Device Comprising a Support for Accessories Connected by Magnetized Attachments
A device and assembly comprising such device having a support for electronic connection, holding in contact, and attachment of at least two accessories to each other and/or to an external device, and said at least two accessories. To make said connection, the support is provided with at least two first magnetic electronic connection elements. Each other by wire and each accessory is fitted with a second magnetic connection element capable of cooperating with one of said first magnetic elements, and in that each of the first and second magnetic elements comprises at least two groups each comprising at least one magnet, namely a group of one or more positive magnets and a group of one or more negative magnets, the groups of one particular magnetic element being fixed directly or indirectly on the same flexible or rigid plate and/or to each other and being capable of cooperating with the other magnetic element.
This invention relates to a device comprising a support for maintaining contact, attachment, adjustment and electronic communication of accessories between each other and/or with an external device, said support and each accessory being provided with at least one magnetic electronic connection element capable of cooperating with a corresponding facing magnetic connection element.
It also relates to support assemblies and corresponding accessories.
It also relates to a method for using such a device.
It has a particularly important but non-exclusive application in the field of communication between electronic modules, objects, collars, bracelets, watches, sports instruments or any other equipment using magnetic elements for connection, particularly on helmets, kits, rucksacks, suitcases, hoods, etc.
An originality of this device is based on electrical conductions between modules, this conduction having to be as fine as possible in order to not impede the user.
For this, two means are used, in particular: an adhesive, copper strip and/or a conductive alloy enabling a high-quality conduction.
Magnetic or ferromagnetic objects can be divided into two categories: soft materials that are easily magnetized (high permeability and reversibility), and hard materials because they have strong remanent magnetization, that are used as permanent magnets.
Throughout the remainder of this description, we will use the term magnetic object to indifferently designate soft materials or hard materials that therefore form permanent magnets.
Note that a permanent magnet can equally well be a natural magnet or an artificial magnet. Therefore in this case, it can have a very variable constitution.
It can also be easily conformed and adapted to required uses so that it can accept much more intense magnetization with good stability, and more durably than natural magnets.
We will then also mention polarities or poles of the magnet(s) making up the magnetic objects used.
All magnets have two opposite portions called poles, namely a positive pole or north pole (tendency to move towards the north) and an opposite negative pole or south pole. Due to its layout, the magnet(s) of a magnetic element of one part is (are) designed to cooperate with the magnet(s) of the magnetic element of the other part, through one of its facing portions. To simplify matters, in the following we will use the term positive magnet to refer to the magnet for which the portion arranged to cooperate with the other port presents the positive pole, and the term negative magnet to denote the magnet that presents the negative pole.
Devices are already known to bring parts of clothes such as dresses, or accessories for example clothing accessories, shoes or belts) into contact, and to adjust and/or fix them to each other.
Holding in contact, fitting, adjustment or closing of an item of clothing, a shoe or any other accessory is thus traditionally done using buttons-button holes, cufflinks, press studs, closers laces, eyelets, zip fastener or by attachment means known under the trade name “Velcro®”.
Such devices, some of which have been known since antiquity, have removable attachment means comprising male means and female means that can be connected to each other and that have disadvantages.
These means are not easily adjustable and cannot make an electrical connection for instantaneous communication and/or transmission of information.
They can also be noisy when connecting and disconnecting them.
Furthermore, their adjustment always requires a precise manual adjustment by the user, although this is difficult in some cases, for example in a risk and/or dangerous situation.
The use of magnets to connect two parts to each other is also known and can overcome some of these disadvantages.
But in general, systems according to prior art using magnets can only be used to associate two parts in a predetermined position of male and female elements, without any possibility of modifying the relative position of these elements, nor making an electrical connection.
Furthermore, the magnetic elements that can be metallic, can in some cases have an uncomfortable weight and/or risk generating a magnetic field that can be harmful to health.
It can be understood that the weight of a headset can be uncomfortable and/or an excessively strong magnetic field can have disadvantages, for example creating a risk of deregulating electronic devices placed nearby, for example a Pacemaker or a GPS system or a compass.
Electronic connections systems involving plugging a male connector into a female connector are also known.
Aid systems and systems to hold two surface connectors together making use of weak magnetization are also known, such as on computers of the type known as Mac Pro made by the American Apple company. In this case, this is an electrical power supply for which the connection is easily detachable.
