MICROMECHANICALLY ALIGNED OPTICAL ASSEMBLY
An optical assembly includes a combination of laser sources emitting radiation, focused by a combination of lenses into optical waveguides. The optical waveguide and the laser source are permanently attached to a common carrier, while at least one of the lenses is attached to a holder that is an integral part of the carrier, but is free to move initially. Micromechanical techniques are used to adjust the position of the lens and holder, and then fix the holder it into place permanently using integrated heaters with solder.
This application claims the benefit of the filing date of U.S. Provisional Application No. 61/148,551, filed Jan. 30, 2009, entitled “Micromechanically Aligned Optical Assembly” the disclosure of which is incorporated by reference.
BACKGROUND OF THE INVENTIONThe invention relates generally to the fiber optic communications, and more particularly to optical packaging techniques used to align laser sources to optical fibers and other types of waveguides.
Optical fiber communications has generally replaced electrical links over long distances in the past few decades. In more recent past, optical links are being used at shorter distances to connect servers to switches and for datacenters. In the future it is expected as data rates increase and costs of optics decreases that optics will diffuse into computers and the connections within a machine or between processors will be optical. (see for example Kash et al. SPIE Photonics West conference 2009 and references cited therein, the disclosures of which are incorporated by reference herein)
A challenge of fiber optics has been that packaging and alignment processes are considerably more difficult than electrical wiring. The advantages are the greater bandwidth and reduced degradation of the signal with distance. At 10 Gb/s data rates, for the signal to travel more than 100-300 m in a fiber, single mode fiber is generally needed, with a typical mode size of about 8 microns. Laser sources typically have a mode size of only a few microns. Thus the alignment between the laser and the fiber through the intermediate optics generally has to be very high precision, and tolerances on the order of a tenth of a micron are typically required. One great advantage of single mode fiber is that multiple wavelengths can be coupled simultaneously to get a parallel link through a single fiber. Thus a 100 Gb/s signal can be sent through a single mode fiber for many kilometers by using ten channels of 10 Gb/s each, with every lane at a different wavelength.
As an alternative, when distances are on the order of 100 m or less, multimode fiber and multimode vertical cavity lasers are often used. In this case the core size in the fiber is much larger, at about 50 um, and tolerances can be substantially looser. However, the reach is limited as different modes of the fiber travel at different speeds and it is becomes more difficult to transmit multiple wavelength simultaneously.
As bandwidth requirements increase, there is increased parallelism in both single mode and multimode fiber links. In single mode systems, parallel channels can be obtained easily by adding wavelengths to the same fiber. In multimode systems, additional fibers generally are added to form a fiber ribbon. Parallel ribbon fibers are of course quite expensive and connectors with 24 fibers inside are complicated to make, even if they use multimode fiber with looser alignment tolerance.
There has been considerable work in the industry on different techniques of loosening the alignment tolerance in single mode systems. However, none is very effective, especially if multiple sources are coupled into the same fiber. In these cases there are multiple single mode alignments that occur in the same package.
The simplest way to loosen the tolerances slightly is to fabricate a laser with a bigger optical mode. The technique most commonly used is to have a tapered section at the output of the laser where the optical mode is expanded. This makes the laser mode roughly the same size as the optical fiber or waveguide mode and the alignment tolerance increases from about a quarter micron to about a micron. The disadvantage of this technique is that the fabrication of the laser or semiconductor source becomes more complex, raising the cost. There is also some sacrifice in the performance of laser. In addition, the effect of a laser with a slightly larger optical mode is not that dramatic. One micron alignment tolerance is better than a quarter of a micron, however, it is still not amenable to low cost packaging techniques.
Another technique is to etch the facet of the laser and add a passive silica waveguide. The laser is bonded upside down to a planar lightwave circuit (PLC) that has waveguides built in. The passive waveguide in the laser source and the waveguide in the PLC are matched in effective index, and with a slight taper, all the power can theoretically transfer from the laser source into the single mode waveguide underneath. This loosens the tolerance in the die bonding process to about 5 um, allowing the use of some standard packaging and diebonding equipment. The issue with this technique is that the laser chips become tremendously more complicated. One has to etch a facet and through epitaxial and lithographic processes, align a passive waveguide to the semiconductor waveguide. Such lasers are highly customized and there is an unavoidable optical loss between the laser waveguide and the passive waveguide formed next to it.
