MEMORY SYSTEM AND OPERATION METHOD THEREOF

A memory system includes a memory device suitable for storing data; and a controller including a write buffer including a plurality of buffer regions, a buffer region data structure suitable for representing whether each of the buffer regions includes data or not, and a power management unit suitable for selectively maintaining power supply, when the memory system is in a power-saving mode, for each buffer region based on the representation in the buffer region data structure for the corresponding buffer region.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority of Korean Patent Application No. 10-2018-0082192, filed on Jul. 16, 2018, which is incorporated herein by reference in its entirety.

BACKGROUND 1. Field

Various embodiments of the present invention relate to a memory system including a memory device, and a method for operating the memory system.

2. Description of the Related Art

The computer environment paradigm has shifted to ubiquitous computing systems that can be used anytime and anywhere. As a result, use of portable electronic devices such as mobile phones, digital cameras, and laptop computers has rapidly increased. These portable electronic devices generally use a memory system having one or more memory devices for storing data. A memory system may be used as a main memory device or an auxiliary memory device of a portable electronic device.

Memory systems may provide excellent stability, durability, high information access speed, and low power consumption since they have no moving parts, as compared with the characteristics of a hard disk device. Examples of memory systems having such advantages include universal serial bus (USB) memory devices, memory cards having various interfaces, and solid state drives (SSD).

SUMMARY

Embodiments of the present invention are directed to a memory system that may reduce the amount of power consumption in a power-saving mode, and a method for operating the memory system.

In accordance with an embodiment of the present invention, a memory system includes: a memory device suitable for storing data; and a controller including a write buffer including a plurality of buffer regions, a buffer region data structure suitable for representing whether each of the buffer regions includes data or not, and a power management unit suitable for selectively maintaining power supply, when the memory system is in a power-saving mode, for each buffer region based on the representation in the buffer region data structure for the corresponding buffer region.

In accordance with another embodiment of the present invention, a method for operating a memory system includes: marking each segment of a buffer region data structure that corresponds to a buffer region in which write data is buffered; changing the marking in each segment that corresponds to a buffer region from which buffered write data is removed; and selectively maintaining power supply, when the memory system is a power-saving mode, for each buffer region based on a reading of the corresponding segment of the buffer region data structure.

In accordance with still another embodiment of the present invention, a memory system includes: a memory device configured to store data; and a controller including buffer regions and respectively associated segments, each for indicating whether data is buffered in the corresponding buffer region, wherein the controller is configured to maintain power supply, when the memory system is in a power-saving mode, for each buffer region in which data is buffered as indicated in the associated segment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a data processing system in accordance with an embodiment of the present invention.

FIG. 2 is a schematic diagram illustrating an exemplary configuration of a memory device employed in a memory system of FIG. 1.

FIG. 3 is a circuit diagram illustrating an exemplary configuration of a memory cell array of a memory block in a memory device shown in FIG. 1.

FIG. 4 is a schematic diagram illustrating an exemplary three-dimensional structure of the memory device shown in FIG. 2.

FIG. 5 is a block diagram illustrating a data processing system in accordance with an embodiment of the present invention.

FIGS. 6 and 7 are flowcharts describing a method for operating the memory system in accordance with an embodiment of the present invention.

FIGS. 8 to 16 are diagrams schematically illustrating application examples of the data processing system in accordance with various embodiments of the present invention.

DETAILED DESCRIPTION

Various embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. The present invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure is thorough and complete and fully conveys the scope of the present invention to those skilled in the art. Throughout the disclosure, like reference numerals refer to like parts throughout the various figures and embodiments of the present invention. Also, throughout the specification, reference to “an embodiment,” “another embodiment” or the like is not necessarily to only one embodiment, and different references to any such phrase are not necessarily to the same embodiment(s).

It will be understood that, although the terms “first”, “second”, “third”, and so on may be used herein to describe various elements, these elements are not limited by these terms. These terms are used to distinguish one element from another element. Thus, a first element described below could also be termed as a second or third element without departing from the spirit and scope of the present invention.

It will be further understood that when an element is referred to as being “connected to”, or “coupled to” another element, it may be directly on, connected to, or coupled to the other element, or one or more intervening elements may be present. In addition, it will also be understood that when an element is referred to as being “between” two elements, it may be the only element between the two elements, or one or more intervening elements may also be present. Communication between two elements, whether directly or indirectly connected/coupled, may be wired or wireless, unless stated or the context indicates otherwise.

As used herein, singular forms may include the plural forms as well and vice versa, unless the context clearly indicates otherwise.

It is also noted, that in some instances, as would be apparent to those skilled in the relevant art, an element also referred to as a feature described in connection with one embodiment may be used singly or in combination with other elements of another embodiment, unless specifically indicated otherwise.

It will be further understood that the terms “comprises,” “comprising,” “includes,” and “including” when used in this specification, specify the presence of the stated elements and do not preclude the presence or addition of one or more other elements. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.

Hereinafter, the various embodiments of the present invention will be described in detail with reference to the attached drawings.

FIG. 1 is a block diagram illustrating a data processing system 100 in accordance with an embodiment of the present invention.

Referring to FIG. 1, the data processing system 100 may include a host 102 operatively coupled to a memory system 110.

The host 102 may include any of various portable electronic devices such as a mobile phone, MP3 player and laptop computer, or any of various non-portable electronic devices such as a desktop computer, a game machine, a television (TV), and a projector.

The host 102 may include at least one operating system (OS), which may manage and control overall functions and operations of the host 102, and provide operation between the host 102 and a user using the data processing system 100 or the memory system 110. The OS may support functions and operations corresponding to usage by a user. For example, the OS may be divided into a general OS and a mobile OS, depending on the mobility of the host 102. The general OS may be divided into a personal OS and an enterprise OS, depending on the environment of a user. For example, the personal OS configured to support a function of providing a service to general users may include Windows and Chrome, and the enterprise OS configured to secure and support high performance may include Windows server, Linux and Unix. Furthermore, the mobile OS configured to support a function of providing a mobile service to users and a power saving function of a system may include Android, iOS and Windows Mobile. The host 102 may include a plurality of OSs, and execute an OS to perform n operation corresponding to a user's request on the memory system 110.

The memory system 110 may operate to store data for the host 102 in response to a request of the host 102. Non-limiting examples of the memory system 110 include a solid state drive (SSD), a multi-media card (MMC), a secure digital (SD) card, a universal storage bus (USB) device, a universal flash storage (UFS) device, compact flash (CF) card, a smart media card (SMC), a personal computer memory card international association (PCMCIA) card and memory stick. The MMC may include an embedded MMC (eMMC), reduced size MMC (RS-MMC) and/or micro-MMC. The SD card may include a mini-SD card and/or micro-SD card.

