SYSTEM FOR MODELING BUILDING THERMAL PERFORMANCE PARAMETERS THROUGH EMPIRICAL TESTING WITH THE AID OF A DIGITAL COMPUTER

A system and method for modeling building thermal performance parameters through empirical testing with the aid of a digital computer is described. Three building-specific parameters, thermal conductivity, thermal mass, and effective window area, are empirically derived. Thermal conductivity is evaluated through an empirical test conducted in the absence of solar gain with constant indoor temperature and no HVAC. Thermal mass is evaluated through a second empirical test conducted in the absence of solar gain and no HVAC. Effective window area is evaluated through a third empirical test conducted in the presence of solar gain and no HVAC. Thermal HVAC system power rating and conversion and delivery efficiency are also parametrized. The parameters are estimated using short duration tests that last at most several days. A value of energy savings associated with changing one or more parameters is evaluated.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This patent application is a continuation of U.S. patent application Ser. No. 14/664,742, filed Mar. 20, 2015, pending, which is a continuation of the U.S. Pat. No. 10,339,232, issued Jul. 2, 2019, priority dates of which are claimed and the disclosures of which are incorporated by reference.

FIELD

This application relates in general to energy conservation and, in particular, to a system and method for modeling building thermal performance parameters through empirical testing with the aid of a digital computer.

BACKGROUND

Concern has been growing in recent days over energy consumption in the United States and abroad. The cost of energy has steadily risen as power utilities try to cope with continually growing demand, increasing fuel prices, and stricter regulatory mandates. Power utilities must also maintain existing infrastructure, while simultaneously finding ways to add more generation capacity to meet future needs, both of which add to the cost of energy. Moreover, burgeoning energy consumption continues to impact the environment and deplete natural resources.

A large proportion of the rising cost of energy is borne by consumers, who, despite the need, remain poorly-equipped to identify the most cost effective ways to lower their own energy consumption. Often, no-cost behavioral changes, such as adjusting thermostat settings and turning off unused appliances, and low-cost physical improvements, such as switching to energy-efficient light bulbs, are insufficient to offset utility bill increases. Rather, appreciable decreases in energy consumption are often only achievable by investing in upgrades to a building's heating or cooling envelope. Identifying and comparing the kinds of building shell improvements that will yield an acceptable return on investment in terms of costs versus likely energy savings, though, requires finding many building-specific parameters, especially the building's thermal conductivity (UATotal).

The costs of energy for heating, ventilating, and air conditioning (HVAC) system operation are often significant contributors to utility bills for both homeowners and businesses, and HVAC energy costs are directly tied to a building's thermal efficiency. For instance, a poorly insulated house or a building with significant sealing problems will require more overall HVAC usage to maintain a desired interior temperature than would a comparably-sized but well-insulated and sealed structure. Lowering HVAC energy costs is not as simple as choosing a thermostat setting to cause an HVAC system to run for less time or less frequently. Rather, HVAC system efficiency, duration of heating or cooling seasons, differences between indoor and outdoor temperatures, and other factors, in addition to thermal efficiency, can weigh into overall energy consumption.

Conventionally, estimating periodic HVAC energy consumption and fuel costs begins with analytically determining a building's thermal conductivity UAtotal through an on-site energy audit. A typical energy audit involves measuring physical dimensions of walls, windows, doors, and other building parts; approximating R-values for thermal resistance; estimating infiltration using a blower door test; and detecting air leakage using a thermal camera, after which a numerical model is run to solve for thermal conductivity. The UAtotal result is combined with the duration of the heating or cooling season, as applicable, over the period of inquiry and adjusted for HVAC system efficiency, plus any solar savings fraction. The audit report is often presented in the form of a checklist of corrective measures that may be taken to improve the building's shell and HVAC system, and thereby lower overall energy consumption for HVAC. As an involved process, an energy audit can be costly, time-consuming, and invasive for building owners and occupants. Further, as a numerical result derived from a theoretical model, an energy audit carries an inherent potential for inaccuracy strongly influenced by mismeasurements, data assumptions, and so forth. As well, the degree of improvement and savings attributable to various possible improvements is not necessarily quantified due to the wide range of variables.