This invention aims to overcome these disadvantages by disclosing a device for attachment and adjustment of accessory parts to each other, providing a better solution than those known in prior art, particularly in that it optimizes the weight and the strength of the magnets used, particularly due to ultra-powerful magnets composed of magnets placed with alternating north/south polarity, in that it is easier to put into place while allowing a better attachment, more comfortable for the user and a reliable and repetitive electronic connection.
Use and also maintenance (for example washing) are also facilitated.
In order to achieve this, this invention in particular discloses a device comprising a support for electronic connection, holding in contact, attachment of at least two accessories to each other and/or to an external device, and said at least two accessories, characterized in that to make said connection, the support is provided with at least two first magnetic electronic connection elements connected to each other by wire and each accessory is fitted with a second magnetic connection element capable of cooperating with one of said first magnetic elements, and in that each of the first and second magnetic elements comprises at least two groups (or blocks) each comprising at least one magnet, namely a group of one or more positive magnets and a group of one or more negative magnets, the groups of one particular magnetic element being fixed directly or indirectly on the same plate and/or to each other and being capable of cooperating with the other magnetic element.
Advantageously, the magnetic field is more than 1500 Gauss.
Advantageously again, at least one part of the first magnetic elements or each first magnetic element and/or at least one part of the second magnetic elements, is associated with an anti-magnetic protection element.
The magnetic field is (for example, 3500 Gauss with a neodymium 52 type magnet, or 2000 Gauss with N40 for a magnet of size 6×4×1.5 mm).
The electrical connection by magnetic then wire connection between modules enables a transmission of very fine information.
Advantageously, and to achieve this, two means are particularly used, but non-limitingly, namely an adhesive, copper tape (for example, a Scotch® Copper tape) and/or a conductive alloy or composite material, optimized at the level of its conductivity, for example greater than 105 ×S.m−1, for example between 105 and 5×106 S.m−1, advantageously between 106 and 5×106, for example between 3 and 4×106 S.m−1.
Also advantageously, a combination of the means above can be used, and in particular, a combination between a copper wire (for example, 0.2 mm thick) covered with an alloy layer such as described, and/or adhesive, conductive strip (for example, Scotch® Copper tape, of thickness between 0.04 and 0.08 mm) and alloy layer and/or Scotch® Copper double-sided tape+sheet of aluminum paper (thickness, for example, of 0.3 mm)+alloy layer.
Each module will comprise at least one electronic component and/or device having one and/or more specific functionalities (GPS, accelerometer, HF transmitter/receiver, etc.).
“Anti-magnetic and/or magnetic protection means” refers to a plate, a film or a case forming a screen arranged to sufficiently block magnetic radiation, preventing it from reaching the space on the side of the screen opposite the magnets.
To achieve this and more precisely, each first magnetic element is fixed to the support for example non-removably and/or each second magnetic element comprises on the side of its attachment to the support and/or on the side of the electronic component of the module to be connected, a magnetic insulating screen. This insulating screen composed in a manner known in itself, protects elements located on the other side of the support from magnetic radiation, as described above.
Advantageously, the support comprises a first impermeable fabric sheet, the device also comprising at least one second impermeable fabric sheet covering the first magnetic elements and through which passage holes are formed facing the first magnetic electronic connection elements.
In one advantageous embodiment, the holes are filled with an impermeable conducting glue ensuring sealing.
Also advantageously, the magnetic elements are firstly covered with a strip of sticky and possibly sanded copper.
Advantageously, the external surface of the conducting glue is covered with a Teflon layer before the glue has finally dried, for example and is then perforated to give better electrical conduction.
The conducting glue may for example be obtained by mixing epoxy resin with a hardener into which a fine powder of graphite and silver paste have been added.
Advantageously, the proportion of fine graphite powder is between 15% and 40% by weight of the total mixture, for example 25%, and the silver paste is between 0% and 10% by weight of the total mixture, for example 5%.
For example, a composition comprising 3 g of fine graphite powder (granulometer≤1μ), 5 g of copper powder (granulometer≤1μ) and 1.6 ml of flexible epoxy resin of known type can be used. To this, the surface treatment of this alloy must be added, which must be sanded then polished, for example by sanding with a blade tilted at 45°, then buffing.