The memory system 110 may be embodied by any of various types of storage devices. Examples of such storage devices include, but are not limited to, volatile memory devices such as a DRAM dynamic random access memory (DRAM) and a static RAM (SRAM), as well as nonvolatile memory devices such as a read only memory (ROM), a mask ROM (MROM), a programmable ROM (PROM), an erasable programmable ROM (EPROM), an electrically erasable programmable ROM (EEPROM), a ferroelectric RAM (FRAM), a phase-change RAM (PRAM), a magneto-resistive RAM (MRAM), resistive RAM (RRAM or ReRAM) and a flash memory. The flash memory may have a 3-dimensional (3D) stack structure.

The memory system 110 may include a controller 130 and a memory device 150. The memory device 150 may store data for the host 102, and the controller 130 may control data storage into the memory device 150.

The controller 130 and the memory device 150 may be integrated into a single semiconductor device, which may be included in any of the various types of memory systems exemplified above. For example, the controller 130 and the memory device 150 may be integrated as one semiconductor device to constitute a solid state drive (SSD). When the memory system 110 is used as an SSD, the operating speed of the host 102 connected to the memory system 110 can be improved. Alternatively, the controller 130 and the memory device 150 may be integrated as one semiconductor device to constitute a memory card such as a personal computer memory card international association (PCMCIA) card, compact flash (CF) card, smart media (SM) card, memory stick, multimedia card (MMC) including reduced size MMC (RS-MMC) and micro-MMC, secure digital (SD) card including mini-SD, micro-SD and SDHC, or universal flash storage (UFS) device.

Non-limiting application examples of the memory system 110 include a computer, an Ultra Mobile PC (UMPC), a workstation, a net-book, a Personal Digital Assistant (PDA), a portable computer, a web tablet, a tablet computer, a wireless phone, a mobile phone, a smart phone, an e-book, a Portable Multimedia Player (PMP), a portable game machine, a navigation system, a black box, a digital camera, a Digital Multimedia Broadcasting (DMB) player, a 3-dimensional television, a smart television, a digital audio recorder, a digital audio player, a digital picture recorder, a digital picture player, a digital video recorder, a digital video player, a storage device constituting a data center, a device capable of transmitting/receiving information in a wireless environment, one of various electronic devices constituting a home network, one of various electronic devices constituting a computer network, one of various electronic devices constituting a telematics network, a Radio Frequency Identification (RFID) device, or one of various components constituting a computing system.

The memory device 150 may be a nonvolatile memory device that retains data stored therein even when power is not supplied. The memory device 150 may store data provided from the host 102 through a write operation, and provide data stored therein to the host 102 through a read operation. The memory device 150 may include a plurality of memory blocks 152, 154, 156, each of which may include a plurality of pages. Each of the pages may include a plurality of memory cells coupled to a word line. In an embodiment, the memory device 150 may be a flash memory. The flash memory may have a 3-dimensional (3D) stack structure.

Since the structure of the memory device 150 including its 3D stack structure will be described in detail later with reference to FIGS. 2 to 4, further description of such structure is omitted here.

The controller 130 may control the memory device 150 in response to a request from the host 102. For example, the controller 130 may provide data read from the memory device 150 to the host 102, and store data provided from the host 102 into the memory device 150. To this end, the controller 130 may control read, write, program and erase operations of the memory device 150.

The controller 130 may include a host interface (I/F) 132, a processor 134, an error correction code (ECC) component 138, a Power Management Unit (PMU) 140, a memory interface (I/F) 142 such as a NAND flash controller (NFC), and a memory 144, all operatively coupled via an internal bus.

The host I/F 132 may be configured to process a command and data of the host 102, and may communicate with the host 102 through one or more of various interface protocols such as universal serial bus (USB), multi-media card (MMC), peripheral component interconnect-express (PCI-e or PCIe), small computer system interface (SCSI), serial-attached SCSI (SAS), serial advanced technology attachment (SATA), parallel advanced technology attachment (PATA), enhanced small disk interface (ESDI) and integrated drive electronics (IDE).

The ECC component 138 may detect and correct an error contained in the data read from the memory device 150. In other words, the ECC component 138 may perform an error correction decoding process on the data read from the memory device 150 through an ECC code used during an ECC encoding process. According to a result of the error correction decoding process, the ECC component 138 may output a signal, for example, an error correction success/fail signal. When the number of error bits is more than a threshold value of correctable error bits, the ECC component 138 may not correct the error bits, and instead may output an error correction fail signal.

The ECC component 138 may perform error correction through a coded modulation such as Low Density Parity Check (LDPC) code, Bose-Chaudhri-Hocquenghem (BCH) code, turbo code, Reed-Solomon code, convolution code, Recursive Systematic Code (RSC), Trellis-Coded Modulation (TCM) and Block coded modulation (BCM). However, the ECC component 138 is not limited to any specific error correction technique or structure. The ECC component 138 may include any and all circuits, modules, systems or devices for error correction.

The PMU 140 may provide and manage power of the controller 130.

The memory I/F 142 may serve as a memory/storage interface for interfacing the controller 130 and the memory device 150 such that the controller 130 controls the memory device 150 in response to a request from the host 102. When the memory device 150 is a flash memory or specifically a NAND flash memory, the memory I/F 142 may generate a control signal for the memory device 150 and process data to be provided to the memory device 150 under the control of the processor 134. The memory I/F 142 may work as an interface (e.g., a NAND flash interface) for processing a command and data between the controller 130 and the memory device 150. Specifically, the memory I/F 142 may support data transfer between the controller 130 and the memory device 150.

The memory 144 may serve as a working memory of the memory system 110 and the controller 130, and store data for driving the memory system 110 and the controller 130. The controller 130 may control the memory device 150 to perform read, write, program and erase operations in response to a request from the host 102. The controller 130 may provide data read from the memory device 150 to the host 102, may store data provided from the host 102 into the memory device 150. The memory 144 may store data for the controller 130 and the memory device 150 to perform these operations.

The memory 144 may be embodied by a volatile memory. For example, the memory 144 may be embodied by static random access memory (SRAM) or dynamic random access memory (DRAM). The memory 144 may be disposed within or externally to the controller 130. FIG. 1 shows the memory 144 disposed within the controller 130. In another embodiment, the memory 144 may be embodied by an external volatile memory having a memory interface transferring data between the memory 144 and the controller 130.

