steps of the module by resetting, stepping through, or stepping over the sequence of pebble movements relevant to the execution of the module, as is common in standard compilers. In addition, the Simulator allows the programmer to drag and drop pebbles to set up the state diagram in any desired configuration. Finally, the button in the bottom right-hand corner of the screen 650 lets the programmer end the simulation and return to the editor.
The results of this action are shown in
Ultimately, embodiments of the present invention, with their triggers and Pebbling Language, have one main purpose: To create applications that can be deployed to the devices of end-users. These may be stand-alone applications, or they can come in the form of utility programs that can be spliced into existing stand-alone applications using an API. We refer to these utility programs as “Splices”.
We have already seen the system's Simulator, which allows programmers to test and debug their modules written using the system's Pebbling Language. In addition to the Simulator, the system provides another tool for debugging called the “Sandbox App”. The Sandbox App is a native application which can run on an end-user's device. It is meant for debugging or demonstrating a module written using the system's Pebbling Language in the same type of environment that an end-user will use the application. Whereas the Simulator is a virtual device and has virtual triggers which are clicked using a mouse, the Sandbox App operates on a real device interacting with real triggers. For instance, the Sandbox App can run on a smart phone, and allow the end-user to interact with physical, real-world triggers. The system can therefore deploy modules written with its Pebbling Language to physical devices in three different ways: (1) Being run by the native Sandbox App, (2) as a stand-alone application, and (3) as a splice in an existing application.
In all of these cases, the application contains functionality for interacting with triggers, and this ability is shown in
An important point of note is that the system is able to deploy an immensely diverse range of triggers. It is useful for all triggers to have some visual similarity to each other, and in this case they are shown as hexagons, although this is not strictly necessary.
Some of the triggers can be deployed in the real world. These “Physical Triggers” include, but are not limited to: (a) Vision triggers 1110, which are recognized using a device's camera, (b) Geo triggers 1200, which are recognized using a device's GPS, (c) NFC triggers 1300, which are recognized by a device's near-field communications sensors, d) Codeword triggers 1400, which are recognized when an end-user types a certain string into the device, (e) Peer-To-Peer triggers 1500, which are recognized when an end-user interacts with another end-user's device, (f) Sound Recognition triggers 1600, which are recognized by a device's microphone, and (g) Proximity triggers 1700, which activate when an end-user comes within a specific range of a location, person, or other object. Triggers need not contain any high technology such as a CPU, and in some cases they are as simple as ink on paper.
The system can also deploy several “Third Party Triggers”, which make it possible to integrate with existing social media platforms. These include, but are not limited to: (a) YouTube triggers 1810, which are recognized when an end-user watches a particular YouTube video, (b) Facebook triggers 1910, which are recognized when an end-user likes or follows a particular person, brand, or other entity on Facebook, (c) Google Plus triggers 2000, which are recognized when an end-user+1s, follows, or adds a particular person, brand, or other entity to a circle on the Google Plus platform, (d) Twitter triggers 2110, which are recognized when an end-user tweets a particular message or follows a particular person, brand, or other entity on Twitter, and (e) Custom API triggers 919. These are a particularly powerful type of trigger which consist of code that can be run anywhere such as a server, making it possible for any business to start sending trigger events to the system's Logic Engine. The system also supports an additional implementation of the system's custom triggers without the use of an API in that any Internet-connected device can send a trigger event to the present system using an HTTP POST message which encodes trigger information which uniquely identifies it, along with its data and parameters.
Finally, the Logic Engine 110 also contains several internal “System Triggers” which make it possible to send trigger events that are not a direct result of an end-user interaction. For example, these include, but are not limited to: (a) Variable Change triggers 920, which fire when the value of one or more variables change or reach specific thresholds, (b) Pebble-Initiated triggers 921, which fire when a pebble lands on a specific node, and (c) Timer triggers 922 which fire at a specific time. One type of system trigger that is a response to an end-user interaction is the In-App Click Trigger 923, which fires when an end-user interacts with a UI element in the app such as a button.
The trigger system is completely flexible and extensible, so that any future triggers 924 can be easily added without a great deal of effort. For instance, it would be a trivial matter to include virtual reality or augmented reality triggers in which an end-user's avatar, or the end-user him/herself could walk into a graphical representation of a trigger in a virtual world or augmented reality scene, and thereby cause it to fire. In one sense, because of their immense flexibility, the Custom API triggers can be used to implement any future trigger, although the system can also be upgraded to contain specific new types.
All of these diverse triggers create a universe around the Logic Engine. The Logic Engine is used to create and deploy modules as well as triggers, and then the triggers create the ecosystem in which those modules will be used. Because the triggers are heterogeneous, this is very powerful because they can be deployed in all genres of advertising. All types of triggers may have metadata associated with them indicating the geolocation or IP address from where they originated, information about the identity of the person or entity that fired the trigger, the time at which they were fired, and so on. When defining triggers, it is also possible to place restrictions upon them such as geographic areas in which they can or can't be fired, time windows inside (or outside) of which they can or can't be fired, and so on. These restrictions are useful for entities such as national brands, who only want triggers to be usable in a particular state or country or during certain hours to render them inoperable outside of those regions or times. The system can also have many other types of metadata and restrictions imposed on its triggers, and these examples are not meant to be limiting.