In some advantageous embodiments, either or both of the following measures are also adopted:
-
- the magnetic protection element is metallic and is between 0.1 mm and 2 mm thick, advantageously between 0.2 mm and 1.5 mm, for example equal to 0.5 mm.
For example, it may be a thin iron plate (less than 2 mm thick) or advantageously a steel plate forming an excellent magnetic mirror with a thickness chosen by an expert in the subject to obtain the required mirror/barrier effect.
It is observed that there is an increase in the strength of the magnetic field of the magnet and/or of the magnetic element on the side opposite said protection element (mirror effect) depending on the configuration and the thickness.
For example, the strength of the magnetic field can be increased by 20% using a 0.2 mm thick iron film;
For example, the thickness can be obtained by choosing a single steel plate, for example 1.2 to 1.5 mm thick, or by using several layers of steel foil that are added together to make the thickness necessary to reflect the magnetic field onto the opposite face. The use of the multilayer steel strip technique enables to obtain a great mechanical flexibility of the mirror, that would not enable a steel plate thicker than 1.5 mm, for example.
It must also be noted, that the protective element is longer and wider than the group of magnets (for example, ⅓ larger on each side) to best be interposed with magnetic field lines. The magnetic mirror comprises, for example, between 3 and 8 fine layers (for example 4) of steel strip (thickness 0.10 to 0.20 mm) opposite the neodymium magnet.
The fine layers can curl over the sides in one direction (opposite the magnet) or in the other (towards the magnet) to best trap the magnetic field lines and enable the strips to exert their protective role.
An optimum thickness is thus observed corresponding to the thickness of the magnet used, therefore 1.2 to 1.5 mm of steel for a 1.5 mm thick magnet. But a single 0.2 mm layer of steel foil is sufficient to block 80% of the magnetic field of the magnets and therefore to provide sufficient protection for the electronics contained in the electronic modules that are concerned and/or associated.
-
- the first and second magnetic elements correspond to groups of magnets, the groups of first elements being capable of cooperating with groups of corresponding second elements with the opposite sign;
- the magnets in a particular first or second magnetic element are rigidly and non-removably fixed and are electrically insulated from each other;
- each first and second magnetic element comprises at least two magnets per group, the positive magnets of one element being placed in alternation with the negative magnets of the same element;
- the magnets of a particular element are fixed side by side on a plate directly or are separated by a wall.
Advantageously, they are articulated, in other words, that the plate is flexible, and that they can therefore be adapted to a certain curve, for example corresponding to that of a cranium;
-
- the field of the first and second magnetic elements is greater than or equal to 2000 Gauss, advantageously greater than or equal to 3500 Gauss;
- each first and each second magnetic element comprises at least one row of magnets inserted in an elastic glue layer resistant to household washing, itself fixed to the flexible or rigid support;
- one or several magnets in each first and second magnetic element has (have) a rectangular or circular cross-section;
- the magnets are derived from the family of rare earths and are of the neodymium iron boron type;
- each first and second magnetic element is partly or wholly protected by galvanizing with nickel and/or gold and/or epoxy;
- the wire connection between the magnet and/or magnetic elements is integrated between two fabric sheets, one of which forms the support;
- the wire connection and the support are stretchable. Stretchable means the ability to stretch between a first compact position and a second position elongated by a few centimeters, for example 1 to 5 cm, for example 3 cm, from the first position. This can be achieved by making the wire connection in the form for example of an accordion or a corkscrew;
- each accessory comprises a removable housing containing a second magnetic element arranged to correspond to a first magnetic element facing it, to be gripped manually by a user;
- at least one accessory housing comprises complementary mechanical clipping means arranged to enable the adjustment/clip fitting of said housing on a complementary shaped part fixed to the first magnetic element.
The invention also discloses a headset, clothes or accessories particularly comprising devices representing one and/or the other of the characteristics described above.
It also relates to a headset and/or clothing assembly comprising at least one device worn by a user and wire connection means through an accessory between said headset or clothing and the portable device.
The device may for example be a rucksack, or a jacket with a pocket or removable pocket.
If the pocket of the charger is empty, information is transmitted via the pocket/rucksack connection, then rucksack/headset, then transmission module headset, then to the staff who can automatically send one or more new chargers, for example with a drone to the soldier in difficulty as they have no ammunition.