Therefore, a need remains for a practical model for determining actual and potential energy consumption for the heating and cooling of a building.

A further need remains for an approach to quantifying improvements in energy consumption and cost savings resulting from building shell upgrades.

SUMMARY

Fuel consumption for building heating and cooling can be calculated through two practical approaches that characterize a building's thermal efficiency through empirically-measured values and readily-obtainable energy consumption data, such as available in utility bills, thereby avoiding intrusive and time-consuming analysis with specialized testing equipment. While the discussion is herein centered on building heating requirements, the same principles can be applied to an analysis of building cooling requirements. The first approach can be used to calculate annual or periodic fuel requirements. The approach requires evaluating typical monthly utility billing data and approximations of heating (or cooling) losses and gains.

The second approach can be used to calculate hourly (or interval) fuel requirements. The approach includes empirically deriving three building-specific parameters: thermal mass, thermal conductivity, and effective window area. HVAC system power rating and conversion and delivery efficiency are also parametrized. The parameters are estimated using short duration tests that last at most several days. The parameters and estimated HVAC system efficiency are used to simulate a time series of indoor building temperature. In addition, the second hourly (or interval) approach can be used to verify or explain the results from the first annual (or periodic) approach. For instance, time series results can be calculated using the second approach over the span of an entire year and compared to results determined through the first approach. Other uses of the two approaches and forms of comparison are possible.

In one embodiment, a system for modeling interval building temperature-control energy consumption is provided. The system includes a computer configured to: find parameters including total thermal conductivity, thermal mass, and effective window area for a building based on a series of sequentially-performed empirical tests, at least one of the tests conducted using at least one of an electric controllable interior heating source and an electric controllable interior cooling source, each successive empirical test building on findings of the earlier empirical tests; measure a difference between average indoor temperatures and average of outdoor temperatures over the course of each of the empirical tests using an indoor thermometer and at least one of an outdoor thermometer or a remote data source of the outdoor temperature; and determine interval temperature-control fuel consumption of the building over a season based on the total thermal conductivity, the temperature difference, and average occupancy, non-HVAC electricity consumption and solar resource; model a change of one of the parameters associated with making a change to the building; and calculate a value of energy savings associated with the building change using the interval temperature-control fuel consumption and the change in the one parameter; wherein the change is performed based on the value of the energy savings.

In a further embodiment, a system for modeling building thermal performance parameters through empirical testing with the aid of a digital computer is provided. The system includes a computer configured to: record a building's indoor electricity consumption and difference in indoor and outdoor average temperatures over an empirical test conducted in the absence of solar gain with constant indoor temperature and no HVAC; find thermal conductivity of the building as a function of occupancy and the electricity consumption over the average temperature difference; record the building's indoor electricity consumption, difference in indoor and outdoor average temperatures, and change in indoor temperature over another empirical test conducted in the absence of solar gain and no HVAC; find thermal mass of the building as a function of the thermal conductivity and the average temperature difference, occupancy, and the electricity consumption, all over the indoor temperature change; record the building's indoor electricity consumption, difference in indoor and outdoor average temperatures, and change in indoor temperature over a further empirical test conducted in the presence of solar gain and no HVAC; find effective window area of the building as a function of the thermal mass and the change in indoor temperature, the thermal conductivity and the average temperature difference, occupancy, the electricity consumption, all over the average solar energy produced during the empirical test; model a change to one or more parameters including the thermal conductivity, the thermal mass, and the effective window area associated with a change to the building; and model a value of energy savings associated with the one or more changed parameter using the effective window area, the thermal mass, and the thermal conductivity and one or more of the changed parameters, wherein the change to the building is performed based on the value of the energy savings.