The processor 134 may control the overall operations of the memory system 110. The processor 134 may drive firmware to control the overall operations of the memory system 110. The firmware may be referred to as flash translation layer (FTL). Also, the processor 134 may be realized as a microprocessor or a central processing unit (CPU).

The controller 130 may perform an operation requested by the host 102 in the memory device 150 through the processor 134. In other words, the controller 130 may perform a command operation corresponding to a command received from the host 102, or other source. The command operation may be a foreground operation corresponding to the command received from the host 102. For example, the controller 130 may perform a program operation corresponding to a write command, a read operation corresponding to a read command, an erase operation corresponding to an erase command, and a parameter set operation corresponding to a set parameter command or a set feature command.

Also, the controller 130 may perform a background operation on the memory device 150 through the processor 134. Such background operation may include an operation of copying and processing data stored in some memory blocks, among the memory blocks 152 to 156 of the memory device 150, into other memory blocks, e.g., a garbage collection (GC) operation, an operation of swapping between the memory blocks 152 to 156 or data between two or more of them, e.g., a wear-leveling (WL) operation, an operation of storing the map data stored in the controller 130 in the memory blocks 152 to 156, e.g., a map flush operation, or an operation of managing bad blocks of the memory device 150, e.g., a bad block management operation of detecting and processing bad blocks among the memory blocks 152 to 156.

A memory device of the memory system in accordance with an embodiment of the present invention is described in detail with reference to FIGS. 2 to 4.

FIG. 2 is a schematic diagram illustrating the memory device 150, FIG. 3 is a circuit diagram illustrating an exemplary configuration of a memory cell array of a memory block in the memory device 150, and FIG. 4 is a schematic diagram illustrating an exemplary 3D structure of the memory device 150.

Referring to FIG. 2, the memory device 150 may include a plurality of memory blocks BLOCK0 to BLOCKN-1, e.g., BLOCK0 (210), BLOCK1 (220), BLOCK2 (230), . . . BLOCKN-1 (240). Each of the memory blocks 210, 220, 230 and 240 may include a plurality of pages, for example 2M pages, the number of which may vary according to circuit design. For example, in some applications, each of the memory blocks may include M pages. Each of the pages may include a plurality of memory cells that are coupled to a plurality of word lines WL.

Also, the memory device 150 may include a plurality of memory blocks, which may include a single level cell (SLC) memory block storing 1-bit data and/or a multi-level cell (MLC) memory block storing 2-bit data. The SLC memory blocks may include a plurality of pages that are realized by memory cells storing one-bit data in one memory cell. The SLC memory blocks may have a quick data operation performance and high durability. On the other hand, the MLC memory blocks may include a plurality of pages that are realized by memory cells storing multi-bit data, e.g., data of two or more bits, in one memory cell. The MLC memory blocks may have a greater data storing space than the SLC memory blocks. In other words, the MLC memory blocks may be highly integrated. Particularly, the memory device 150 may include not only the MLC memory blocks, each of which includes a plurality of pages that are realized by memory cells capable of storing two-bit data in one memory cell, but also triple level cell (TLC) memory blocks each of which includes a plurality of pages that are realized by memory cells capable of storing three-bit data in one memory cell, quadruple level cell (QLC) memory blocks each of which includes a plurality of pages that are realized by memory cells capable of storing four-bit data in one memory cell, and/or multiple level cell memory blocks each of which includes a plurality of pages that are realized by memory cells capable of storing five or more-bit data in one memory cell.

In accordance with an embodiment of the present invention, the memory device 150 is described as a non-volatile memory, such as a flash memory, e.g., a NAND flash memory. However, in other embodiments, the memory device 150 may be realized as any of a Phase Change Random Access Memory (PCRAM), a Resistive Random Access Memory (RRAM or ReRAM), a Ferroelectric Random Access Memory (FRAM), and a Spin Transfer Torque Magnetic Random Access Memory (STT-RAM or STT-MRAM).

The memory blocks 210, 220, 230 and 240 may store the data transferred from the host 102 through a program operation, and transfer data stored therein to the host 102 through a read operation.

Referring to FIG. 3, a memory block 330, which may correspond to any of the plurality of memory blocks 152 to 156 included in the memory device 150 of the memory system 110, may include a plurality of cell strings 340 coupled to a plurality of corresponding bit lines BL0 to BLm-1. The cell string 340 of each column may include one or more drain select transistors DST and one or more source select transistors SST. Between the drain and source select transistors DST and SST, a plurality of memory cells MC0 to MCn-1 may be coupled in series. In an embodiment, each of the memory cell transistors MC0 to MCn-1 may be embodied by an MLC capable of storing data information of a plurality of bits. Each of the cell strings 340 may be electrically coupled to a corresponding bit line among the plurality of bit lines BL0 to BLm-1. For example, as illustrated in FIG. 3, the first cell string is coupled to the first bit line BL0, and the last cell string is coupled to the last bit line BLm-1. For reference, in FIG. 3, ‘DSL’ denotes a drain select line, ‘SSL denotes a source select line, and ‘CSL’ denotes a common source line.

Although FIG. 3 illustrates NAND flash memory cells, the invention is not limited in this way. It is noted that the memory cells may be NOR flash memory cells, or hybrid flash memory cells including two or more types of memory cells combined therein. Also, it is noted that the memory device 150 may be a flash memory device including a conductive floating gate as a charge storage layer or a charge trap flash (CTF) memory device including an insulation layer as a charge storage layer.

The memory device 150 may further include a voltage supply 310 which provides word line voltages including a program voltage, a read voltage and a pass voltage to supply to the word lines according to an operation mode. The voltage generation operation of the voltage supply 310 may be controlled by a control circuit (not illustrated). Under the control of the control circuit, the voltage supply 310 may select one of the memory blocks (or sectors) of the memory cell array, select one of the word lines of the selected memory block, and provide the word line voltages to the selected word line and the unselected word lines as may be needed.

The memory device 150 may include a read and write (read/write) circuit 320 which is controlled by the control circuit. During a verification/normal read operation, the read/write circuit 320 may operate as a sense amplifier for reading data from the memory cell array. During a program operation, the read/write circuit 320 may operate as a write driver for driving bit lines according to data to be stored in the memory cell array. During a program operation, the read/write circuit 320 may receive from a buffer (not illustrated) data to be stored into the memory cell array, and drive bit lines according to the received data. The read/write circuit 320 may include a plurality of page buffers 322 to 326 respectively corresponding to columns (or bit lines) or column pairs (or bit line pairs), and each of the page buffers 322 to 326 may include a plurality of latches (not illustrated).