The pocket can be of any type (pocket for ammunition, grenade, cartridges, map, first-aid kit, water bottle, gas mask, food, etc).
The concept of delivery by drone, combined with a device of this type is itself completely new. The delivery can be triggered automatically using an order from the pocket, the headset, a specific module, another drone or the drone itself, or manually by a third party who can device to resupply or not.
The lives of a lot of soldiers will thus be able to be saved with this system.
Advantageously, the portable device is a jacket fitted with a fabric comprising a sheet of connected wires forming a damaged zone detection matrix.
In another advantageous embodiment, the invention proposes an assembly which comprises one, several or all of the following elements:
a. a headset, one or more clothes (for example a jacket), a rucksack, one or more connected pockets, and possibly other connectable accessories;
b. one or a plurality of modules comprising one or more electronic circuits or device having one or more specific functionalities, and such as described above and a battery (advantageously situated behind the headset);
c. a fabric (hood) that is slidable over the headset, advantageously formed from a pattern cut-out in only three parts, without clamps (the prior art provides more than three parts with clamps in the material, in order to support the rounded shapes of the headset) and comprising the first magnetic elements (as described above) and their wire connection.
The modules comprise magnet blocks advantageously articulated, with crossed contacts and are connected to one another through the wire connection forming an electronic circuit on the reverse of the fabric, formed by adhesive, copper, aluminum or other conductive metal tape strips and/or by strips formed by a conductive alloy deposit, for example deposited by screen printing (on the reverse of the fabric of the hood).
Advantageously, the wire connections are formed by a combination of a conductive, adhesive tape strip covered, at least in part and/or at least by placing, by a conductive alloy deposit of the type described above or below.
Also advantageously, said device comprises a pocket, for example a charger or any other type of connected pocket, arranged to automatically request (or not) a replenishment of its content.
In an advantageous embodiment, the portable device is a jacket equipped with a fabric for detecting an impact.
To achieve this, it comprises, for example, a sheet of connected wires forming a matrix for detecting a damaged zone.
Advantageously, this detection generates the sending of a request for medical aid and/or a medical care kit in operation.
Advantageously, the wire connection is made according to one of the following embodiments:
-
- Alloy (resin+graphite/copper) only;
- Adhesive tape of the Scotch® Copper type or aluminum, only;
- A combination of both over at least one part of the wire connections, i.e. conductive, adhesive tape covered with a thin alloy layer (for example, less than one or two hundred microns, less than several microns, for example less than 1 micron).
The invention also proposes a method for using a device and/or a system such as described above.
The invention will be better understood after reading the following description of embodiments given as non-limitative examples. The description refers to the accompanying drawings among which:
This diagram also shows a method for using such a device.
The same reference numbers will be used whenever possible to designate the same or similar elements, throughout the remainder of the description.
The magnets used in embodiments of the invention described specifically herein are preferably based on neodymium, iron boron with a compressed density of 7.3 to 7.5 g/cm3, the coating of the magnet making it conductive, possibly being obtained from an alloy based on nickel, zinc or tin, and/or copper.
One example of an advantageous method for making the magnetic materials based on rare earths for use with the invention is also and for example as follows.
The different raw materials for the alloy are firstly mixed with high precision, under a vacuum or inert gas.
For example, components are mixed according to the following preparations by mass of neodymium iron boron with 25% to 31% of neodymium, 2 to 3% of a mixture of Cu, Al, Co, Ga, Nb and Zz, 0.8% to 1.1% of boron (Neodymium 38 to 52) and the remainder being iron or neodymium 40 in one preferred embodiment composed of the order of 28.8% of neodymium, 1% of boron, 4% of Ce, Al, Cu, Co+others and the remainder iron.
The basic material can be obtained by melting constituents or by calcio thermal reduction, for example at about 1300° C. from an NdFe fluoride and iron chloride FeCl3 compound (NdF3+Ca+FeC13−<(NdFe)+CaCIF+CaFe2).
The raw material particles are ground until they satisfy very precise tolerances (grains of the order of 1 micron).
The products are then stamped, imposing a powerful magnetic field on them to orient the metallic particles.
Finally, the elements are sintered in special vacuum furnaces at 1050° C., or under argon.