Because they are heterogeneous, the various triggers require different end-user interface configurations and actions on the part of the end-user;
The next group of triggers is important because they allow the present system to be integrated with existing social media channels. We shall use YouTube, Facebook, Google Plus, and Twitter as examples, but these by no means constitute an exhaustive list of compatible third parties. The purpose of these triggers is for them to be fired when an end-user interacts with these third party services in the regular way. The end-user experience for interacting with these third-parties is illustrated in
Alternatively, this action can be performed in the relevant social media company's app or website, in which case the present system must know that a specific end-user performed that specific action, and then make sure that the correct end-user receives the benefit of the ensuing trigger event. The system can identify the end-user in question because the end-user has previously entered his/her identifying information or credentials from the relevant social media platform into his/her instance of the advertiser's application. The system then learns that the end-user has performed the desired action, and this can be done in three ways: 1) By implementing an API from the social media platform which specifically performs this service, 2) By working with the social media platform to implement an API from the present system on their end which performs this service, or 3) (When appropriate) by using other means such as monitoring social media channels or otherwise “scraping” Internet data and firing the appropriate event when the desired end-user has performed the desired action.
However, trigger interfaces are only one type of screen that the system can create and deploy to different devices. Another important type of screen that can be created and deployed is the pebbling module screen. A pebbling module screen's purpose is to allow an end-user to interact with a module created using the system's Pebbling Language within an application that has been deployed to the end-user's device.
In addition to trigger interface and pebbling module screens, which themselves can be easily skinned and otherwise customized, the system also provides facilities such as user interfaces and wizards for easily creating many other types of customizable application screens, thereby greatly reducing the amount of time and effort required to create a useful application. These application screens are grouped together and comprise an application by defining them as well as how to navigate between them in the system's web-based editors. This allows a programmer to create a fully-functional application (or several screens to be inserted as a splice into a fully-functional application) without any advanced formal programming skills, and almost entirely using the present system. Once an application is thus defined, it can be deployed to the Simulator, the Sandbox App, as a splice, or as a stand-alone application. These steps are shown in
Once an application has been created, it can be deployed along one of three paths: (1) Along path 2420 to the system's Simulator 2421, which will allow the programmer to access and debug the module's screens and triggers, (2) Along path 2430 to the system's Sandbox App 2431, which will allow the programmer to access, debug, and demonstrate the module's screens on a real hardware device and interact with real triggers, and 3) Along path 2440 as a stand-alone application or application splice which has been included in a 3rd party app via the system's splice API; this is the system's way of launching a module in earnest once it is ready for production. Note that modules created using the Logic Engine's Pebbling Language editor are simply software that can be deployed to any device or Simulator that can run them.
These different ways of debugging, testing, demonstrating, and deploying an application built using its interface forms a natural “development pipeline”, and is shown in
Edges 511 connect one node 2611 to one or more nodes and constitute the paths over which pebbles may move. In this case, the edge is a split edge which leads to nodes 2612, 2613, and 2614. Alternatively, instead of starting at a node, an edge's start point may be a group. If an edge leads to more than one node, it can have a type 512 which is located at the split point and shown as an icon in a circle. These edge types are described in more detail below and shown in
Groups 540 contain two or more nodes 2621, 2622. Like edges, groups have types 542 as well as variable conditions 541, which are both also shown as circles. Like edges, the variable condition on a group is optional. A group's purpose is to create a group of nodes in which one or more must be pebbled according to the group's type in order for that group to be satisfied. A group's possible types are illustrated in
Both nodes as well as groups can be set to retain their pebbles or not. If they retain their pebbles, then instead of moving, any pebble on them is first duplicated, and the duplicate is then moved. Otherwise, the pebbles themselves move without duplication, leaving the nodes that they came from empty, without pebbles on them.
By contrast, variable change nodes 2700 act very differently by changing the value of a variable when a pebble arrives on it. Once the variable has been changed, the pebble can be deleted. Variables are one mechanism by which programs (modules) can communicate with each other, since many programs (modules) (depending on scope) can access the same variables. Images 2701 and 2702 respectively depict foreign state change senders and receiver nodes, and comprise another mechanism for programs (modules) being able to communicate with each other. For instance, a foreign state change sender node may be placed in module A, and a foreign state change receiver may be placed in module B, after which they are paired. These act as pebble teleporters in the following way: When a pebble arrives on the foreign state change sender node in module A, it is immediately teleported to the corresponding foreign state change receiver node in B.
Images 506 and 2703 respectively depict prize and Minting Nodes, and these can be used to issue awards to an end-user. When a pebble arrives on a Prize Node, it creates an award such as a coupon, digital song, game, or other digital entity which is issued to the end-user, whereas Minting Nodes create a new module for the end-user. Pebbles on these nodes can be deleted once they have performed their actions.