The memory device 150 may be embodied by a two-dimensional (2D) or three-dimensional (3D) memory device. Particularly, as illustrated in FIG. 4, the memory device 150 may be embodied by a nonvolatile memory device having a 3D stack structure. When the memory device 150 has a 3D structure, the memory device 150 may include a plurality of memory blocks BLOCK0 to BLOCKN-1. FIG. 4 is a block diagram illustrating the memory blocks 152 to 156 of the memory device 150 shown in FIG. 1. Each of the memory blocks 152 to 156 may be realized in a 3D structure (or vertical structure). For example, the memory blocks 152 to 156 may be a three-dimensional structure with dimensions extending in first to third directions, e.g., an x-axis direction, a y-axis direction, and a z-axis direction.

Each memory block 330 in the memory device 150 may include a plurality of NAND strings NS that extend in the second direction, and a plurality of NAND strings NS (not shown) that extend in the first direction and the third direction. Each of the NAND strings NS may be coupled to a bit line BL, at least one string select line SSL, at least one ground select line GSL (not shown), a plurality of word lines WL, at least one dummy word line DWL (not shown), and a common source line CSL. Each of the NAND strings NS may include a plurality of transistor structures TS (not shown).

In short, each memory block 330 may be coupled to a plurality of bit lines BL, a plurality of string select lines SSL, a plurality of ground select lines GSL, a plurality of word lines WL, a plurality of dummy word lines DWL, and a plurality of common source lines CSL. Each memory block 330 may include a plurality of NAND strings NS. Also, in each memory block 330, one bit line BL may be coupled to a plurality of NAND strings NS to realize a plurality of transistors in one NAND string NS. Also, a string select transistor SST of each NAND string NS may be coupled to a corresponding bit line BL, and a ground select transistor GST (not shown) of each NAND string NS may be coupled to a common source line CSL. Memory cells MC may be provided between the string select transistor SST and the ground select transistor GST of each NAND string NS. In other words, a plurality of memory cells may be realized in each memory block 330 of the memory device 150.

A data processing operation of a memory device in a memory system in accordance with an embodiment of the present invention is described in detail with reference to FIGS. 5 to 7.

FIG. 5 is a block diagram illustrating a data processing system 100 in accordance with an embodiment of the present invention.

In an embodiment, the data processing system 100 may include the host 102, the host interface (I/F) 132, the processor 134, the power management unit (PMU) 140, the memory interface (I/F) 142, the memory 144, and the memory device 150. The host 102, the host interface (I/F) 132, the processor 134, the power management unit (PMU) 140, the memory interface (I/F) 142, the memory 144, and the memory device 150 shown in FIG. 5 may correspond to their respective counterparts described in FIG. 1.

The memory 144 may include a write buffer 510 and a buffer region data structure 530.

The write buffer 510 may temporarily store write data corresponding to a write request from the host 102 before the write data is programmed in the memory device 150. To be specific, when there is a write request from the host 102, the host I/F 132 may buffer the write data in the write buffer 510. The memory I/F 142 may program the buffered write data in the memory device 150. When the write operation is completed, the buffered write data may be removed.

The write buffer 510 in accordance with an embodiment of the present invention may include a plurality of buffer regions. A buffer region 512 represents one of the buffer regions. Each of the other buffer regions may be configured the same as the buffer region 512.

The buffer region data structure 530 may have a data structure representing, for each of the buffer regions, whether or not data is stored in that buffer region. FIG. 5 illustrates, by way of example, that such structure is a bitmap data structure. However, data structure of the buffer region data structure 530 of the present invention is not limited to a bitmap data structure. Other suitable data structures may be used.

The shades appearing in some buffer regions of the write buffer 510 of FIG. 5 may represent that data is buffered in those buffer regions. In the buffer region data structure 530, a bit value corresponding to a buffer region in which data is buffered may be ‘1’, and a bit value corresponding to a buffer region in which data is not buffered may be ‘0’. This convention may be reversed, as those skilled in the art understand.

According to an embodiment of the present invention, when the memory system 110 is switched to a power-saving mode, the PMU 140 may reduce the amount of power consumption of the memory system 110 in the power-saving mode by referring to the bit values of the buffer region bitmap 530 and selectively maintaining the power supply for the buffer region(s) in which data is buffered.

FIG. 6 is a flowchart describing a method for operating the memory system 110 in accordance with an embodiment of the present invention.

In step S602, the host I/F 132 may receive a write command (CMD) from the host 102.

In step S604, the processor 134 may allocate the write buffer 510 to buffer the write data corresponding to the write command in response to the request from the host I/F 132.

In step S606, the host T/F 132 may receive the write data from the host 102.

In step S608, the host I/F 132 may buffer the received write data in the write buffer 510.

In step S610, the processor 134 may represent that the write data is buffered in the buffer region(s) by changing the bit value(s) of the buffer region data structure 530 corresponding to the buffer region(s) in which the write data is buffered, for example, changing the bit value in each case from ‘0’ to ‘1’.

In step S612, the memory I/F 142 may provide the memory device 150 with the write command and the buffered write data.

In step S614, the memory device 150 may perform a write operation in response to the write command.

In step S616, the memory device 150 may provide the processor 134 with a program pass signal through the memory I/F 142 to inform that the write operation is completed.

in step S618, the processor 134 may remove the buffered write data in response to the program pass signal.

In step S620, the processor 134 may represent that the write data is no longer buffered in the buffer region(s) by changing the bit value(s) of the buffer region data structure 530 corresponding to the buffer region(s) from which the buffered write data is removed, for example, changing the hit value in each case from ‘1’ to ‘0’.

FIG. 7 is a flowchart describing a method for operating the memory system 110 in accordance with an embodiment of the present invention.

In step S702, the memory system 110 may be switched from an active mode to the power-saving mode. The switching to the power-saving mode may be performed in response to a command from the host 102, or it may be performed at a specific time, e.g., after a specific time elapses in which no operation such as a read operation, a write operation, a program operation, or an erase operation has been performed in the memory system 110. The specific length of time may be predetermined.

In step S704, the processor 134 may detect which buffer region(s) are buffering write data to determine whether to switch the mode to the power-saving mode. Such detection may be performed by referring to the buffer region data structure 530.

In step S706, the processor 134 may control the PMU 140 to selectively maintain the power supply for the buffer region(s) in which the write data is buffered. According to an embodiment of the present invention, the PMU 140 may maintain the power supply for the buffer region(s) for which the corresponding buffer region bitmap has a bit value of ‘1’, and restrict the power supply for the buffer region(s) corresponding to a bit value ‘0’.