After fast cooling, the temperature is brought back to high temperatures (600 to 900° C.) before fast quenching to terminate the cycle.
Finishings are then made using spark erosion machines or machines fitted with diamond tools because the final product is very hard.
Materials that can be used include particularly Samarium Cobalt (SmCo5, SmCol7) and other types of neodymium iron boron (Nd2F14B), that are very efficient magnetic materials based on rare earths.
The final product made of neodymium iron boron can be made conducting while preventing the oxidation process for example by galvanizing it simply (Ni, Sn or Zn) or triply (Ni+Cu+Ni) (Sn+Cu+Sn) or (Zn+Cu+Zn) or advantageously Ni+Ni+Au or Ni+Au.
In the case of nickel, gold galvanization, thicknesses of nickel and gold equal to the order of 0.01 mm and 0.001 mm respectively can be used.
The magnets can advantageously be covered one by one with a protection layer, also obtained by nickel/copper or nickel/epoxy galvanization, or any other galvanization that will prevent rusting of the magnets.
These higher quality magnetic materials are used at locations at which a very high magnetic force is required and occupy only one fifth of the space occupied by hard ferrite magnets with the same magnetic power.
They are then cut to the required dimensions, for example 3×3×2 mm and fixed by gluing them to each other in configurations that will be described below with reference to the following figures.
The support enables electrical connection 4, 4′, 4″ . . . , keeping them in contact and the attachment of several accessories 5, 6, 7, 8, 9 and 10 to each other (see also
For example, accessory 7 is a rechargeable battery (connection 4) supplying power to accessories 5 (weather—pressure, humidity sensors, etc.), 6 (connector with a rucksack or a breast plate), 8 (GPS), 9 (visual-camera) and 10 (electromagnetic wave transmission module with an external server—not shown).
In the particular embodiment described herein, the connection between the base plates is made with copper or aluminum tape strips glued on the lower fabric, between two fabric layers one of which acts as a support.
The upper fabric is impermeable and protects the magnetic strips and the upper part of the first magnetic elements from dust and humidity, without preventing electromagnetic contacts between them, for example as explained in the embodiments described below with reference to
Advantageously, portions of insulating tape are provided at appropriate locations in order to prevent bad contacts between strips.
The location of accessories can be different and/or can be at specific positions.
For example, the battery can be located at the back of the headset, its weight then being chosen so as to compensate the weight of infrared goggles on the front of the headset.
But it would also be possible to use a module to house a standby battery (or secondary battery) or a battery to supply power to the modules continuously if the main battery behind the headset is replaced.
More precisely,
In this embodiment in which a six-wire electrical connection is required, in which one wire is connected to two nearby magnets, in particular a coating is provided for the magnet concerned (in this case part of the magnets 12) among these magnets, by a specifically conducting material (Nickel, Cu, etc.), the magnets being electrically insulated from each other in a manner known in itself to prevent short circuits, for example by a plastic film and/or a wall (see below).
The contact or solder of the wire onto the magnet, for the connection with another device, can for example be made by cold soldering and/or using a conducting glue.
The wire can also be a conducting strip in the form of a tongue (for example 1 or 2 mm wide) made of copper or aluminum placed on the side or face of the magnet (attachment tip 14), or with copper tape placed on the active face of the magnet.
A USB connector comprises four wires (Red=5 volts (Vbus), White=data−, Green=data+, Black=ground) and a second ground=braid wound around the four wires, namely five contacts.
The five contacts are essential for transmission of images.
In this embodiment and in order to make the USB contact reversible, the positive magnets denoted A, C, E, F, G, I and K of a first magnetic element of a first accessory as described with reference to
For example, the wires could thus be connected as follows:
Groups: Ground: EFGH, Red: AL, Black: CJ, Green: DI, White: BK.
This embodiment does not show the fabrics and/or protections of the external electrical contact parts between first magnetic elements and second magnetic elements (with their orifices enabling contact).
The device comprises for example a base S, for example rectangular and made of insulating plastic material, fixed on the support 22, for example a first sheet 23 made of impermeable stretch fabric known in itself, with glue made impermeable by silicone 24 around the bottom of the base.