MEMS with active rather than passive alignment has also been used to align lasers and waveguides. Alignment may be performed with a MEMS mirror with alignment maintained by a control loop. However, the feedback loop has to be maintained during operation, requiring that the high voltage control electronics outside of the package stay active during operation.
There have been some proposals of MEMS active alignment techniques for switches and alignment of arrays. Some have moving waveguides (E. Ollier, “1\×8 Micromechanical Switches based on Moving Waveguides,” in Proc. 2000 IEEE/LEOS Int. Conf Opt. MEMS Kauai, Hi., August 2000, pp. 39-40), some have torsional mirrors (MEMS optical switches, Tze-Wei Yeow; Law, K.L.E.; Goldenberg, A. Communications Magazine, IEEE Volume 39, Issue 11, November 2001 Page(s):158-163) and some with lenses on an x-y stage (MEMS packaging for micro mirror switches, Long-Sun Huang; Shi-Sheng Lee; Motamedi, E.; Wu, M. C.; Kim, C.-J. Electronic Components & Technology Conference, 1998. 48th IEEE Volume, Issue, 25-28 May 1998 Page(s):592-597) (all of which are incorporated by reference herein). However, all of these approaches are complex and difficult to apply, for example, to PLCs.
BRIEF SUMMARY OF THE INVENTIONIn some aspects the invention provides a structure containing multiple lasers of different wavelengths, a planar lightwave circuit that can combine the different wavelengths into a single waveguide, and set of lenses whose position can at least initially be adjusted using micromechanical means all mounted on a submount where
-
- the lasers and the planar lightwave circuit are soldered onto the submount
- lens holders are an integral part of the submount and are initially adjustable
A structure as above where the lens holders are on a lever, thereby demagnifying the motions used to adjust their positions.
A structure as above where the submount contains a region of predeposited solder that can be reflowed with an integrated heater, and where the solder can lock down the position of the lens with electrical means
The structure as above where actuators are formed on the submount, as an integral part of the submount, and where the actuators move the lenses to optimize the coupling without external mechanical motion
In some aspects the invention provides a structure of at least one laser, one output waveguide, and a microlens, whereby the microlens can be moved by electromechanical means and locked down after optimizing the coupling.
In some aspects the invention provides a structure comprising of multiple lasers of different wavelengths, a planar waveguide circuit that can combine the different wavelengths into a single waveguide, a set of lenses for collimating and focusing the beam, and a set of micromirrors, whose deflection can adjust the position of the beam and the focusing of the beam into the waveguide.
The structure as above where the lasers are mounted on top of the planar lightwave circuit and emit the optical beam through the microlens onto to adjustable micromirror.
In one aspect of the invention, the invention provides a micromechanically aligned optical assembly, comprising: a first waveguide on a substrate; a second waveguide on the substrate; a lens for focusing light of the first waveguide into the second waveguide; and a lever holding the lens, the lever having at least one point fixed with respect to the substrate, the lever holding the lens at a position such that movement of the lever will result in demagnified movement of the lens in at least directions other than an optical axis of light of the first waveguide, the lever moveable so as to position the lens to focus light of the first waveguide into the second waveguide.
In one aspect of the invention, the invention provides the assembly of claim 1, further comprising: a plurality of further first waveguides on the substrate; a plurality of second waveguides on the substrate; a plurality of further lenses, each of the plurality of further lenses for focusing light of a corresponding one of the further first waveguides into a corresponding one of the further second waveguides; and a plurality of further levers, each of the further levers holding a corresponding one of the plurality of further lenses, each of the further levers having at least one point fixed with respect to the substrate, each of the further levers holding the corresponding further lens at a position such that movement of each of the further levers will result in demagnified movement of the corresponding lens in at least directions other than an optical axis of light of the corresponding one of the further first waveguides.
In one aspect of the invention, the invention provides an optical device, comprising: a first optical component configured to provide light; a second optical component configured to receive light; and a third optical component in an optical path between the first optical component and the second optical component, the third optical component mounted on an arm with a length along an axis substantially parallel to an axis defined by the optical path between the first optical component and the third optical component.
In one aspect of the invention, the invention provides a method of making an aligned optical assembly, comprising: manipulating a lever holding a lens to position the lens to focus light from a first waveguide into a second waveguide, the first waveguide and the second waveguide, being physically coupled to a substrate and the lever having a fulcrum fixed in position with respect to substrate, the lever demagnifying movement of the lens in other than an optical axis of the light.