Animation nodes 2704 play an animation when pebbles arrive on them, after which these pebbles can be deleted.
System trigger nodes 504 fire an internal system trigger when pebbles arrive on them, after which these pebbles can be deleted.
HTTP POST nodes 2705 send an HTTP POST message with desired parameters to an external source such as a server or other Internet-connected device when pebbles arrive on them, and again these pebbles can be deleted after this message has been sent. This type of node provides the system with the ability to perform general output communications and send instructions or data to any device on the Internet, and is therefore very powerful.
Finally, Multi-Attribute Nodes 500 are nodes which combine the powers of two or more of the previous nodes.
These node types are just examples of possible types that can be included in the system's Pebbling Language and are not meant to constitute a complete list.
In order to support the previously mentioned details and user interfaces, the embodiment of
One of the most basic functions of the system is its ability to create and manipulate the various entities such as modules, triggers, variables, and so on, and this functionality is illustrated in
The system's Logic Engine 110 has one or more servers which implement the basic functionality of conveying information from the system's database 3110 and its user interface 251. This is performed through C.R.U.D. (Create, Read, Update, and Delete) requests 3124 from the user interface in response to programmer actions. These requests are sent to the Logic Engine where they are received and processed by the Service Back-End 3120. It relays 3100 the appropriate C.R.U.D. commands to the database 3110 containing entries 3111-3115, which performs the appropriate action by either reading, writing, deleting, etc. the relevant data. When information needs to be updated or displayed in the programmer's interface 251, the service back-end sends a request 3121 to the Logic Engine's push notification service 3122, which in turn sends a push notification over channel 3123 back to the programmer's user interface 251, which then updates the programmer's view.
As already mentioned, the programming language used by the present system need not necessarily be based on pebbling, but rather can be a traditional language such as Java, C, C++, Python, or any other popular Programming Language. All of these as well as the system's Pebbling Language are expressive enough to allow programmers to create customized modules which change state based on trigger inputs.
Next, at time t2, the module responds to the system's reception of trigger 2. It evaluates trigger 2 in the context of state 2, changes to state 3, and then evaluates and stores state 3. Similar sequences happen at times t3, t4, etc., until at time tn, the module reaches an output state as follows: At time tn,1, it receives trigger n 3200. At time tn,2, the system evaluates trigger n in the context of the module being in state n 3201. At time tn,3, the module changes from state n to state n+1 3202. State n+1 is evaluated and stored at time tn,4 3203. At this point, the system's evaluation of the module leads to time tn,5 at which point the module generates an output reward message 3204, which is then transmitted 3205 at time tn,6. After this, the module does not necessarily terminate, but rather can be ready to receive and react to more triggers.
Within the Logic Engine 110, incoming trigger data is received and processed by web server 3310. This data is then relayed 3301 to the system's context loader 3320. The context loader's role is to fetch and prepare all of the information, or context, which will be required to process a module's response to the incoming trigger. Context includes information such as the module's current state for the relevant end-user(s) as well as the module's logic, or rules for responding to triggers. In the case of this embodiment of the system's Pebbling Language, this includes the program's (module's) state diagram, trigger data, pebble locations, variable values, etc. The context loader fetches this information by sending the trigger data 3302 to the system's database 2610, which replies with the relevant context data 3330. If the module is unlocked, then a lock is placed on the relevant module so that it can be edited by at most one Module Processor at once, and this context data is then relayed 3331 by the context loader to the Module Processor 3340. If the module is locked, then the trigger is placed into a first-in-first-out queue within the context loader, and this will be processed when the module becomes unlocked.
The system's Module Processor 3340 is responsible for carrying out the computation resulting as a response to the trigger. In the case of this embodiment of the system's Pebbling Language, the Module Processor loads the module's state diagram 3341, applies the trigger, and updates the module by moving all relevant pebbles (if any) to their new locations. Some edges have no receivers on them, in which case pebbles can continue to move in a cascading fashion. The Module Processor moves all triggered and cascaded pebbles until they have come to a resting state and no more pebble movement is possible. In the meantime, pebbles which are moving can cause many different events to happen. For instance, among others, they can change the value of a variable, cause pebble-initiated trigger to fire, or cause an HTTP POST to be sent to an arbitrary server. These events are placed into an output queue 3342 in a first-in-first-out manner which can be overridden by programmer-flagged priority events that can jump to the front of the queue. Once the pebbles have come to rest, the Module Processor begins the task of dispatching the items in the queue one by one. There are two different types of items in this output queue: 1) Those which will initiate external outputs, and 2) Those which will initiate internal outputs. External outputs such as HTTP POSTS are sent from the Logic Engine using channel 3350. By contrast, internal outputs such as variable changes or internal triggers feed back into the Logic Engine. Variable change events are sent via channel 3371 to the system's database 2610, which performs the relevant update. When variables are changed, the system must check to see if any variable conditions have just become satisfied and if so, move the appropriate pebbles. This can be done by adding variable changes to the Context Loader's trigger queue as if it were a trigger. By contrast, internal triggers are sent via 3370 to the internal trigger processor 3380, and from there, via channel 3381 to the context loader, which will treat this as any incoming trigger by fetching the relevant context, checking to see if the corresponding module is locked, and proceeding as before. Once the Module Processor's output queue is empty, the module is unlocked, and any triggers waiting for it in the context loader's trigger queue are allowed to proceed in order.
