SELECTION CIRCUIT USABLE WITH FERROELECTRIC MEMORY
A first thin-film transistor (TFT) communicatively couples a word line to a source signal in response to a selection signal applied to a first gate of the first TFT. The word line used to enable and disable a memory element that is coupled to the word line. A second TFT communicatively decouples the word line from a ground in response to the first signal being applied to a second gate of the second TFT.
This invention was made with government support under FlexTech RFP12-159 funded with assistance from the Army Research Lab. The government has certain rights in the invention.
SUMMARYThe present disclosure is directed to a selection circuit usable with ferroelectric memory. In one embodiment, a first thin-film transistor (TFT) communicatively couples a word line to a source signal in response to a selection signal applied to a first gate of the first TFT. The word line used to enable and disable a memory element that is coupled to the word line. A second TFT communicatively decouples the word line from a ground in response to the first signal being applied to a second gate of the second TFT.
In another embodiment, a memory circuit includes a plurality of ferroelectric memory cells. Each ferroelectric memory cell is coupled to one of a plurality of word lines and one of a plurality of bit lines. A plurality of selection circuits are between a source signal and the respective plurality of word lines. Each of the selection circuits includes a first thin-film transistor (TFT) that communicatively couples the word line to the source signal in response to a selection signal applied to a first gate of the first TFT. The word line is used to enable and disable the respective ferroelectric memory cells coupled to the word line. Each selection circuit also includes a second TFT that communicatively decouples the word line from a ground in response to the selection signal being applied to a second gate of the second TFT.
These and other features and aspects of various embodiments may be understood in view of the following detailed discussion and accompanying drawings.
The discussion below makes reference to the following figures, wherein the same reference number may be used to identify the similar/same component in multiple figures. The drawings are not necessarily to scale.
The present disclosure relates to printed and/or organic circuits. Conventional electronics (e.g., integrated circuits) are formed by depositing and shaping (e.g., via photoresist) layers onto crystalline silicon wafers or similar semiconductor substrates. In contrast, a printed circuit can use a relatively lower-cost process (e.g., screen printing, inkjet printing) to form circuit elements on a substrate, typically a flexible film. Organic (e.g., carbon-based) materials are often used to form the circuit elements, although non-organic materials may also be used for some printed circuit elements.
One type of device that may use printed and/or organic circuits is ferroelectric (FE) memory. Ferroelectric memory is a non-volatile electric memory that stores information as remnant polarization in a ferroelectric material. A number of such FE materials exist such as poly(vinylidenefluoride-co-trifluoroethylene) or P(VDF-TrFE), which is a ferroelectric polymer. A bit is written to the memory by applying a bias across the FE material. A positive bias will write one value (e.g., a ‘1’), and a negative bias will write the other value (e.g., a ‘0’), although other conventions may be used, e.g., ‘0’ and ‘1’ for respective positive and negative bias.
To realize low-cost electronic systems, it is desirable to combine printed FE memory with printed circuits, for example circuits based on printed thin-film transistors (TFTs). Writing the FE memory can be accomplished, for example, by applying a high voltage pulse to one side of the memory cell (e.g., the “word line”) while the other side of the memory cell (e.g., the “bit line”) is connected to ground. To do this effectively for an array of memory cells, it is desirable to be able to have a single pulse-generation circuit which is selectively connected to one memory cell at a time. Each memory cell can be individually enabled to receive the write pulse by an “enable” control signal (EN).
Organic TFTs have characteristics that differ from conventional crystalline silicon (c-Si) based electronics. For example, the carrier mobilities of organic TFTs are much lower, leading to much higher channel resistances. In addition, the on/off ratios of organic TFTs—ratios between the current magnitude in the “on” and “off” states—when operated in the limited voltage ranges, such as 0 V to 5 V or 0 V to 20 V, can be much lower than inorganic transistors, in some cases as low as 500 or even less, especially when the TFTs are operated at lower voltage ranges. In contrast, c-Si MOSFETs can have on/off ratios of 108 at their operating voltage ranges. In addition, when printing techniques are used for device fabrication, yield can be low, indicating the need for circuits with as few TFTs as possible.
Conventional FE memory cell gating may use a pass transistor as shown in
In reference now to
In
In
Memory cells 510-515 are coupled between respective word lines 506-508 and bit lines 516-517. Any individual memory cell 510-515 can be selected for reading or writing by activating the appropriate combination of word lines 506 and bit lines 516-518. During writing, word lines 506 and bit lines 516-518 apply voltages to the cells 510-515 to write desired bit of data. During reading, word lines 506 and bit lines 516-518 couple a sensor to the cells 510-515 to read the written bits of data. As noted above, selection circuits similar to circuits 500-502 may be used to activate the individual bit lines 516-518. Note that while bit lines 516-518 are coupled to multiple memory cells 510-515, each of the memory cells 510-515 may have a separate, dedicated bit line.