In step S708, the memory system 110 may be switched from the power-saving mode to the active mode. The switching to the active mode may be performed in response to a command from the host 102, or it may be performed when an operation such as a read operation, a write operation, a program operation, and an erase operation is detected in the memory system 110.

When the mode is switched to the active mode, in step S710, the PMU 140 may supply sufficient power to the memory system 110 so that the memory system 110 may perform an operation such as a read operation, a write operation, a program operation, and an erase operation. To be specific, the PMU 140 may supply power to all the buffer regions by resuming the power supply to the buffer region(s) in which the write data is no longer buffered.

According to embodiments of the present invention described above, in the power-saving mode, the PMU 140 may selectively maintain the power supply for the buffer region(s) in which data is buffered. As a result, it is possible to minimize the power consumption of the memory system 110 in the power-saving mode while reducing the above-described additional operations which may be performed when the mode is changed to the power-saving mode and the active mode.

Referring to FIGS. 8 to 16, a data processing system and electronic devices, to which the memory system 110 including the memory device 150 and the controller 130 described above may be applied, will be described in more detail.

FIGS. 8 to 16 are diagrams schematically illustrating application examples of the data processing system of FIGS. 1 to 7 according to various embodiments.

FIG. 8 is a diagram illustrating the data processing system including the memory system in accordance with an embodiment. FIG. 8 schematically illustrates a memory card system 6100 to which the memory system may be applied.

Referring to FIG. 8, the memory card system 6100 may include a memory controller 6120, a memory device 6130 and a connector 6110.

More specifically, the memory controller 6120 may be connected to the memory device 6130 embodied by a nonvolatile memory (NVM), and configured to access the memory device 6130. For example, the memory controller 6120 may be configured to control read, write, erase and background operations of the memory device 6130. The memory controller 6120 may be configured to provide an interface between the memory device 6130 and a host (not shown), and drive firmware for controlling the memory device 6130. That is, the memory controller 6120 may correspond to the controller 130 of the memory system 110 described with reference to FIG. 1, and the memory device 6130 may correspond to the memory device 150 of the memory system 110 described with reference to FIG. 1.

Thus, as shown in FIG. 1, the memory controller 6120 may include a random access memory (RAM), a processor, a host interface, a memory interface and an error correction component.

The memory controller 6120 may communicate with an external device, for example the host 102 of FIG. 1, through the connector 6110. For example, as described with reference to FIG. 1, the memory controller 6120 may be configured to communicate with an external device through one or more of various communication protocols such as universal serial bus (USB), multimedia card (MMC), embedded MMC (eMMC), peripheral component interconnection (PCI), PCI express (PCIe), Advanced Technology Attachment (ATA), Serial-ATA, Parallel-ATA, small computer system interface (SCSI), enhanced small disk interface (EDSI), Integrated Drive Electronics (IDE), Firewire, universal flash storage (UFS), wireless fidelity (Wi-Fi or WiFi) and Bluetooth. Thus, the memory system and the data processing system may be applied to wired and/or wireless electronic devices, particularly mobile electronic devices.

The memory device 6130 may be implemented by a nonvolatile memory. For example, the memory device 6130 may be implemented by any of various nonvolatile memory devices such as an erasable and programmable ROM (EPROM), an electrically erasable and programmable ROM (EEPROM), a NAND flash memory, a NOR flash memory, a phase-change RAM (PRAM), a resistive RAM (ReRAM), a ferroelectric RAM (FRAM) and a spin torque transfer magnetic RAM (STT-RAM).

The memory controller 6120 and the memory device 6130 may be integrated into a single semiconductor device. For example, the memory controller 6120 and the memory device 6130 may be integrated to form a solid-state driver (SSD). Also, the memory controller 6120 and the memory device 6130 may form a memory card such as a PC card (e.g., Personal Computer Memory Card International Association (PCMCIA)), a compact flash (CF) card, a smart media card (e.g., SM and SMC), a memory stick, a multimedia card (e.g., MMC, RS-MMC, MMCmicro and eMMC), an secured digital (SD) card (e.g., SD, miniSD, microSD and SDHC) and/or a universal flash storage (UFS).

FIG. 9 is a diagram schematically illustrating another example of a data processing system 6200 including the memory system in accordance with an embodiment,

Referring to FIG. 9, the data processing system 6200 may include a memory device 6230 having one or more nonvolatile memories (NVMs) and a memory controller 6220 for controlling the memory device 6230. The data processing system 6200 may serve as a storage medium such as a memory card (CF, SD, micro-SD or the like) or USB device, as described with reference to FIG. 1. The memory device 6230 may correspond to the memory device 150 in the memory system 110 illustrated in FIG. 1, and the memory controller 6220 may correspond to the controller 130 in the memory system 110 illustrated in FIG. 1.

The memory controller 6220 may control a read, write or erase operation on the memory device 6230 in response to a request of the host 6210, and the memory controller 6220 may include one or more central processing units (CPUs) 6221, a buffer memory such as a random access memory (RAM) 6222, an error correction code (ECC) circuit 6223, a host interface 6224 and a memory interface such as an NVM interface 6225.

The CPU 6221 may control overall operations on the memory device 6230, for example, read, write, file system management and bad page management operations. The RAM 6222 may be operated according to control of the CPU 6221, and used as a work memory, buffer memory or cache memory. When the RAM 6222 is used as a work memory, data processed by the CPU 6221 may be temporarily stored in the RAM 6222. When the RAM 6222 is used as a buffer memory, the RAM 6222 may be used for buffering data transmitted to the memory device 6230 from the host 6210 or transmitted to the host 6210 from the memory device 6230. When the RAM 6222 is used as a cache memory, the RAM 6222 may assist the memory device 6230 to operate at high speed.

The ECC circuit 6223 may correspond to the ECC component 138 of the controller 130 illustrated in FIG. 1. As described with reference to FIG. 1, the ECC circuit 6223 may generate an error correction code (ECC) for correcting a fail bit or error bit of data provided from the memory device 6230. The ECC circuit 6223 may perform error correction encoding on data provided to the memory device 6230, thereby forming data with a parity bit. The parity bit may be stored in the memory device 6230. The ECC circuit 6223 may perform error correction decoding on data outputted from the memory device 6230. The ECC circuit 6223 may correct an error using the parity bit. For example, as described with reference to FIG. 1, the ECC circuit 6223 may correct an error using Low Density Parity Check (LDPC) code, Bose-Chaudhri-Hocquenghem (BCH) code, turbo code, Reed-Solomon code, convolution code, Recursive Systematic Code (RSC) or coded modulation such as Trellis-Coded Modulation (TCM) or Block coded modulation (BCM).