The most complicated part of the system shown in
Context data includes several pieces of information and is processed in a series of seven steps. In
Column 3400 illustrates the steps which the Module Processor is applying to the context data. It is important to note that the context data does not change, but rather remains static during all steps. In the first step, the context data 3401 is used to construct and load the state diagram 3470. This is done by inspecting the module's template within the context data. A module's template encodes the structure of the state diagram, and is common across all end-users who are running that module. Diagrams 3411-3461 respectively illustrate the templates of Examples 1-6 being loaded and depict their state diagrams.
In the second step, the context data 3402 is used to load module data which is specific to an end-user 3480. This is called a module's instance, and it contains specifics such as where a specific end-user's pebbles are placed as well as the values of variables. Diagrams 3412-2462 respectively illustrate the module instance data from Examples 1-6 being loaded, and show where pebbles have been placed on nodes.
Step three makes use of the module template and instance data within context data 3403 in order to evaluate groups to make sure that they are satisfied. In all of the present examples, the groups are of the “ALL” type, which means that every node in the group must be pebbled in order for the group to be satisfied. In Examples 2 and 3 (i.e., diagrams 3423 and 3433 respectively), this is the case, and both of these groups are satisfied. By contrast, the group in Example 6 (label 3463) is missing a pebble, and therefore is not satisfied, so we can stop evaluating this example.
Moving on to
In step five, the module instance, receiver parameters, and variable values within context data 3405 are used by the Module Processor to evaluate edge parameters and variable conditions 3501. Although not necessary, triggers can contain additional parameter data, and conditions based on this data can be added to edges/receivers. This allows an even greater level of control, in that a receiver may be in all other ways satisfied, but then fail because the edge trigger parameters failed. Similarly, the variable conditions on an edge similarly allow for a greater level of control in that a receiver may be in all other ways satisfied, but then fail because the variable conditions failed. In Examples 1 and 3 (respectively labels 3415 and 3435), the edge parameters are satisfied, and there are no variable conditions, so they are vacuously satisfied, allowing these computations to proceed. Similarly, in Example 2 (label 3425) the variable condition is satisfied, allowing this computation to proceed. By contrast, in Example 4 (label 3445), the edge variable is not satisfied 3446, and the computation terminates. If this variable condition had been satisfied, the pebble would have moved along the edge and chosen a random fork to end up on one of the two destination nodes.
In step six, the module instance and variable values within context data 3406 are used to evaluate group conditions and variables 3502. Example 1 (label 3416) has no groups, and therefore vacuously proceeds. In Example 2 (label 3426), the group's variable condition is satisfied, allowing its computation to also proceed. Finally, Example 3's group variable condition fails (label 3436), and this example's computation terminates 3437.
Step seven is the final stage of the Module Processor's computation, and it uses the module instance information within the context data 3407 to move pebbles and process the consequences by placing them on the output queue as previously discussed. In Example 2 (label 3427), the two pebbles from the group merge into one and move along the edge to the destination node, thereby changing the module's state. Merging occurs because nodes cannot have more than one pebble on them. In Example 1 (label 3417), the pebble moves from the Start Node to the middle node, and because the next edge contains no receiver or variable conditions, it is unobstructed and continues to move to the final node 3418.
Cloud Operating System & Marketing NetworkAs previously mentioned, this system forms an “operating system in the cloud” in two major ways. The first is that it is capable of executing arbitrary computer modules, and the second is that it creates a Universal Event Bus and exposes this functionality to programmers in order to simplify the management and access of an extremely rich variety of input and output devices and signals. This Universal Event Bus can be used in extremely general ways, and this major functionality is illustrated in
One powerful application of this event bus is to the realm of digital marketing. Advertising networks are currently siloed from each other and come in many “genres” such as radio, television, print, out-of-home, digital, and so on. In order for a brand to launch a marketing campaign, it must create and launch an ad campaign on several of these different types of ad networks. In that sense, a marketing campaign is simply the union of several ad campaigns, but in today's world with current technologies or lack thereof, the connections between these ad campaigns is largely thematic rather than technological. Since the presently-described embodiment of this system forms a Universal Event Bus and has so many different types of heterogeneous triggers, they can be deployed across the world's heterogeneous ad networks in order to create the world's first “marketing network”. Together with the system's ability to easily create modules and splice them into existing applications using an embodiment of the system's visual Pebbling Programming Language, this is a potent combination because it allows brands as well as their agencies to take charge and control the orchestration of a digital marketing campaign across many ad networks. Because the system's Pebbling Language is so simple and visual, it can be mastered by creative individuals who have no technical backgrounds or experience, thereby empowering them to control the entire execution pipeline of a campaign without having to rely on technical vendors to build apps, thereby saving time, money, and the risk of ideas being lost in translation.