The electrical wires 25 or small strips of sticky copper 26 are placed (fixed) on the first sheet 23, and are covered by a second sheet made of impermeable stretch fabric 27 (in dashed lines on
In this embodiment, third and fourth impermeable sheets (therefore not shown) protect the external surfaces of the first and second magnetic elements sealed by silicone, and conducting glue on the pads themselves as described below.
The base plate S comprises a receptacle 28 arranged to contain a block 29 comprising six magnets in the form of parallelepiped shaped pellets (for example 3×3×2 mm), with alternating polarity, namely three positive magnets 30, 31, 32 and three negative magnets 33, 34 and 35 insulated from each other by walls 36 made for example from PLA.
Each magnet and/or magnetic element is inserted in a layer of elastic glue (not shown) resistant to washing, itself fixed to the support. They are all, or for some of them (according to the needs of the electrical connector), connected to the electrical wires 25 in a manner known in itself.
The walls 36 are sufficiently thick to prevent short circuits.
The magnets are fixed on a flexible or rigid horizontal rectangular plastic plate 37 and comprise a screen 38 (thin iron film) on their faces on the side of the support 22, that will enable a mirror effect (arrow F), for example the screen itself being fixed on a plastic sheet (for example PU) 39 to make the attachment to the base plate S.
They comprise a protection layer or fabric on their faces on the side opposite the support, providing protection against humidity and making the assembly impermeable to water and dust, however the conducting parts are free, for example in a manner known in itself and/or as described with reference to
The portion of a device on
The block 46 is also inserted in the lower face of the plate 43 and of the assembly 45 with which it is therefore connected as described above.
The external face of the block 46 is flush with the rest of the lower face.
Advantageously, the clip-fitting means (not shown), known to an expert in the subject, are provided between the plate 43 of the second magnetic element and the first magnetic element 21.
The first magnetic element of
In this case, the blocks 52, 53 are formed from five positive magnets 54, 54′ and five negative magnets 55, 55′ arranged alternately and offset facing each other between the two opposite elements.
A click-fitting lid of the housing 56 on the support 57 of the electronic device 58 is provided to enable a good manual grip of the accessory to fix-release the first magnetic element, particularly by a simple lateral action (arrow 59) to separate the magnets on the first and second magnetic elements. The polarities that attract each other then suddenly repel each other.
More precisely, three first magnetic elements 61, 62 and 63, are represented in this figure, arranged to cooperate with three accessories 64, 65, 66, the first elements 61 and 62 being connected to each other by corkscrew type wires 67, 68, etc. (not all represented) enabling elasticity, and the first elements 62 and 63 also connected to each other by wires 69, 70, 71 in the same manner.
The accessory 66 is connected through a strip 72, for example that may also be elastic and connected to a second magnetic element 73 and/or another type of connector such as a USB connector that will for example be connected to an external device 74 on the rucksack 75 (see
The user 76 also wears a jacket 77 comprising a sheet 78 (see also
Cut wires 79 provide information about the matricial location by a change in the resistivity of the wires concerned.
More precisely, functioning of the fabric can detect an impact or a cut, for example based on the functional principal described below.
The fabric comprises a multitude of sets each formed from a wire and/or a line (for example conducting ink) and a given resistance value R, placed vertically and horizontally (diagonal wires could also be added).
A first set comprises a thin tinned (or twisted) copper wire 79 and a resistor, for example with a value of between 1 and 10000 Ohms.
A second set is identical except that in this case the value of the resistor is equal to 2 to 20000 Ohms.
The sets are permanently powered by a battery.
A relay is provided (not shown) with two positions: make and break is provided. The make position is powered by the battery, and the break position occurs if the wire is broken. Therefore, if the wire is cut, it provides information that the wire of the first, or second, etc. resistor is broken.
The vertical wires are ordinates and the horizontal wires are abscissas.
As shown on
The information transmitted will be 3V/5H, therefore the person who receives the information will know the impact point 80 precisely and can deduce information from it.
One example use of a device according to the embodiment of the invention described specifically below is represented with reference to
The battery accessory 7 is fixed on the headset 3, to power the different modules of the other accessories 5 (GPS module), 10 (Transmission module), 9 (visual module/camera), and 6 (connection module with the external device).
The connection module 6 can be used to retransmit information from the breast plate 81 (for example allowing ballistic detection 82) and detection of information derived from other elements, for example providing information about the content of the pocket 83 of the jacket worn by the user.