The memory controller 6220 may exchange data with the host 6210 through the host interface 6224, and exchange data with the memory device 6230 through the NVM interface 6225. The host interface 6224 may be connected to the host 6210 through a parallel advanced technology attachment (PATA) bus, serial advanced technology attachment (SATA) bus, small computer system interface (SCSI), universal serial bus (USB), peripheral component interconnect-express (PCIe) or NAND interface. The memory controller 6220 may have a wireless communication function with a mobile communication protocol such as wireless fidelity (WiFi) or Long Term Evolution (LTE). The memory controller 6220 may be connected to an external device, for example, the host 6210 or another external device, and exchange data with the external device. In particular, as the memory controller 6220 is configured to communicate with the external device through one or more of various communication protocols, the memory system and the data processing system in accordance with an embodiment may be applied to wired and/or wireless electronic devices, particularly a mobile electronic device.

FIG. 10 is a diagram illustrating another example of the data processing system including the memory system in accordance with an embodiment. FIG. 10 schematically illustrates a solid state drive (SSD) 6300 to which the memory system may be applied.

Referring to FIG. 10, the SSD 6300 may include a controller 6320 and a memory device 6340 including a plurality of nonvolatile memories (NVMs). The controller 6320 may correspond to the controller 130 in the memory system 110 of FIG. 1, and the memory device 6340 may correspond to the memory device 150 in the memory system of FIG. 1.

More specifically, the controller 6320 may be connected to the memory device 6340 through a plurality of channels CH1 to CHi. The controller 6320 may include one or more processors 6321, an error correction code (ECC) circuit 6322, a host interface 6324, a buffer memory 6325 and a memory interface, for example, a nonvolatile memory interface 6326.

The buffer memory 6325 may temporarily store data provided from the host 6310 or data provided from a plurality of flash memories NVM included in the memory device 6340, or temporarily store meta data of the plurality of flash memories NVM, for example, map data including a mapping table. The buffer memory 6325 may be embodied by volatile memories such as dynamic random access memory (DRAM), synchronous DRAM (SDRAM), double data rate (DDR) SDRAM, low power DDR (LPDDR) SDRAM and graphics RAM (GRAM) or nonvolatile memories such as ferroelectric RAM (FRAM), resistive RAM (RRAM or ReRAM), spin-transfer torque magnetic RAM (STT-MRAM) and phase-change RAM (PRAM), By way of example, FIG. 10 illustrates that the buffer memory 6325 is disposed in the controller 6320. However, the buffer memory 6325 may be external to the controller 6320,

The ECC circuit 6322 may calculate an error correction code (ECC) value of data to be programmed to the memory device 6340 during a program operation, perform an error correction operation on data read from the memory device 6340 based on the ECC value during a read operation, and perform an error correction operation on data recovered from the memory device 6340 during a failed data recovery operation.

The host interface 6324 may provide an interface function with an external device, for example, the host 6310, and the nonvolatile memory interface 6326 may provide an interface function with the memory device 6340 connected through the plurality of channels.

Furthermore, a plurality of SSDs 6300, to which the memory system 110 of FIG. 1 is applied, may be provided to embody a data processing system, for example, a redundant array of independent disks (RAID) system. The RAID system may include the plurality of SSDs 6300 and a RAID controller for controlling the plurality of SSDs 6300. When the RAID controller performs a program operation in response to a write command provided from the host 6310, the RAID controller may select one or more memory systems or SSDs 6300 according to a plurality of RAID levels, that is, RAID level information of the write command provided from the host 6310 in the SSDs 6300, and output data corresponding to the write command to the selected SSDs 6300. Furthermore, when the RAID controller performs a read command in response to a read command provided from the host 6310, the RAID controller may select one or more memory systems or SSDs 6300 according to a plurality of RAID levels, that is, RAID level information of the read command provided from the host 6310 in the SSDs 6300, and provide data read from the selected SSDs 6300 to the host 6310.

FIG. 11 is a diagram schematically illustrating another example of the data processing system including the memory system in accordance with an embodiment. FIG. 11 schematically illustrates an embedded Multi-Media Card (eMMC) 6400 to which the memory system may be applied.

Referring to FIG. 11, the eMMC 6400 may include a controller 6430 and a memory device 6440 embodied by one or more NAND flash memories. The controller 6430 may correspond to the controller 130 in the memory system 110 of FIG. 1, and the memory device 6440 may correspond to the memory device 150 in the memory system 110 of FIG. 1.

More specifically, the controller 6430 may be connected to the memory device 6440 through a plurality of channels. The controller 6430 may include one or more cores 6432, a host interface (I/F) 6431 and a memory interface, for example, a NAND interface (I/F) 6433.

The core 6432 may control overall operations of the eMMC 6400, the host interface 6431 may provide an interface function between the controller 6430 and the host 6410, and the NAND interface 6433 may provide an interface function between the memory device 6440 and the controller 6430. For example, the host interface 6431 may serve as a parallel interface, for example, MMC interface as described with reference to FIG. 1. Furthermore, the host interface 6431 may serve as a serial interface, for example, Ultra High Speed (UHS)-I and/or UHS-II interface.

FIGS. 12 to 15 are diagrams schematically illustrating other examples of the data processing system including the memory system in accordance with one or more embodiments. FIGS. 12 to 15 schematically illustrate universal flash storage (UFS) systems to which the memory system may be applied.

Referring to FIGS. 12 to 15, the UFS systems 6500, 6600, 6700 and 6800 may include hosts 6510, 6610, 6710 and 6810, UFS devices 6520, 6620, 6720 and 6820 and UFS cards 6530, 6630, 6730 and 6830, respectively. The hosts 6510, 6610, 6710 and 6810 may serve as application processors of wired and/or wireless electronic devices, particularly mobile electronic devices, and the UFS devices 6520, 6620, 6720 and 6820 may serve as embedded UFS devices. The UFS cards 6530, 6630, 6730 and 6830 may serve as external embedded UFS devices or removable UFS cards.

The hosts 6510, 6610, 6710 and 6810, the UFS devices 6520, 6620, 6720 and 6820, and the UFS cards 6530, 6630, 6730 and 6830 in the respective UFS systems 6500, 6600, 6700 and 6800 may communicate with external devices, for example, wired and/or wireless electronic devices, particularly mobile electronic devices through UFS protocols. The UFS devices 6520, 6620, 6720 and 6820 and the UFS cards 6530, 6630, 6730 and 6830 may be embodied by the memory system 110 illustrated in FIG. 1. For example, in the UFS systems 6500, 6600, 6700 and 6800, the UFS devices 6520, 6620, 6720 and 6820 may be embodied in the form of the data processing system 6200, the SSD 6300 or the eMMC 6400 described with reference to FIGS. 9 to 11, and the UFS cards 6530, 6630, 6730 and 6830 may be embodied in the form of the memory card system 6100 described with reference to FIG. 8.