However, embodiments of this invention have applications that clearly go far beyond the realm of marketing. There has been much talk about the so-called ‘Internet of Things’, in which the whole world will become connected to the Internet. Everything from watches to microwaves to cars, our clothing, our homes and much more will all have IP addresses or some other way of being referenced, located, or connected to the Internet, even if only in a semantic rather than a technological sense. That new world will require key tools and infrastructure to help connect devices with each other together with the ability to easily set up and perform intermediate computations. We therefore see this embodiment of the present invention as being a key technology to help create and manage the new Internet of Things.
Sponsorship JunctionsWith the addition of another component to the system, we can enable some powerful functionality that can be built on top of previously-described system abilities. This component is not necessarily dependent on the rest of the system, and could be integrated with any similar platform. This component is called the system's “Sponsorship Junction Controller”, and it enables Sponsorship Junctions, which provide the system with the ability for end-users to be sponsored by brands for doing things that they already do but for which they are currently not receiving any rewards. Sponsorship Junctions bring together the creators of experiences with brands/sponsors in a seamless way.
Sponsorship junctions can be created for any “trigger-monitorable activity”, that is, any type of activity for which an end-user's participation or action can be measured by creating a trigger that, if fired by an end-user, would imply that he/she is indeed participating in that activity or performing that action. These experiences can include almost any activity, such as people playing video games, visiting a theme park, or running a marathon, and the purpose of a Sponsorship Junction is to make it easy for the creators of the video games, the owners of theme parks, and the organizers of marathons to invite brands to respectively sponsor game players, theme park visitors, and marathon runners for participating. For each activity genre such as video games, theme parks, and marathons, there is a separate Sponsorship Junction. It is not necessary that an end-user be aware that a specific trigger monitorable activity is in fact being monitored by a trigger, even though the end-user might be purposefully engaged in the activity Examples of such a trigger monitorable activity include credit card swipes, which fire triggers and cause a state to change in an account associated with the end-user, or even facial recognition technology which is used to identify an end-user in a specific context and then automatically fire a trigger, causing state to change in a security module associated with the end-user. However, for many brands, the most exciting possibilities for sponsorship junction are the ones which involve sponsorship of activities in which the end-user is aware of the presence of triggers.
For instance, with the video game Sponsorship Junction, let us assume that 100 different game developers connect their games to the junction, and then another 100 different brands connect to the junction as sponsors. Normally, this would require every game developer to make a separate deal with every sponsor, so that would require an astronomical 10,000 business deals to be struck. However, Sponsorship Junctions are designed to considerably decrease this burden, and instead of requiring 10,000 deals, the present system requires that each game developer and sponsor only make one deal—with the Sponsorship Junction, thereby reducing the required business development from a quadratic 10,000 to a linear 200. This is achieved by setting up a standard set of default triggers for each Sponsorship Junction so that each game implements these triggers, as does every sponsor. This set of default triggers is highly-specific to the genre of the Sponsorship Junction, so for instance, in the case of video games, the set would include triggers for common events that happen in video games, such as completing a level, killing a boss, leveling up, winning the game, and so on. By contrast, a theme park might have a completely different set of default triggers for events such as visiting the park, going on a ride, eating at the concession, going on five rides in a day, a fifth visit to the park, and so on. For each experience genre, there is a separate Sponsorship Junction, and each one has a different set of default triggers which is highly customized for that genre. Each experience creator need not necessarily implement every default trigger, but they must implement some minimum number of them, and the same goes for sponsors, although it is in their best interests to implement as many as possible.
An end-user's experience of participating in a Sponsorship Junction is shown in
Sponsorship Junctions are an additional component within the present system's architecture and their relationship to the rest of the system is shown in
The inner structure of Sponsorship Junctions is shown in
In the case of Sponsorship Junction B, the experience might be quite different from video games since its purpose is to sponsor customers of theme parks for doing the normal things that they do at theme parks, but the underlying technology is robust enough to connect the Experience Creators, in this case mobile applications belonging to theme parks such as Disneyland, Six Flags, Universal Studios, Sea World, Legoland, etc., with brand sponsors' apps/modules. The end-user of a theme park app 4061 starts it and via 3800 selects a sponsor 4060. The end-user then visits the theme park, goes on rides, eats at the concession, etc., and uses the theme park app 4061 to interact with various triggers from Default Trigger Set B which have been implemented in the app. Junction B's selector routes 4051, 4052 these triggers to the receivers of the end-user's app 4060 from the selected sponsor, which buzzes or notifies the end-user whenever he/she has earned points or other rewards for typical theme park activities captured by the triggers.