In one aspect of the invention, the invention provides a method of making an aligned optical assembly, comprising: moving a lever holding a lens to position the lens to focus light from a first waveguide into a second waveguide, the first waveguide and the second waveguide being physically coupled to a substrate, with the lever having a point fixed with respect to the substrate and the lever having a length substantially parallel to an optical axis of the light from the first waveguide to the lens; and fixing position of the lever with the lens focusing light from the first waveguide into the second waveguide.
In one aspect of the invention, the invention provides a micromechanically aligned optical device, comprising: a first waveguide coupled to a substrate; a second waveguide coupled to the substrate; a lens for focusing light from the first waveguide into the second waveguide, the light having an optical axis substantially parallel to a planar base of the substrate; a holder for holding the lens, the holder physically coupled to the substrate; at least one electrically actuated actuator at least partially coupled to the holder, the actuator configured to cause movement of the holder in at least one direction absent application of means for effectively fixing position of the holder; and means for effectively fixing position of holder.
In one aspect of the invention, the invention provides a method of aligning an optical assembly, comprising: providing light from a first waveguide physically coupled to a substrate; providing an electric signal to an actuator to move a lens to focus light from the first waveguide into a second waveguide, the lens on a holder physically coupled to the first substrate, the actuator fixedly physically coupled to the holder; determining that the lens is focusing light from the first waveguide into the second waveguide; and fixing position of the holder.
In one aspect of the invention, the invention provides an aligned optical device, comprising: an input waveguide physically coupled to a substrate; an output waveguide physically coupled to the substrate; a lens configured to focus light from the input waveguide into the output waveguide; an arm holding the lens, the arm having a longitudinal length substantially parallel to an axis defined by a linear path from the input waveguide to the output waveguide, the arm being fixed in position with respect to the substrate.
In one aspect of the invention, the invention provides an aligned optical device, comprising: an input waveguide physically coupled to a substrate; an output waveguide physically coupled to the substrate; a lens configured to focus light from the input waveguide into the output waveguide; an arm holding the lens, the arm having a longitudinal length substantially parallel to an axis defined by a linear path from the input waveguide to the output waveguide; and means for fixing position of the arm with respect to the substrate.
In one aspect of the invention, the invention provides an optical device, comprising: an input waveguide; an output waveguide; a convex mirror mounted in a holder, the mirror moveable, in the absence of application of means to effectively fix position of the mirror, to reflect light from the input waveguide into the output waveguide; an arm physically coupled to the mirror, the arm having a moveable free end distal from the mirror; and means for effectively permanently fixing position of the mirror.
In one aspect of the invention, the invention provides an optical device, comprising: a plurality of input waveguides physically coupled to a substrate; a plurality of output waveguides physically coupled to the substrate; a plurality of lenses configured to focus light from each of a corresponding one of the input waveguides into a corresponding one of the output waveguides, the plurality of lenses mounted in a holder; a plurality of arms physically coupled to the holder, the further arms moveable, in the absence of application of means to effectively permanently fix position of the arms with respect to the substrate, so as to cause focus of light from each of the corresponding ones of the input waveguides into the corresponding ones of the corresponding output waveguides; and means for effectively permanently fixing position of the arms with respect to the substrate.
These and other aspects of the invention are more fully comprehended upon review of this disclosure.
Aspects of the present invention uses adjustable elements that are integral to the submount to move the optics to optimize the coupling. Once the alignment is perfected or acceptable, the parts are permanently soldered into place using microheaters.
There are also 4 lasers 60 soldered on to the silicon breadboard 10. Each laser preferably has a different wavelength, where the wavelength is matched to that of the input waveguide of the PLC. The diverging light from each laser, typically with a full width at half maximum of 20 degrees in the horizontal and 30 degrees in the vertical is refocused by a ball lens 50 into the input waveguide of the PLC 30. Note that the ball lens 50 is preferably placed closed to the laser than to the PLC to magnify the image and match the farfield to the smaller natural divergence of the PLC input waveguides (typically 15 degrees by 15 degrees).
Each ball lens 50 fits into a holder etched out of silicon breadboard material. This holder is initially free to move in all three dimensions. There is a handle 90 at the end of this holder that can be manipulated in all three axes. The other side of the holder is fixed in the silicon breadboard 10 and cannot move. Between the ball lens and the fixed end of the holder there is a spring or flexture 40 that is made of thinner silicon in a zig-zag structure, allowing it to stretch slightly and bend up and down. As the handle 90 is manipulated up and down the lens on the holder also moves up and down. The entire spring/lens/holder assembly is a lever, where the lens is placed much closer to the pivot point. This causes a mechanical demagnification, such that a large motion of the handle causes a smaller motion of the lens.