The foregoing approaches, annual (or periodic) and hourly (or interval) improve upon and compliment the standard energy audit-style methodology of estimating heating (and cooling) fuel consumption in several ways. First, per the first approach, the equation to calculate annual fuel consumption and its derivatives is simplified over the fully-parameterized form of the equation used in energy audit analysis, yet without loss of accuracy. Second, both approaches require parameters that can be obtained empirically, rather than from a detailed energy audit that requires specialized testing equipment and prescribed test conditions. Third, per the second approach, a time series of indoor temperature and fuel consumption data can be accurately generated. The resulting fuel consumption data can then be used by economic analysis tools using prices that are allowed to vary over time to quantify economic impact.

Moreover, the economic value of heating (and cooling) energy savings associated with any building shell improvement in any building has been shown to be independent of building type, age, occupancy, efficiency level, usage type, amount of internal electric gains, or amount solar gains, provided that fuel has been consumed at some point for auxiliary heating. The only information required to calculate savings includes the number of hours that define the winter season; average indoor temperature; average outdoor temperature; the building's HVAC system efficiency (or coefficient of performance for heat pump systems); the area of the existing portion of the building to be upgraded; the R-value of the new and existing materials; and the average price of energy, that is, heating fuel.

Still other embodiments will become readily apparent to those skilled in the art from the following detailed description, wherein are described embodiments by way of illustrating the best mode contemplated. As will be realized, other and different embodiments are possible and the embodiments' several details are capable of modifications in various obvious respects, all without departing from their spirit and the scope. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram showing heating losses and gains relative to a structure.

FIG. 2 is a graph showing, by way of example, balance point thermal conductivity.

FIG. 3 is a flow diagram showing a computer-implemented method for modeling periodic building heating energy consumption in accordance with one embodiment.

FIG. 4 is a flow diagram showing a routine for determining heating gains for use in the method of FIG. 3.

FIG. 5 is a flow diagram showing a routine for balancing energy for use in the method of FIG. 3.

FIG. 6 is a process flow diagram showing, by way of example, consumer heating energy consumption-related decision points.

FIG. 7 is a table showing, by way of example, data used to calculate thermal conductivity.

FIG. 8 is a table showing, by way of example, thermal conductivity results for each season using the data in the table of FIG. 7 as inputs into Equations (25) through (28).

FIG. 9 is a graph showing, by way of example, a plot of the thermal conductivity results in the table of FIG. 8.

FIG. 10 is a graph showing, by way of example, an auxiliary heating energy analysis and energy consumption investment options.

FIG. 11 is a functional block diagram showing heating losses and gains relative to a structure.

FIG. 12 is a flow diagram showing a computer-implemented method for modeling interval building heating energy consumption in accordance with a further embodiment.

FIG. 13 is a table showing the characteristics of empirical tests used to solve for the four unknown parameters in Equation (47).

FIG. 14 is a flow diagram showing a routine for empirically determining building- and equipment-specific parameters using short duration tests for use in the method of FIG. 12.

FIG. 15 is a graph showing, by way of example, a comparison of auxiliary heating energy requirements determined by the hourly approach versus the annual approach.

FIG. 16 is a graph showing, by way of example, a comparison of auxiliary heating energy requirements with the allowable indoor temperature limited to 2° F. above desired temperature of 68° F.

FIG. 17 is a graph showing, by way of example, a comparison of auxiliary heating energy requirements with the size of effective window area tripled from 2.5 m2 to 7.5 m2.

FIG. 18 is a table showing, by way of example, test data.

FIG. 19 is a table showing, by way of example, the statistics performed on the data in the table of FIG. 18 required to calculate the three test parameters.

FIG. 20 is a graph showing, by way of example, hourly indoor (measured and simulated) and outdoor (measured) temperatures.

FIG. 21 is a graph showing, by way of example, simulated versus measured hourly temperature delta (indoor minus outdoor).

FIG. 22 is a block diagram showing a computer-implemented system for modeling building heating energy consumption in accordance with one embodiment.