In an alternate embodiment, sponsor selection within a Sponsorship Junction is not performed explicitly by the end-user, but rather by automated or algorithmic means. For instance, instead of providing a user interface, the Sponsor Selector 3800 consists of code in the system which runs a real-time auction which can measure several inputs such as the nature of the experience, the end-user's profile, potential sponsors' profiles, as well as bids from potential sponsors. It then uses standard auction algorithms such as those used by current online advertisers such as Google to match the best sponsor with the right end-user while maximizing profit. Similarly, in another embodiment, sponsors are chosen algorithmically according to a schedule, with different sponsors being chosen at different times or according to different geographies. Yet another embodiment uses a hybrid approach, using algorithmic means such as an auction in order to rank the order of the sponsors, at which point the end-user selects the sponsor as before.
Loyalty Points ExchangeIn addition to the Sponsorship Junctions, the system can be augmented with another component called the “Loyalty Points Exchange”. As with Sponsorship Junctions, the Loyalty Points Exchange is not necessarily dependent on the rest of the system, and could be integrated with any similar system. In the case of Sponsorship Junctions, the underlying system required certain basic functionality, but in the case of the Loyalty Points Exchange, the underlying system need only have a facility for maintaining end-user accounts with loyalty points.
The purpose of the Loyalty Points Exchange is to make it possible for end-users to easily accrue points from various brands and to then conveniently convert points from one brand to those of another in a way which is similar to how currency exchanges work to convert, say, U.S. Dollars to British Pounds. Every brand declares how much one of their points is worth in relation to some currency such as U.S. Dollars, and this implicitly creates an exchange rate, so for instance, Brand 1 may declare one of its points to be worth $0.01, whereas Brand 2 may declare one of its points to be worth $0.02. An end-user who wishes to convert 10 points from Brand 1 would receive 5 Brand 2 points for them.
This transaction is beneficial to the end-user, who may need the extra loyalty points in order to trade them in for something valuable, but the system requires a way in order to incentivize the three remaining parties: Brand 1, Brand 2, and the Loyalty Points Exchange itself. This is achieved through a commission which is charged on the transaction, and then split among these three parties. The commission may be split equally between the three, or according to some other arbitrary splitting. Furthermore, this commission may be fixed or dynamic, calculated by the system in response to conditions such as supply, demand, desired profit, and so on. This commission can be shown to the end-user explicitly, or it can remain opaque by including it in the exchange rate.
For example, let us assume that Brand 1 and Brand 2 have both declared the value of their loyalty points as described before, and that an end-user has $100 in points from Brand 1, as well as $100 in points from Brand 2. This is equivalent to each brand owing $100 to the end-user. The end-user wishes to convert $50 of points from Brand 2 over to points from Brand 1 (the exact number of points that this corresponds to isn't important for this example), and initiates this trade. Brand 2 sends $50 to Brand 1, and simultaneously discharges $50 worth of Brand 2 points (debt) that it owed to the end-user, so Brand 2's total balance has not changed. Brand 1 is now up by $50, but then issues another $50 in Brand 1 points to the end-user, bringing his/her total debt to $150, so Brand 1's total balance also has not changed. For the sake of argument, let us assume that the total commission is $6, of which each of Brand 1, Brand 2, and the Points Exchange shall receive one third, or $2. This commission is taken from the end-user's Brand 2 points. This is done by discharging an additional $6 worth of Brand 2 point debt from the end-user. Brand 2 then sends $2 to Brand 1, an additional $2 to the Points exchange, and then pockets the remaining $2. The end-user is therefore charged $56 worth of Brand 2 points for the transaction (and has $44 in Brand 2 points remaining), and each of the remaining three entities has made a profit of $2. The end-user has paid this commission using Brand 2 points, but also received the benefit of increasing his/her Brand 1 points, presumably to receive the instant gratification of trading them in for something valuable, so all four parties to this transaction have benefited in a material manner. The structure of this transaction forms the basis of how the Loyalty Points Exchange works and explains the motivation for all four participants.
The end-user's experience during a Loyalty Points Exchange transaction is shown in
In an alternate embodiment, the system is additionally used to send loyalty points in a peer-to-peer fashion between end-users in the same way that individuals can currently send electronic payments to each other using standard financial infrastructure and functionality. This process can be initiated either from the sender by selecting a brand, a number of points, and a recipient, or by the recipient, by again selecting the brand and points quantity, and then sending a request which is analogous to an invoice to another end-user. In all cases, the system is able to charge a commission similar in manner to that previously described. This commission can be charged to the sender, the recipient, or split in some manner between the two.
The manner in which the Loyalty Points Exchange is integrated with the rest of the system is shown in
Because money is at stake, one of the most important implementation details for the Loyalty Points Exchange is to make sure that fraud is not possible. For instance, if implemented naively, it might be possible for an end-user to load the trading interface twice, once on each of two separate devices, and then simultaneously execute two exchanges from one Brand's points to those of two other Brands, effectively doubling his/her cash equivalent in points by using the same points twice. This is easily handled by implementing a lock on loyalty points as soon as a trade is initiated, regardless of whether the points are stored locally or on a Brand's server 221.