Since the optical alignment of the system is generally important in the x and y directions (up/down and side-to-side), there is demagnification in both axes. However, the z or optical axis dimension, the alignment tolerance is much looser, and thus no demagnification is required. In this case the spring 40 stretches or compresses slightly.
There is a small metalized pad on the handle 85 and two thick depositions of solder on either side of the holder 80. There is electrical contact by way of metallization 87 (shown in
Once the system is aligned, a high speed driver IC 70 may be mounted on top of the assembly, although in some embodiments the high speed driver IC is mounted prior to system alignment. This chip would be wirebonded to the lasers and to the silicon breadboard. By keeping the distance between the driver IC 70 and the lasers 60 short, good signal integrity can be maintained, and possibly the use of a 50 ohm matching resistor can be avoided.
There are also electrical interconnects 95 on the silicon breadboard that take both low speed and high speed signals from the periphery of the chip to the driver IC and lasers. The output of the PLC is not shown, but is coupled to a fiber, presumably through another lens and isolator. The entire assembly is then capped with a lid to seal the structure hermetically. A thick dielectric around the periphery of the chip 98 prevents the cap from shorting the electrical lines and is also used under the driver IC to allow room for motion of the lever arms.
In aspects of this invention the lens motion is demagnified by the lever on which the lens is placed.
The design of the spring should preferably be soft enough such that sufficient motion is obtained in x, y, and z without putting undue strain on the spring. Similarly the spring should preferably be hard enough such that the assembly does not have a low resonance frequency and be sensitive to shock and vibration. The spring can be made softer by making the silicon thinner, narrower, or the spring section longer. Similarly, the spring can be made stiffer by varying these dimensions in the other direction. Nearly all the mass is in the ball lens and the resonance frequency of the assembly can be calculated by knowing the spring constant and the mass of the lens. Similarly the strain on the silicon can be calculated from the displacement of the lens from the equilibrium. The maximum displacement of the lens is determined by the die bonding accuracy of the lasers and the PLC.
The ball lens should also preferably be designed for optimal coupling. An optimal design matches the laser mode to the PLC waveguide mode. A ball lens is ideal for this application on the order of the low cost and easy assembly, however, it suffers from increased spherical aberration compared to a glass asphere.
The wafer is lightly oxidized and then metalized to form the high speed traces (95). A relatively thick (˜20 um) layer of dielectric is then formed on the wafer to cover the high speed traces where the cap seals onto the chip and also form pedestals for the mounting of the driver IC (98). The top silicon wafer is then etched, stopping at the SiO2 layers and forming the cavity around the springs and the handles. The silicon underneath the oxide is then etched with a KOH solution to undercut and release the springs and handles. Note that KOH is selective and will not etch the top p+ doped layer. A final quick oxide etch cleans off any remaining oxide under the mechanical components. Finally another layer of metallization followed by deposition of solder is applied to form the solder structure and the metallization on the lever arm. Angled evaporation may be used to allow metallization into the groove under the lever arm.
Once the optical breadboard is completed, the four laser diodes are soldered into the assembly, with a mechanical tolerance of about <+/−Sum. The ball lenses are then fixed to the holders, using for example either solder or high temperature epoxy. Finally the PLC is attached with rough alignment of the input waveguides, with a resulting structure as shown in
A cross-section through one arm around the metallization is shown in
There are various other ways of fixing the position of the lever after alignment has been achieved. For example, rather than electrically melting the solder to lock the arm, one may use a laser to heat the solder, which may be referred to in the art as laser soldering. One may also use epoxies that can be cured either thermally, with UV light, or a combination. Rather than having solder on both sides of the lever, one may have just one solder ball to one side, and align the part by pushing the lever into the melted solder ball. Finally, one can fix the arm in position by laser welding the silicon directly.
After the arm is locked down, the driver IC is attached, the package is wirebonded, the output is coupled to a fiber using a standard methodology, and a cap put on to seal the package.
The use of the lever discussed earlier is extremely useful in loosening the alignment tolerances. An apparatus in accordance with aspects of the invention was built and the alignment tolerances measured with respect to moving the end of the lever.