Furthermore, in the UFS systems 6500, 6600, 6700 and 6800, the hosts 6510, 6610, 6710 and 6810, the UFS devices 6520, 6620, 6720 and 6820, and the UFS cards 6530, 6630, 6730 and 6830 may communicate with each other through an UFS interface, for example, MIPI M-PHY and MIPI UniPro (Unified Protocol) in MIPI (Mobile Industry Processor Interface). Furthermore, the UFS devices 6520, 6620, 6720 and 6820 and the UFS cards 6530, 6630, 6730 and 6830 may communicate with each other through any of various protocols other than the UFS protocol, for example, universal storage bus (USB) Flash Drives (UFDs), multi-media card (MMC), secure digital (SD), mini-SD, and micro-SD.

In the UFS system 6500 illustrated in FIG. 12, each of the host 6510, the UFS device 6520 and the UFS card 6530 may include UniPro. The host 6510 may perform a switching operation in order to communicate with the UFS device 6520 and the UFS card 6530. In particular, the host 6510 may communicate with the UFS device 6520 or the UFS card 6530 through link layer switching, for example, L3 switching at the UniPro. The UFS device 6520 and the UFS card 6530 may communicate with each other through link layer switching at the UniPro of the host 6510. In the embodiment of FIG. 12, the configuration in which one UFS device 6520 and one UFS card 6530 are connected to the host 6510 is illustrated as an example. However, in another embodiment, a plurality of UFS devices and UFS cards may be connected in parallel or in the form of a star to the host 6510, and a plurality of UFS cards may be connected in parallel or in the form of a star to the UFS device 6520 or connected in series or in the form of a chain to the UFS device 6520.

In the UFS system 6600 illustrated in FIG. 13, each of the host 6610, the UFS device 6620 and the UFS card 6630 may include UniPro, and the host 6610 may communicate with the UFS device 6620 or the UFS card 6630 through a switching module 6640 performing a switching operation, for example, through the switching module 6640 which performs link layer switching at the UniPro, for example, L3 switching. The UFS device 6620 and the UFS card 6630 may communicate with each other through link layer switching of the switching module 6640 at UniPro. In the embodiment of FIG. 13, the configuration in which one UFS device 6620 and one UFS card 6630 are connected to the switching module 6640 is illustrated as an example. However, in another embodiment, a plurality of UFS devices and UFS cards may be connected in parallel or in the form of a star to the switching module 6640, and a plurality of UFS cards may be connected in series or in the form of a chain to the UFS device 6620.

In the UFS system 6700 illustrated in FIG. 14, each of the host 6710, the UFS device 6720 and the UFS card 6730 may include UniPro. The host 6710 may communicate with the UFS device 6720 or the UFS card 6730 through a switching module 6740 performing a switching operation, for example, through the switching module 6740 which performs link layer switching at the UniPro, for example, L3 switching. The UFS device 6720 and the UFS card 6730 may communicate with each other through link layer switching of the switching module 6740 at the UniPro, and the switching module 6740 may be integrated as one module with the UFS device 6720 inside or outside the UFS device 6720. In the embodiment of FIG. 14, the configuration in which one UFS device 6720 and one UFS card 6730 are connected to the switching module 6740 is illustrated as an example. However, in another embodiment, a plurality of modules each including the switching module 6740 and the UFS device 6720 may be connected in parallel or in the form of a star to the host 6710 or connected in series or in the form of a chain to each other. Furthermore, a plurality of UFS cards may be connected in parallel or in the form of a star to the UFS device 6720.

In the UFS system 6800 illustrated in FIG. 15, each of the host 6810, the UFS device 6820 and the UFS card 6830 may include M-PHY and UniPro. The UFS device 6820 may perform a switching operation in order to communicate with the host 6810 and the UFS card 6830. In particular, the UFS device 6820 may communicate with the host 6810 or the UFS card 6830 through a switching operation between the M-PHY and UniPro module for communication with the host 6810 and the M-PHY and UniPro module for communication with the UFS card 6830, for example, through a target Identifier (ID) switching operation. The host 6810 and the UFS card 6830 may communicate with each other through target ID switching between the M-PHY and UniPro modules of the UFS device 6820. In the embodiment of FIG. 15, the configuration in which one UFS device 6820 is connected to the host 6810 and one UFS card 6830 is connected to the UFS device 6820 is illustrated as an example. However, in another embodiment, a plurality of UFS devices may be connected in parallel or in the form of a star to the host 6810, or connected in series or in the form of a chain to the host 6810, and a plurality of UFS cards may be connected in parallel or in the form of a star to the UFS device 6820, or connected in series or in the form of a chain to the UFS device 6820.

FIG. 16 is a diagram illustrating another example of the data processing system including the memory system in accordance with an embodiment. FIG. 16 is a diagram schematically illustrating a user system 6900 to which the memory system may be applied.

Referring to FIG. 16, the user system 6900 may include a user interface 6910, a memory module 6920, an application processor 6930, a network module 6940, and a storage module 6950.

More specifically, the application processor 6930 may drive components included in the user system 6900, for example, an operating system (OS), and include controllers, interfaces and a graphic engine which control the components in the user system 6900. The application processor 6930 may be provided as in the form of a System-on-Chip (SoC).

The memory module 6920 may be used as a main memory, work memory, buffer memory or cache memory of the user system 6900. The memory module 6920 may include a volatile random access memory (RAM) such as a dynamic RAM (DRAM), a synchronous DRAM (SDRAM), a double data rate (DDR) SDRAM, DDR2 SDRAM, DDR3 SDRAM, LPDDR SDARM, LPDDR3 SDRAM or LPDDR3 SDRAM, or a nonvolatile RAM such as a phase-change RAM (PRAM), a resistive RAM (ReRAM), a magneto-resistive RAM (MRAM) or a ferroelectric RAM (FRAM). For example, the application processor 6930 and the memory module 6920 may be packaged and mounted in the form of Package on Package (PoP).