DETAILED DESCRIPTION Conventional Energy Audit-Style Approach

Conventionally, estimating periodic HVAC energy consumption and therefore fuel costs includes analytically determining a building's thermal conductivity (UATotal) based on results obtained through an on-site energy audit. For instance, J. Randolf and G. Masters, Energy for Sustainability: Technology, Planning, Policy, pp. 247, 248, 279 (2008), present a typical approach to modeling heating energy consumption for a building, as summarized by Equations 6.23, 6.27, and 7.5. The combination of these equations states that annual heating fuel consumption QFuel equals the product of UATotal, 24 hours per day, and the number of heating degree days (HDD) associated with a particular balance point temperature TBalance Point, as adjusted for the solar savings fraction (SSF) divided by HVAC system efficiency (ηHVAC):

Q Fuel = ( UA Total ) ( 24 * HDD T Balance Point ) ( 1 - SSF ) ( 1 η HVAC ) ( 1 )

such that:

T Balance Point = T Set Point - Internal Gains UA Total ( 2 ) and η HVAC = η Furnace η Distribution ( 3 )

where TSet Point represents the temperature setting of the thermostat, Internal Gains represents the heating gains experienced within the building as a function of heat generated by internal sources and auxiliary heating, as further discussed infra, ηFurnace represents the efficiency of the furnace or heat source proper, and ηDistribution represents the efficiency of the duct work and heat distribution system. For clarity HDDTBalance Point will be abbreviated to HDDBalance Point Temp.

A cursory inspection of Equation (1) implies that annual fuel consumption is linearly related to a building's thermal conductivity. This implication further suggests that calculating fuel savings associated with building envelope or shell improvements is straightforward. In practice, however, such calculations are not straightforward because Equation (1) was formulated with the goal of determining the fuel required to satisfy heating energy needs. As such, there are several additional factors that the equation must take into consideration.

First, Equation (1) needs to reflect the fuel that is required only when indoor temperature exceeds outdoor temperature. This need led to the heating degree day (HDD) approach (or could be applied on a shorter time interval basis of less than one day) of calculating the difference between the average daily (or hourly) indoor and outdoor temperatures and retaining only the positive values. This approach complicates Equation (1) because the results of a non-linear term must be summed, that is, the maximum of the difference between average indoor and outdoor temperatures and zero. Non-linear equations complicate integration, that is, the continuous version of summation.

Second, Equation (1) includes the term Balance Point temperature (TBalance Point). The goal of including the term TBalance Point was to recognize that the internal heating gains of the building effectively lowered the number of degrees of temperature that auxiliary heating needed to supply relative to the temperature setting of the thermostat TSet Point. A balance point temperature TBalance Point of 65° F. was initially selected under the assumption that 65° F. approximately accounted for the internal gains. As buildings became more efficient, however, an adjustment to the balance point temperature TBalance Point was needed based on the building's thermal conductivity (UATotal) and internal gains. This further complicated Equation (1) because the equation became indirectly dependent on (and inversely related to) UATotal through TBalance Point.

Third, Equation (1) addresses fuel consumption by auxiliary heating sources. As a result, Equation (1) must be adjusted to account for solar gains. This adjustment was accomplished using the Solar Savings Fraction (SSF). The SSF is based on the Load Collector Ratio (see Eq. 7.4 in Randolf and Masters, p. 278, cited supra, for information about the LCR). The LCR, however, is also a function of UATotal. As a result, the SSF is a function of UATotal in a complicated, non-closed form solution manner. Thus, the SSF further complicates calculating the fuel savings associated with building shell improvements because the SSF is indirectly dependent on UATotal.

As a result, these direct and indirect dependencies significantly complicate calculating a change in annual fuel consumption based on a change in thermal conductivity. The difficulty is made evident by taking the derivative of Equation (1) with respect to a change in thermal conductivity. The chain and product rules from calculus need to be employed since HDDBalance Point Temp and SSF are indirectly dependent on UATotal:

dQ Fuel dUA Total = { ( UA Total ) [ ( HDD Balance Point Temp ) ( - dSSF dLCR dLCR dUA Total ) + ( dHDD Balance Point Temp dT Balance Point dT Balance Point dUA Total ) ( 1 - SSF ) ] + ( HDD Balance Point Temp ) ( 1 - SSF ) } ( 24 η HVAC ) ( 4 )

The result is Equation (4), which is an equation that is difficult to solve due to the number and variety of unknown inputs that are required.