Trigger StreamsAnother embodiment of a sub-component which can be integrated with the system in a manner similar to that of Sponsorship Junctions and the Loyalty Points Exchange is called “Trigger Streams”, and as with all of these embodiments of sub-components can be viewed as an independent invention which can stand alone or be integrated into a similar system. That being said, Trigger Streams similarly add value, power, and functionality to the embodiment of the overall system, so we will describe them in this context. The purpose of Trigger Streams is to provide a means of broadcasting a stream of triggers as well as a means of subscribing to these streams and then reacting to them via receivers as per norm. In one sense, Trigger Streams are similar to a form of machine-readable Twitter, only instead of individuals broadcasting a stream of short, human-readable messages to which other people can subscribe, Trigger Streams allow any individual, entity, or piece of Internet-connected technology to broadcast a stream of machine-readable triggers to which other entities such as brands can subscribe, all using the present system.
For instance,
Of course, this is a very specific example, and as such, it should not be interpreted as limiting, since the Trigger Stream producers, subscribers, and consumers could come from the nearly infinite list of sources that are compatible with the embodiment of the present system.
Inside the Trigger Stream Nexus, each brand (or other entity) has its own stream selector. In our example, Brand 1 has stream selector 4610, Brand 2 has stream selector 4611, and Brand 3 has stream selector 4612. This of course scales to any arbitrary number of brands or entities, but again for illustrative purposes, three will suffice. As previously described, each brand previously used the system's user interface 4523 in
Each of these streams is then sent to the brand distribution filters, whose job it is to select which triggers should be sent to which end-users' modules. The reason for this is that it would be inefficient for the system to simply send every trigger to every module, even after we have culled the total population of triggers to only the brands' subscribed streams. In our example, Brand 1's unified stream 4630 is sent via 4640 to its distribution filters 4650, which sorts the triggers according to their data and metadata and then relays the filtered triggers via 4660 to Brand 1's modules 4670 which have receivers for those triggers, but only if the individual end-users meet all of the filter criteria. For instance, in our example from
The Trigger Streams for Brands 2 and 3 are processed in a manner similar to that of Brand 1. In the case of Brand 2, stream 4631 is sent via 4641 to Brand 2's distribution filters 4651, which filter and distribute those triggers via 4661 to Brand 2's end-users' modules 4671. Similarly, in the case of Brand 3, stream 4632 is sent via 4642 to Brand 3's distribution filters 4652, which filter and distribute those triggers via 4662 to Brand 3's end-users' modules 4672. Of course, the distribution filters are not strictly necessary for the system to function, so they can be omitted, but they do make it more efficient, so it is probably worth including them.
The triggers which make it through the filtering process arrive at the relevant modules and are processed just as any triggers would by the system's Module Processor 3340 within its Logic Engine 110, as previously described in
The present invention may be embodied in many different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, networker, or locator.) Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software or a magnetic tape), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web)
Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL.)
While the invention has been particularly shown and described with reference to specific embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended clauses. As will be apparent to those skilled in the art, techniques described above for panoramas may be applied to images that have been captured as non-panoramic images, and vice versa.
Embodiments of the present invention may be described, without limitation, by the following clauses. While these embodiments have been described in the clauses by process steps, an apparatus comprising a computer with associated display capable of executing the process steps in the clauses below is also included in the present invention. Likewise, a computer program product including computer executable instructions for executing the process steps in the clauses below and stored on a computer readable medium is included within the present invention.
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.
Claims
1. A computer-implemented method of operating a communications platform, the method comprising:
- providing a server-based logic engine, wherein the logic engine:
- (a) is coupled to a storage system and coupled to a network via a universal event bus, wherein the storage system stores end-user data;
- (b) has a trigger message input, coupled to the universal event bus;
- (c) includes a module processor operative on a plurality of modules, each module being associated with at least one of a plurality of organizers, wherein at least one distinct module is associated with a distinct one of the organizers, each module storing a distinct programmable pattern defining conditions, upon which a received set of trigger messages would cause a change, from one state to another state, of a targeted end-user's data, the programmable pattern defining at least one trigger event the occurrence of which can be encoded by a trigger message, wherein, for each module being processed, the module processor operates on a distinct instantiation of such module for a corresponding end user having a device sending any one of the trigger messages in the set of trigger messages, the distinct instantiation reflecting the state of the corresponding one of a plurality of end-users with respect to the stored programmable pattern for such module;
- receiving, over the universal event bus, at the trigger message input of the logic engine a set of trigger messages, the set of trigger messages including a Physical Trigger message from a device, of a particular one of the end-users, associated with an activity of the particular end-user;
- processing, each of the trigger messages in the set of trigger messages to fetch module context information pertinent to such trigger message and transmitting such trigger message with the module context information to the module processor;
- evaluating, by the module processor, such received trigger messages, based on the module context information, and in relation to the stored programmable pattern associated with a given module, to determine a corresponding change in state of the given module;
- updating, by the module processor, based on the module context information, an instantiation of the given module associated with the particular one of the end-users to reflect this change in state; and
- responsive to the change in state, providing automatically by the module processor, an outcome message as an output over the universal event bus to an outcome destination client.