As previously mentioned, the lever described earlier can demagnify tolerances in the horizontal (x) and vertical (y) directions, but does not do the same in the longitudinal (z) direction. This is not a significant problem since the longitudinal tolerance is usually relatively large. However, a simple modification can also allow for a looser tolerance in z. This is shown schematically in
In some embodiments actuators for moving the lever are built directly on the breadboard, including the lever, itself. There are a variety of actuators that are well known in the art, including comb, thermal, and electro-static. These can be formed around the lens holder to move the lever in all three axes, and then used to lock the lever into place in some embodiments or hold the lever in place while adhesive, such as solder or epoxy, is used to lock the lever into place. The optical breadboard can then be completely assembled and go through an automated calibration process, where the on-chip actuators are used to align and then fix the various adjustable components. This would simplify the manufacture of the part.
An example of a part with built in actuators is shown in
Since the chevron is made of p+ material, it is also electrically conducting and has two additional pads 1430 on each end. These pads are alloyed into the silicon and passing current between them causes current to flow in the silicon part itself. The actuator has a central section in the chevron 1440 that has an n-type implant and forms a barrier to the current passing straight through from one pad to the next. Thus the electric current passes from the top pad through the lens holder 420, through the thick lever arm 440 and then return through the thin lever arm 1450 and down the chevron to the lower bond pad. Since the thin lever arm has a higher electrical resistance, the thin lever arm warms up and expands slightly compared to the thick lever arm. This causes the two arms to bend upwards in the figure in the direction shown in the arrow 1460.
The third actuator that moves the lens down towards the optical breadboard (into the page on
In the example of
Once the position of the lens has been optimized by using the three actuators described above, the part can be soldered or otherwise fixed into position in the same manner as described previously. Once the part is soldered down, the electrical drive to the actuators is removed and the part stays in place. There will be some residual stress as the actuators pull back, but the solder should hold the part firmly in place. Alternatively, one may desire to break off the actuator from the lens holder to eliminate any chance of deformation and creep in the solder. In
When the number of channels becomes larger, integrated arrays can be simpler than using individual components. For example, a single laser chip can contain a number of laser elements, each of which is designed to operate at a different wavelength. Similarly, a microlens array can be fabricated with precise spacing between the elements. Thus all three elements, the laser array, the microlens array, and the PLC input waveguide array are all matched. In this case the entire microlens array can be aligned in one step.
There are also applications where the PLC is not needed, or is already fiber coupled outside of the package. In these instances the beam is coupled into multiple fibers directly. In some embodiments four fibers are used that compose a ribbon instead of a PLC.
The discussion so far has centered on the use of a moveable microlens or ball lens to optimized the alignment. However, a curved mirror may be used instead. The curved mirror can be moved electrostatically, like a standard micromirror, or be rotated manually with demagnification to steer the focused beam and optimize the alignment. The curved mirror can be stamped out at the end of a pin, as shown in
The optical design is shown in
A combination of ball lenses and curved mirrors can also be used. This can yield to higher coupling efficiency and allow more room for placing components. For example, as shown schematically in
The configuration of
For the sake of simplicity the optics have generally been described as spherical, whether it be the lenses or the mirrors. Of course, as described earlier, an asphere can have lower aberration and will result in higher coupling efficiencies. A very convenient lens for this application is a piano-convex silicon lens that is fabricated lithographically on a wafer. These lenses are available commercially and generally formed by reflowing photoresist or polymer on silicon followed by a dry etch step that transfers the shape of the photoresist to the silicon. The lens is then antireflection coated on the front and the back and diced either into singlets or arrays. Sometimes these lenses are fabricated on silicon-on-insulator wafers, which are then released to form very small lenses.
In some embodiments to optimize the power into an output waveguide for light from an input waveguide for devices as discussed herein, some light is first detected in the output waveguide. When the beam is well focused, the spot is quite small and it can be difficult to detect any coupled light in the output waveguide if x and y positions are not optimized, with x and y directions being orthogonal to each other and the z direction, which is generally along an optical axis of light. However, if for example a lens between the input waveguide and the output waveguide is far from an optimum position in the longitudinal (z) direction, the beam is very poorly focused and larger, and therefore at least some light is likely to be detected in the output waveguide. Thus, in some embodiments the lens is first moved almost to the maximum position along the optical axis, either all the way towards the output waveguide, or all the way towards the source waveguide. Then the coupled power in the output waveguide is measured and recorded as “A”. The lens is then optimized in x, an axis perpendicular to the direction of light. The optimization can be performed by moving the lens in the positive x direction a small amount, measuring the light, and then moving in the negative direction a small amount and measuring the light. If at either point the coupled optical power is larger than at the center point, this new point becomes the center point and the process repeats. This cycle continues until one is sure that the center point has the maximum coupled power. The process is then repeated in exactly the same way in y, the other axis perpendicular to the propagation of light, and then in z, the longitudinal or propagation direction. Once all three axes are aligned, the coupled power is measured again and compared to the value originally recorded as A. If the power has increased, the entire process repeats. On the other hand, if alignment in x, y, and z does not result in further power increase, then one can be assured of maximum power, and the process then locks down the lens by epoxying or soldering the lever down to the substrate.