To add even further complexity to the problem of solving Equation (4), conventionally, UATotal is determined analytically by performing a detailed energy audit of a building. An energy audit involves measuring physical dimensions of walls, windows, doors, and other building parts; approximating R-values for thermal resistance; estimating infiltration using a blower door test; and detecting air leakage. A numerical model is then run to perform the calculations necessary to estimate thermal conductivity. Such an energy audit can be costly, time consuming, and invasive for building owners and occupants. Moreover, as a calculated result, the value estimated for UAtotal carries the potential for inaccuracies, as the model is strongly influenced by physical mismeasurements or omissions, data assumptions, and so forth.

Empirically-Based Approaches to Modeling Heating Fuel Consumption

Building heating (and cooling) fuel consumption can be calculated through two approaches, annual (or periodic) and hourly (or interval) to thermally characterize a building without intrusive and time-consuming tests. The first approach, as further described infra beginning with reference to FIG. 1, requires typical monthly utility billing data and approximations of heating (or cooling) losses and gains. The second approach, as further described infra beginning with reference to FIG. 11, involves empirically deriving three building-specific parameters, thermal mass, thermal conductivity, and effective window area, plus HVAC system efficiency using short duration tests that last at most several days. The parameters are then used to simulate a time series of indoor building temperature and of fuel consumption. While the discussion herein is centered on building heating requirements, the same principles can be applied to an analysis of building cooling requirements. In addition, conversion factors for occupant heating gains (250 Btu of heat per person per hour), heating gains from non-HVAC electricity consumption (3,412 Btu per kWh), solar resource heating gains (3,412 Btu per kWh), and fuel pricing

( Price NG 10 5

if in units of $ per therm and

Price Electrity 3 , 412

if in units of $ per kWh) are used by way of example; other conversion factors or expressions are possible.

First Approach: Annual (or Periodic) Fuel Consumption

Fundamentally, thermal conductivity is the property of a material, here, a structure, to conduct heat. FIG. 1 is a functional block diagram 10 showing heating losses and gains relative to a structure 11. Inefficiencies in the shell 12 (or envelope) of a structure 11 can result in losses in interior heating 14, whereas gains 13 in heating generally originate either from sources within (or internal to) the structure 11, including heating gains from occupants 15, gains from operation of electric devices 16, and solar gains 17, or from auxiliary heating sources 18 that are specifically intended to provide heat to the structure's interior.

In this first approach, the concepts of balance point temperatures and solar savings fractions, per Equation (1), are eliminated. Instead, balance point temperatures and solar savings fractions are replaced with the single concept of balance point thermal conductivity. This substitution is made by separately allocating the total thermal conductivity of a building (UATotal) to thermal conductivity for internal heating gains (UABalance Point), including occupancy, heat produced by operation of certain electric devices, and solar gains, and thermal conductivity for auxiliary heating (UAAuxilary Heating). The end result is Equation (31), further discussed in detail infra, which eliminates the indirect and non-linear parameter relationships in Equation (1) to UATotal.

The conceptual relationships embodied in Equation (31) can be described with the assistance of a diagram. FIG. 2 is a graph 20 showing, by way of example, balance point thermal conductivity UABalance Point, that is, the thermal conductivity for internal heating gains. The x-axis 21 represents total thermal conductivity, UATotal, of a building (in units of Btu/hr-° F.). The y-axis 22 represents total heating energy consumed to heat the building. Total thermal conductivity 21 (along the x-axis) is divided into “balance point” thermal conductivity (UABalance Point) 23 and “heating system” (or auxiliary heating) thermal conductivity (UAAuxilary Heating) 24. “Balance point” thermal conductivity 23 characterizes heating losses, which can occur, for example, due to the escape of heat through the building envelope to the outside and by the infiltration of cold air through the building envelope into the building's interior that are compensated for by internal gains. “Heating system” thermal conductivity 24 characterizes heating gains, which reflects the heating delivered to the building's interior above the balance point temperature TBalance Poin, generally as determined by the setting of the auxiliary heating source's thermostat or other control point.