Generally, tying disabled word lines 506-508 to ground through M21, M22, etc., of each selection circuit 500-502 reduces susceptibly to feedthrough of the S signal to memory cells 510-515. Neither pass transistors nor transmission gates have this feature. Unlike transmission gates which require two complementary signals, a single enable signal (EN_BAR) can be used for each selection circuit 500-502. In general, using organic or printed TFTs in circuits as shown in
In reference now to
In
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein. The use of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
The foregoing description of the example embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. Any or all features of the disclosed embodiments can be applied individually or in any combination are not meant to be limiting, but purely illustrative. It is intended that the scope of the invention be limited not with this detailed description, but rather determined by the claims appended hereto.
Claims
1. A selection circuit, comprising:
- a first thin-film transistor (TFT) that communicatively couples a word line to a source signal in response to a selection signal applied to a first gate of the first TFT, the word line used to enable and disable a memory element that is coupled to the word line; and
- a second TFT that communicatively decouples the word line from a ground in response to the selection signal being applied to a second gate of the second TFT, the first and second gates being connected together to a line that provides the selection signal.
2. The selection circuit of claim 1, wherein, in response to an inverse of the selection signal being applied to the first and second gates:
- the first TFT communicatively decouples the word line from the source voltage; and
- the second TFT communicatively couples the word line to the ground to limit disturbance of the memory element from changes in the source voltage.
3. The selection circuit of claim 1, wherein:
- the first TFT comprises a p-type transistor;
- the second TFT comprises an n-type transistor; and
- the selection signal is a low voltage.
4. The selection circuit of claim 1, wherein:
- the first TFT comprises a n-type transistor;
- the second TFT comprises an p-type transistor;
- the selection signal is a high voltage.
5. The selection circuit of claim 1, wherein the memory element comprises a ferroelectric memory cell.
6. The selection circuit of claim 5, wherein the ferroelectric memory cell comprises a printed ferroelectric memory cell.
7. The selection circuit of claim 1, wherein the first and second TFTs are organic TFTs.
8. The selection circuit of claim 1, wherein the first and second TFTs are printed TFTs.
9. The selection circuit of claim 1, wherein the first and second TFTs have an on/off current ratios of 500 or less.
10. A memory circuit, comprising:
- a plurality of ferroelectric memory cells, each ferroelectric memory cell coupled to one of a plurality of word lines and one of a plurality of bit lines;
- a plurality of selection circuits between a source signal and the respective plurality of word lines, each of the selection circuits comprising: a first thin-film transistor (TFT) that communicatively couples the word line to the source signal in response to a selection signal applied to a first gate of the first TFT, the word line used to enable and disable the respective ferroelectric memory cells coupled to the word line; and a second TFT that communicatively decouples the word line from a ground in response to the selection signal being applied to a second gate of the second TFT, the first and second gates being connected together to a line that provides the selection signal.
11. The memory circuit of claim 10, wherein, in response to an inverse of the selection signal being applied to the first and second gates:
- the first TFT communicatively decouples the word line from the source voltage; and
- the second TFT communicatively couples the word line to the ground to limit disturbance of the memory element from changes in the source voltage.
12. The memory circuit of claim 10, wherein the ferroelectric memory cells comprise printed ferroelectric memory cells.
13. The memory circuit of claim 10, wherein the first and second TFTs are organic TFTs.
14. The memory circuit of claim 10, wherein the first and second TFTs are printed TFTs.
15. The memory circuit of claim 10, wherein the first and second TFTs have an on/off current ratio of 500 or less.
16. A method, comprising:
- applying a selection signal to first and second gates of respective first and second thin-film transistors (TFT), the first and second gates being connected together to a line that provides the selection signal;
- in response to the selection signal: communicatively coupling a word line to a source signal via the first TFT, the word line used to enable and disable a memory element that is coupled to the word line; and communicatively decoupling the word line from a ground via the second TFT.
17. The method of claim 16, further comprising:
- applying an inverse of the selection signal to the first and second gates; and
- in response to the inverse of the selection signal being applied, communicatively decoupling the word line from the source signal via the first TFT and communicatively coupling the word line to the ground via the second TFT to limit disturbance of the memory element from changes in the source voltage.
18. The method of claim 16, wherein the memory element comprises a printed ferroelectric memory cell.
19. The method of claim 16, wherein the first and second TFTs are printed, organic TFTs.
20. The method of claim 16, wherein the first and second TFTs have an on/off current ratios of 500 or less.
Type: Application
Filed: May 16, 2018
Publication Date: Nov 21, 2019
Inventor: David E. Schwartz (Concord, MA)
Application Number: 15/981,564