The network module 6940 may communicate with external devices. For example, the network module 6940 may not only support wired communication, but also support various wireless communication protocols such as code division multiple access (CDMA), global system for mobile communication (GSM), wideband CDMA (WCDMA), CDMA-2000, time division multiple access (TDMA), long term evolution (LTE), worldwide interoperability for microwave access (Wimax), wireless local area network (WLAN), ultra-wideband (UWB), Bluetooth, wireless display (WI-DI), thereby communicating with wired/wireless electronic devices, particularly mobile electronic devices. Therefore, the memory system and the data processing system, in accordance with an embodiment of the present invention, can be applied to wired/wireless electronic devices. The network module 6940 may be included in the application processor 6930.

The storage module 6950 may store data, for example, data received from the application processor 6930, and then may transmit the stored data to the application processor 6930. The storage module 6950 may be embodied by a nonvolatile semiconductor memory device such as a phase-change RAM (PRAM), a magnetic RAM (MRAM), a resistive RAM (ReRAM), a NAND flash, NOR flash and 3D NAND flash, and provided as a removable storage medium such as a memory card or external drive of the user system 6900. The storage module 6950 may correspond to the memory system 110 described with reference to FIG. 1. Furthermore, the storage module 6950 may be embodied as an SSD, eMMC and UFS as described above with reference to FIGS. 10 to 15.

The user interface 6910 may include interfaces for inputting data or commands to the application processor 6930 or outputting data to an external device. For example, the user interface 6910 may include user input interfaces such as a keyboard, a keypad, a button, a touch panel, a touch screen, a touch pad, a touch ball, a camera, a microphone, a gyroscope sensor, a vibration sensor and a piezoelectric element, and user output interfaces such as a liquid crystal display (LCD), an organic light emitting diode (OLED) display device, an active matrix OLED (AMOLED) display device, an LED, a speaker and a motor.

Furthermore, when the memory system 110 of FIG. 1 is applied to a mobile electronic device of the user system 6900, the application processor 6930 may control overall operations of the mobile electronic device, and the network module 6940 may serve as a communication module for controlling wired and/or wireless communication with an external device. The user interface 6910 may display data processed by the processor 6930 on a display/touch module of the mobile electronic device, or support a function of receiving data from the touch panel.

According to embodiments of the present invention, a memory system that may reduce the amount of power consumption in a power-saving mode and a method for operating such memory system are provided.

While the present invention has been illustrated and described with respect to the specific embodiments, it will be apparent to those skilled in the art in light of the present disclosure that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.

Claims

1. A memory system, comprising:

a memory device suitable for storing data; and
a controller including: a write buffer including a plurality of buffer regions, a buffer region data structure suitable for representing whether each of the buffer regions includes data or not, and a power management unit suitable for selectively maintaining power supply, when the memory system is in a power-saving mode, for each buffer region based on the representation in the buffer region data structure for the corresponding buffer region.

2. The memory system of claim 1, wherein the buffer region data structure is a bit map data structure.

3. The memory system of claim 2, wherein the controller further includes a processor, and

the processor controls the buffer region data structure to represent whether or not data is stored in each of the buffer regions by changing a bit corresponding to each buffer region in which a data is buffered to a first logic value and changing a bit corresponding to each buffer region from which a data is removed to a second logic value.

4. The memory system of claim 3, wherein the controller further includes a host interface and a memory interface, and

the host interface buffers write data received from a host in a buffer region of the write buffer, and
the memory interface provides the memory device with the buffered write data, and
the processor controls the memory device to perform a write operation for the buffered write data, and when the write operation is completed, the processor removes the buffered write data.

5. The memory system of claim 1, wherein the power management unit supplies power to all of the buffer regions when the memory system is in an active mode.

6. The memory system of claim 1, wherein the memory system is switched to a power-saving mode in response to a command from a host.

7. The memory system of claim 1, wherein the memory system is switched to a power-saving mode, when a read operation, a write operation, a program operation, or an erase operation is not detected for a specific length of time.

8. The memory system of claim 5, wherein the memory system is switched to an active mode, when a read operation, a write operation, a program operation, or an erase operation is detected.

9. A method for operating a memory system, comprising:

marking each segment of a buffer region data structure that corresponds to a buffer region in which write data is buffered;
changing the marking in each segment that corresponds to a buffer region from which buffered write data is removed; and
selectively maintaining power supply, when the memory system is a power-saving mode, for each buffer region based on a reading of the corresponding segment of the buffer region data structure.

10. The method of claim 9, wherein the buffer region data structure is a bitmap data structure.

11. The method of claim 10, wherein the marking of each segment of the buffer region data structure that corresponds to a buffer region in which write data is buffered includes:

changing a bit corresponding to each buffer region in which the write data is buffered to a first logic value.

12. The method of claim 10, wherein the changing of the marking in each segment that corresponds to a buffer region from which buffered write data is removed includes:

changing a bit corresponding to each buffer region from which buffered write data is removed to a second logic value.

13. The method of claim 9, further comprising:

buffering the write data received from a host in one or more buffer regions of the write buffer;
providing the memory device with the buffered write data;
performing a write operation for the buffered write data; and
removing the buffered write data, when the write operation is completed.

14. The method of claim 9, further comprising:

supplying power to all of the buffer regions when the memory system is in an active mode.

15. The method of claim 9, further comprising:

switching the memory system to a power-saving mode in response to a command from a host.

16. The method of claim 9, further comprising:

switching the memory system to a power-saving mode, when a read operation, a write operation, a program operation, or an erase operation is not detected for a specific length of time.

17. The method of claim 14, further comprising:

switching the memory system to an active mode, when a read operation, a write operation, a program operation, or an erase operation is detected.

18. A memory system, comprising:

a memory device configured to store data; and
a controller including buffer regions and respectively associated segments, each for indicating whether data is buffered in the corresponding buffer region,
wherein the controller is configured to maintain power supply, when the memory system is in a power-saving mode, for each buffer region in which data is buffered as indicated in the associated segment.

19. The memory system of claim 18, wherein the controller is configured to switch the memory system to the power-saving mode in response to a command from an external source or when it is detected that no operation has been performed on the memory device for a specific length of time.

20. The memory system of claim 18, each of the associated segment contains a bit, the value of which is indicative of whether data is buffered in the corresponding buffer region.

Patent History
Publication number: 20200019325
Type: Application
Filed: Feb 12, 2019
Publication Date: Jan 16, 2020
Inventors: Ik-Sung OH (Gyeonggi-do), Jin-Woong KIM (Gyeonggi-do)
Application Number: 16/273,307
Classifications
International Classification: G06F 3/06 (20060101); G06F 1/3228 (20060101); G06F 1/3225 (20060101); G06F 1/3296 (20060101);