In this approach, total heating energy 22 (along they-axis) is divided into gains from internal heating 25 and gains from auxiliary heating energy 25. Internal heating gains are broken down into heating gains from occupants 27, gains from operation of electric devices 28 in the building, and solar gains 29. Sources of auxiliary heating energy include, for instance, natural gas furnace 30 (here, with a 56% efficiency), electric resistance heating 31 (here, with a 100% efficiency), and electric heat pump 32 (here, with a 250% efficiency). Other sources of heating losses and gains are possible.

The first approach provides an estimate of fuel consumption over a year or other period of inquiry based on the separation of thermal conductivity into internal heating gains and auxiliary heating. FIG. 3 is a flow diagram showing a computer-implemented method 40 for modeling periodic building heating energy consumption in accordance with one embodiment. Execution of the software can be performed with the assistance of a computer system, such as further described infra with reference to FIG. 22, as a series of process or method modules or steps.

In the first part of the approach (steps 41-43), heating losses and heating gains are separately analyzed. In the second part of the approach (steps 44-46), the portion of the heating gains that need to be provided by fuel, that is, through the consumption of energy for generating heating using auxiliary heating 18 (shown in FIG. 1), is determined to yield a value for annual (or periodic) fuel consumption. Each of the steps will now be described in detail.

Specify Time Period

Heating requirements are concentrated during the winter months, so as an initial step, the time period of inquiry is specified (step 41). The heating degree day approach (HDD) in Equation (1) requires examining all of the days of the year and including only those days where outdoor temperatures are less than a certain balance point temperature. However, this approach specifies the time period of inquiry as the winter season and considers all of the days (or all of the hours, or other time units) during the winter season. Other periods of inquiry are also possible, such as a five- or ten-year time frame, as well as shorter time periods, such as one- or two-month intervals.

Separate Heating Losses From Heating Gains

Heating losses are considered separately from heating gains (step 42). The rationale for drawing this distinction will now be discussed.

Heating Losses

For the sake of discussion herein, those regions located mainly in the lower latitudes, where outdoor temperatures remain fairly moderate year round, will be ignored and focus placed instead on those regions that experience seasonal shifts of weather and climate. Under this assumption, a heating degree day (HDD) approach specifies that outdoor temperature must be less than indoor temperature. No such limitation is applied in this present approach. Heating losses are negative if outdoor temperature exceeds indoor temperature, which indicates that the building will gain heat during these times. Since the time period has been limited to only the winter season, there will likely to be a limited number of days when that situation could occur and, in those limited times, the building will benefit by positive heating gain. (Note that an adjustment would be required if the building took advantage of the benefit of higher outdoor temperatures by circulating outdoor air inside when this condition occurs. This adjustment could be made by treating the condition as an additional source of heating gain.)

As a result, fuel consumption for heating losses QLosses over the winter season equals the product of the building's total thermal conductivity UATotal and the difference between the indoor TIndoor and outdoor temperature TOutdoor, summed over all of the hours of the winter season:

Q Losses = t Start t End ( UA Total ) ( T t Indoor - T t Outdoor ) ( 5 )

where Start and End respectively represent the first and last hours of the winter (heating) season.

Equation (5) can be simplified by solving the summation. Thus, total heating losses QLosses equal the product of thermal conductivity UATotal and the difference between average indoor temperature TIndoor and average outdoor temperature TOutdoor over the winter season and the number of hours H in the season over which the average is calculated:


QLosses=(UATotal)(TIndoorTOutdoor)(H)   (6)

Heating Gains

Heating gains are calculated for two broad categories (step 43) based on the source of heating, internal heating gains QGains-Internal and auxiliary heating gains QGains-Auxiliary Heating as further described infra with reference to FIG. 4. Internal heating gains can be subdivided into heating gained from occupants QGains-Occupants heating gained from the operation of electric devices QGains-Electric and heating gained from solar heating QGains-Solar. Other sources of internal heating gains are possible. The total amount of heating gained QGains from these two categories of heating sources equals:


QGains=QGains-Internal+QGains-Auxiliary Heating   (7)


where


QGains-Internal=QGains-Occupants+QGains-Electric+QGains-Solar   (8)

Calculate Heating Gains

Equation (8) states that internal heating gains QGains-Internal include heating gains from Occupant, Electric, and Solar heating sources. FIG. 4 is a flow diagram showing a routine 50 for determining heating gains for use in the method 40 of FIG. 3 Each of these heating gain sources will now be discussed.