In some applications, one may not desire to have the maximum power coupled, since it may lead to modulation powers above the target specifications. Furthermore, the power can sometimes not be reduced by decreasing the laser current, since it can lead to a slower response from the laser. If this is the case, or even if this is not the case, after optimization, the lens can be moved in the z direction away from the optimum position to lower the output waveguide coupled power gradually from the maximum amount until the power reaches the desired value.
In block 221 the process moves the lens to a position along the optical axis, which may be considered the z-axis, closest to an output waveguide, although in some embodiments the process moves the lens to a position along the optical axis farthest from the output waveguide, with the process considering the resulting position in the x,y, and z axis the x, y, and z center points. In block 2215 the process determines an initial indication of optical power coupled to the output waveguide.
In block 2220 the process moves the lens to a position a small distance in a first direction perpendicular to the optical axis, with the first direction being considered the x-axis, and to a corresponding position in the opposite direction, and determines an indication of optical power coupled to the output waveguide for both positions. In some embodiments a small distance along the x-axis may be on the order of 0.1 microns, in some embodiments about 0.1 microns, and in some embodiments 0.1 microns. In block 2225 the process determines if either measured power is greater than the initial indication of optical power coupled to the output waveguide. If so, the process in block 2230 sets the position with the greatest power as the x center point, and the process returns to block 2220. Otherwise, the process continues to block 2235.
In block 2235 the process moves the lens to a position a small distance in a second direction perpendicular to the optical axis and the x-axis, with the second direction being considered along the y-axis, and to a corresponding position in the opposite direction, and determines an indication of optical power coupled to the output waveguide for both positions. In some embodiments a small distance along the y-axis is as discussed with respect to the x-axis. In block 2240 the process determines if either measured power is greater than the initial indication of optical power coupled to the output waveguide. If so, the process in block 2245 sets the position with the greatest power as the y center point, and the process returns to block 2235. Otherwise, the process continues to block 2250.
In block 2250 the process moves the lens to a position a small distance in the z-direction, and, if possible, to a corresponding position in the opposite direction, and determines an indication of optical power coupled to the output waveguide for both positions. In some embodiments a small distance along the z-axis is five times the small distance discussed with respect to the x-axis. In block 2255 the process determines if either measured power is greater than the initial indication of optical power coupled to the output waveguide. If so, the process in block 2260 sets the position with the greatest power as the z center point, and the process returns to block 2250. Otherwise, the process continues to block 2270.
In block 2265 the process determines an indication of optical power coupled to the output waveguide, although it should be realized that measured power from block 2250 may be used. In block 2270 the process determines if the optical power determined in block 2270 is greater, in some embodiments, and substantially greater, in other embodiments, than the optical power determined in block 2215. If so, the process sets the initial indication of optical power coupled to the output waveguide to the optical power determined in block 2265, and the process returns to block 2220. Otherwise the process locks position of the lens, by locking position of an arm or lever holding the lens in most embodiments, and thereafter returns.
Aspects of the invention therefore include a platform where micromechanically adjustable optical components are used to align from one or multiple lasers or laser arrays into a planar lightwave circuit or other output waveguides. Although the invention has been described with respect to various embodiments, it should be recognized that the invention includes the novel and non-obvious claims supported by this disclosure.
Claims
1.-26. (canceled)
27. A method of making an aligned optical assembly, comprising:
- moving a lever holding a lens to position the lens to focus light from a first waveguide into a second waveguide, the first waveguide and the second waveguide being physically coupled to a substrate, with the lever having a point fixed with respect to the substrate and the lever having a length substantially parallel to an optical axis of the light from the first waveguide to the lens; and
- fixing position of the lever with the lens focusing light from the first waveguide into the second waveguide.
28.-51. (canceled)
Type: Application
Filed: Jul 26, 2018
Publication Date: Feb 20, 2020
Inventors: Bardia Pezeshki (Menlo Park, CA), John Heanue (Boston, MA)
Application Number: 16/046,720