2. A method according to claim 1, wherein the set of trigger messages includes at least one trigger message, received over the network or as an interprocess communication within the server-based logic engine, in the group consisting of (i) a game event message from an electronically monitored game, (ii) a message, received from an application programming interface or via HTTP POST, pertinent to at least one brands; (iii) a message pertaining to purchase of an item that is distinct from the outcome message itself; and (iv) a message, received from the device of the particular one of the end-users pursuant to an application running on the device associated with the at least one of the organizers.
3. A method according to claim 1, wherein the method further comprises receiving and storing at a given one of the modules the programmable pattern includes receiving the programmable pattern through a graphical user interface that is used to define the programmable pattern graphically.
4. A method according to claim 3, wherein instantiating the distinct instantiation of such module includes loading at least a portion of the stored programmable pattern as an input to the given one of the modules.
5. A method according to claim 3, wherein receiving the programmable pattern includes receiving the pattern from a client computer, coupled to the server-based logic engine, operated by a representative of the at least one of the organizers, the client computer having the graphical user interface, wherein distinct graphical elements represent triggers, states, and the output, and manipulation of the graphical elements in relation to one another defines the programmable pattern.
6. A method according to claim 5, wherein the programmable pattern is defined by (i) a set of icons that graphically represent nodes, wherein each node is a potential state, and a transition from one potential state to another potential state is indicated by a directed edge between two node icons; (ii) a set of pebbles, wherein a pebble placed on a selected node icon indicates a change in state of the node corresponding to the selected node icon, and wherein the set of deployed pebbles collectively represents a machine state of the given one of the modules; and (iii) a set of trigger receivers, each trigger receiver representing a distinct trigger message, wherein a given trigger receiver associated with a given directed edge between two node icons causes a pebble to move in the direction of the given directed edge from a first one of the two node icons to a second one of the two node icons on receipt of the trigger message associated with the given trigger receiver.
7. A method according to claim 6, wherein each node is configurable to have 0 or more types and each distinct type of node performs a distinct action when such node changes state, as indicated by placement of a pebble thereon.
8. A method according to claim 6, wherein a plurality of node icons may be arranged graphically in a group, and the group of nodes is deemed to be pebbled when a designated threshold number of node icons have been pebbled.
9. A method according to claim 2, further comprising receiving by the server-based logic engine over the network a stream of sourced trigger messages from a server of a partnering organizer and relaying the stream of sourced trigger messages to an account of a subscribing organizer for use by the subscribing organizer with respect to at least one of the modules.
10. A method according to claim 1, further comprising:
- in connection with a trigger-monitorable activity, storing by the server-based logic engine a selection of a sponsoring organizer applicable to a participating end-user;
- responsive to the stored sponsor selection, receiving by the server-based logic engine an activity trigger stream pertinent to the trigger-monitorable activity and relaying the received activity trigger stream to the account of the sponsoring organizer.
11. A method according to claim 10, further comprising:
- before storing by the server-based logic engine the selection of a sponsoring organizer applicable to the participating end-user, receiving, by the server-based logic engine, the selection over a network from a device of the participating end-user.
12. A method according to claim 10, further comprising:
- before storing by the server-based logic engine the selection of a sponsoring organizer applicable to the participating end-user, making the selection by the server-based logic engine.
13. A method according to claim 12, wherein making the selection by the server-based logic engine includes evaluating by the server-based logic engine data characterizing bids received from an auction.
14. A method according to claim 10, wherein the activity trigger stream is defined by a default set of triggers applicable to the trigger-monitorable activity.
15. A method according to claim 1, the method further comprising:
- in connection with a trigger-monitorable activity that is a physical activity with respect to which participation can be measured by creating a trigger that, when fired by a specified end-user, indicates that the specified end-user is indeed participating in such activity, storing a selection of a sponsoring organizer applicable to the specified participating end-user; and
- responsive to the stored sponsor selection, receiving by the server-based logic engine an activity trigger stream pertinent to the trigger-monitorable activity and relaying the received activity trigger stream to the account of the sponsoring organizer.
16. A method according to claim 15, further comprising:
- before storing by the server-based logic engine the selection of a sponsoring organizer applicable to the specified participating end-user, receiving the selection by the server-based logic engine over a network from a device of the specified participating end-user.
17. A method according to claim 15, further comprising:
- before storing by the server-based logic engine the selection of a sponsoring organizer applicable to the specified participating end-user, making the selection by the server-based logic engine.
18. A method according to claim 17, wherein making the selection by the server-based logic engine includes evaluating by the server-based logic engine data characterizing bids received from an auction.
Type: Application
Filed: Jul 30, 2019
Publication Date: Nov 21, 2019
Inventors: Alexander Hertel (Sunnyvale, CA), Philipp Hertel (Belmont, CA)
Application Number: 16/526,193