Occupant Heating Gains

People occupying a building generate heat. Occupant heating gains QGains-Occupants (step 51) equal the product of the heat produced per person, the average number of people in a building over the time period, and the number of hours (H) (or other time units) in that time period. Let P represent the average number of people. For instance, using a conversion factor of 250 Btu of heat per person per hour, heating gains from the occupants QGains-Occupants equal:


QGains-Occupants=250(P)(H)   (9)

Other conversion factors or expressions are possible.

Electric Heating Gains

The operation of electric devices that deliver all heat that is generated into the interior of the building, for instance, lights, refrigerators, and the like, contribute to internal heating gain. Electric heating gains QGains-Electric (step 52) equal the amount of electricity used in the building that is converted to heat over the time period.

Care needs to be taken to ensure that the measured electricity consumption corresponds to the indoor usage. Two adjustments may be required. First, many electric utilities measure net electricity consumption. The energy produced by any photovoltaic (PV) system needs to be added back to net energy consumption (Net) to result in gross consumption if the building has a net-metered PV system. This amount can be estimated using time- and location-correlated solar resource data, as well as specific information about the orientation and other characteristics of the photovoltaic system, such as can be provided by the Solar Anywhere SystemCheck service (http://www.SolarAnywhere.com), a Web-based service operated by Clean Power Research, L.L.C., Napa, Calif., with the approach described, for instance, in commonly-assigned U.S. Patent application, entitled “Computer-Implemented System and Method for Estimating Gross Energy Load of a Building,” Ser. No. 14/531,940, filed Nov. 3, 2014, pending, the disclosure of which is incorporated by reference, or measured directly.

Second, some uses of electricity may not contribute heat to the interior of the building and need be factored out as external electric heating gains (External). These uses include electricity used for electric vehicle charging, electric dryers (assuming that most of the hot exhaust air is vented outside of the building, as typically required by building code), outdoor pool pumps, and electric water heating using either direct heating or heat pump technologies (assuming that most of the hot water goes down the drain and outside the building—a large body of standing hot water, such as a bathtub filled with hot water, can be considered transient and not likely to appreciably increase the temperature indoors over the long run).

For instance, using a conversion factor from kWh to Btu of 3,412 Btu per kWh (since QGains-Electric is in units of Btu), internal electric gains QGains-Electric equal:

Q Gains - Electric = ( Net + PV - External _ ) ( H ) ( 3 , 412 Btu kWh ) ( 10 )

where Net represents net energy consumption, PV represents any energy produced by a PV system, External represents heating gains attributable to electric sources that do not contribute heat to the interior of a building. Other conversion factors or expressions are possible. The average delivered electricity Net+PV−External equals the total over the time period divided by the number of hours (H) in that time period.

Net + PV - External _ = Net + PV - External H ( 11 )

Solar Heating Gains

Solar energy that enters through windows, doors, and other openings in a building as sunlight will heat the interior. Solar heating gains QGains-Solar (step 53) equal the amount of heat delivered to a building from the sun. In the northern hemisphere, QGains-Solar can be estimated based on the south-facing window area (m2) times the solar heating gain coefficient (SHGC) times a shading factor; together, these terms are represented by the effective window area (W). Solar heating gains QGains-Solar equal the product of W, the average direct vertical irradiance (DVI) available on a south-facing surface (Solar, as represented by DVI in kW/m2), and the number of hours (H) in the time period. For instance, using a conversion factor from kWh to Btu of 3,412 Btu per kWh (since QGains-Solar is in units of Btu while average solar is in kW/m2), solar heating gains QGains-Solar equal:

Q Gains - Solar = ( Solar _ ) ( W ) ( H ) ( 3 , 412 Btu kWh ) ( 12 )

Other conversion factors or expressions are possible.