The transmission modules 10, are used to dialogue with an external server 84 (command post), itself interacting with other devices 85 (drones, vehicles, etc.) that will be able to perform operations 86 (for example deliveries of missing parts) to locations detected and positioned by the GPS modules 5.
We will now describe operation of the device with reference to
A user who decides to use the device according to the embodiment of the invention described more particularly herein will fit the support/hood on their headset.
They will then connect the accessories that they have decided to use to the different locations of the first magnetic elements.
Not all locations (in this case eight locations) are necessarily used.
Placement takes place naturally, the connection direction necessarily being found by the user, the polarities naturally acting as a foolproof system.
A mechanical click fit/release system can also secure the position, but the strength of the magnets is sufficient to prevent the loss of an accessory.
All accessories are then connected by wire and will then be able to interact with each other depending on the required functioning, that will depend on the required application in a manner known in itself.
When the user would like to disconnect, replace or change the position of an accessory, all they have to do is to push the accessory laterally on its head, the differences in polarities of the magnets, once offset slightly, will almost automatically eject the accessory due to magnetic repulsion.
In the case of using a connected charger pocket (83), this informs the staff that such or such soldier no longer has ammunition. It is thus decided, automatically or not (server 84) to send a drone which will bring the soldier ammunition, or a medical kit, or food for survival, for example. It is the function of the pocket which comprises a sensor (empty/full) which will transmit information via the module situated on the headset which in this case, is important.
The hood is, for example, removably attached on the headset, for example by clips.
This dismountable character enables its replacement and/or its cleaning, easily.
The hood comprises eleven electrical connector locations 95 with modules, each comprising orifices 96 for the passage of electrical contacts sealed through conductive glue stoppers of the type described above.
The internal electrical connector system or circuit network between the first magnetic elements 97 of the type described for example in reference to
In the embodiment described in this case, the other orifices 96 correspond to different red, black, green and white inputs/outputs of a USB type plug, as represented in
Each wire (which can also be formed by Scotch® Cooper) of a pattern 91, 92, 93 is connected to the corresponding wires of the pattern nearby by way of a wider strip 108 (for the wires 100), 109 (for the wires 101), 110 (for the wires 102), 111 (for the wires 103) and 112 (for the wires 105).
The end of each of these strips of a pattern comes opposite the end of each strip of the other pattern, the sealed electrical connector being ensured during the cutting of edges of peripheral parts 94 of one pattern on the other.
In
More precisely,
After piercing the fabric 114 through the orifice 96, for example of diameter of 1 to 2 mm, this is deposited on an assembly formed by a sanded, adhesive, copper film 115 (or screen-printed conductive paste lines as described above) belonging to the network such as described in reference to
A conductive glue drop 117 is thus deposited in the orifice 96 that it blocks so it is sealed, opposite the magnet.
It all is then and for example covered with a Teflon or resin sheet (dot-dash line 118) to obtain a smooth and elastic surface. Then, the Teflon is removed by sanding at the level of the orifices 96 to achieve a conduction with the outer face of the glue drop, which will be in contact with the module.
In this case, the electrical connector between the conductive glue drop 117 and the screen-printed alloy wire or adhesive, copper strip (Scotch® Copper) must avoid the magnet 113, for example by means of a U-shaped sheet 118, for example made of Scotch® Copper, a magnetic insulating plate 119 of the magnet with respect to the head of the user of the hood being, for example, also provided.
Obviously, and also consequent to all the above, this invention is not limited to the embodiments specifically described. On the contrary, it includes all variants and particularly variants in which the support is different, for example possibly a jacket, a vest or a belt.
One of the advantages of this invention is that the positions of different accessories can be swapped, and it is easy to replace them in the case of damage or wear.
With the invention, it is also possible to use a fixed or removable pocket in a jacket, for example connected to the headset and that signals if it is empty or full.
Advantageously, the accessories will be able to receive Braille type signals (touch) so know if it is a telephone or a camera.
Also advantageously, the battery comprises two second magnetic elements arranged to cooperate with two first magnetic elements to give an even more secure attachment on the headset, for mechanical reasons related to its weight and its position.
Advantageously, the articulated magnetic strips are crossed in order to split into two, the number of lines/circuits, which also enables and particularly to be able to return the modules to 180°, which for example, enables their placement by the user without being concerned about the delivery direction of the module.
Claims
1. Device comprising a support for electronic connection, holding in contact, and attachment of at least two accessories to each other and/or to an external device, and said at least two accessories, characterized in that to make said connection, the support is provided with at least two first magnetic electronic connection elements and in that each other by wire and each accessory is fitted with a second magnetic connection element capable of cooperating with one of said first magnetic elements, and in that each of the first and second magnetic elements comprises at least two groups each comprising at least one magnet, namely a group of one or more positive magnets and a group of one or more negative magnets, the groups of one particular magnetic element being fixed directly or indirectly on the same flexible or rigid plate and/or to each other and being capable of cooperating with the other magnetic element.
2. Device according to claim 1, characterized in that each module comprises a circuit and/or an electronic device, having one or more specific functionalities.
3. Device according to claim 1, characterized in that the magnetic field is greater than 1500 Gauss.
4. Device according to claim 2, characterized in that at least one part of the first magnetic elements and/or at least one part of the second magnetic elements is associated with an anti-magnetic protective element.
5. Device according to claim 4, characterized in that the anti-magnetic protection (38) is metallic and is 0.1 mm to 2 mm thick.
6. Device according to claim 1, wherein the first and second magnetic elements correspond to groups of magnets, the groups of first elements being capable of cooperating with groups of corresponding second elements with the opposite sign, the second corresponding elements, in that each first and second magnetic element comprises at least two magnets per group, the positive magnets of an element being disposed alternately with the negative magnets of the same element.
7. Device according to claim 1, wherein the magnets of one same first or second magnetic element are rigidly and non-removably fixed and are electrically insulated from each other, on a plate (S).
8. Device according to claim 1, wherein one or more magnets in each first and second magnetic element has (have) a rectangular or circular cross-section and in that the magnets are derived from the family of rare earths of the neodymium iron boron type.
9. Device according to claim 1, wherein the wire connection (25, 26) between magnets and/or magnetic elements is integrated between two fabric sheets one of which forms the support.
10. Device according to claim 1, wherein the wire connection (69, 70, 71) and the support (60) are free to stretch.
11. Device according to claim 1, wherein the wire connection is formed at least in part by an adhesive, conductive copper, aluminum or any other metal tape and/or at least in part, by a conductive alloy or by a combination of both.
12. Device according to claim 1, wherein each accessory comprises a removable housing (41, 56) containing a second magnetic element arranged to correspond to a first magnetic element facing it, to be gripped manually by a user.
13. Device according to claim 1, wherein at least one accessory housing comprises complementary mechanical clipping means arranged to enable the adjustment/clip fitting of said housing on a complementary shaped part fixed to the first magnetic element.
14. Headset comprising a device according to claim 1.
15. Clothing comprising a device according to claim 1.
16. Assembly comprising a headset according to claim 15 or clothing assembly according to claim 16, characterized in that it comprises at least one device worn by a user and wire connection means through an accessory between said headset or clothing and the portable device.
17. Assembly comprising a headset according to claim 14, characterized in that it comprises:
- a. said headset, one or more clothes, a rucksack, one or more connected pockets, and other connectable accessories;
- b. said modules comprising one or more electrical circuits or devices having one or more specific functionalities, and a battery;
- c. a hood slidable on the headset, formed from a pattern cut-out in three parts only, without clamps and comprising said first magnetic elements and their wire connection.
18. Assembly according to claim 16, characterized in that the modules comprise articulated magnet blocks, with crossed contacts, connected to one another by wire connection forming an electrical circuit on the reverse of the fabric, formed by adhesive, copper tape strips and/or by strips formed by a conductive alloy deposit.
19. Assembly according to claim 17, wherein the portable device is a jacket (77) equipped with a fabric comprising a sheet of connected wires, forming a matrix for detecting a damaged zone.
20. Assembly according to claim 17, characterized in that it comprises a connected pocket, arranged to automatically request (or not) a replenishment of its content.
Type: Application
Filed: Sep 4, 2018
Publication Date: Dec 5, 2019
Patent Grant number: 11233355
Inventors: Eric Sitbon (Paris), Ruben Sitbon (Paris)
Application Number: 16/120,918