Note that for reference purposes, the SHGC for one particular high quality window designed for solar gains, the Andersen High-Performance Low-E4 PassiveSun Glass window product, manufactured by Andersen Corporation, Bayport, Minn., is 0.54; many windows have SHGCs that are between 0.20 to 0.25.

Auxiliary Heating Gains The internal sources of heating gain share the common characteristic of not being operated for the sole purpose of heating a building, yet nevertheless making some measureable contribution to the heat to the interior of a building. The fourth type of heating gain, auxiliary heating gains QGains-Auxiliary Heating, consumes fuel specifically to provide heat to the building's interior and, as a result, must include conversion efficiency. The gains from auxiliary heating gains QGains-Auxiliary Heating (step 53) equal the product of the average hourly fuel consumed QFuel times the hours (H) in the period and HVAC system efficiency ηHVAC:


QGains-Auxiliary Heating=(QFuel)(HHVAC   (13)

Divide Thermal Conductivity Into Parts

Referring back to FIG. 3, a building's thermal conductivity UATotal, rather than being treated as a single value, can be conceptually divided into two parts (step 44), with a portion of UATotal allocated to “balance point thermal conductivity” (UABalance Point) and a portion to “auxiliary heating thermal conductivity” (UAAuxiliary Heating) such as pictorially described supra with reference to FIG. 2. UABalance Point corresponds to the heating losses that a building can sustain using only internal heating gains QGains-Internal. This value is related to the concept that a building can sustain a specified balance point temperature in light of internal gains. However, instead of having a balance point temperature, some portion of the building UABalance Point is considered to be thermally sustainable given heating gains from internal heating sources (QGains-Internal). As the rest of the heating losses must be made up by auxiliary heating gains, the remaining portion of the building UAAuxiliary Heating is considered to be thermally sustainable given heating gains from auxiliary heating sources (QGains-Auxiliary Heating). The amount of auxiliary heating gained is determined by the setting of the auxiliary heating source's thermostat or other control point. Thus, UATotal can be expressed as:


UATotal=UABalance Point+UAAuxiliary Heating   (14)


where


UABalance Point=UAOccupants+UAElectric+UASolar   (15)

such that UAOccupants, UAElectric and UASolar respectively represent the thermal conductivity of internal heating sources, specifically, occupants, electric and solar.

In Equation (14), total thermal conductivity UATotal is fixed at a certain value for a building and is independent of weather conditions; UATotal depends upon the building's efficiency. The component parts of Equation (14), balance point thermal conductivity UABalance Point and auxiliary heating thermal conductivity UAAuxiliary Heating, however, are allowed to vary with weather conditions. For example, when the weather is warm, there may be no auxiliary heating in use and all of the thermal conductivity will be allocated to the balance point thermal conductivity UABalance Point component.

Fuel consumption for heating losses QLosses can be determined by substituting Equation (14) into Equation (6):


QLosses=(UABalance Point+UAAuxiliary Heating)(TIndoorTOutdoor)(H)   (16)

Balance Energy

Heating gains must equal heating losses for the system to balance (step 45), as further described infra with reference to FIG. 5. Heating energy balance is represented by setting Equation (7) equal to Equation (16):

Q Gains - Internal + Q Gains - Auxiliary Heating = ( UA Balance Point + UA Auxiliary Heating ) ( T _ Indoor - T _ Outdoor ) ( H ) ( 17 )

The result can then be divided by (TIndoorTOutdoor)(H), assuming that this term is non-zero:

UA Balance Point + UA Auxiliary Heating = Q Gains - Internal + Q Gains - Auxiliary Heating ( T _ Indoor - T _ Outdoor ) ( H ) ( 18 )

Equation (18) expresses energy balance as a combination of both UABalance Point and UAAuxiliary Heating. FIG. 5 is a flow diagram showing a routine 60 for balancing energy for use in the method 40 of FIG. 3. Equation (18) can be further constrained by requiring that the corresponding terms on each side of the equation match, which will divide Equation (18) into a set of two equations:

UA Balance Point = Q Gains - Internal ( T _ Indoor - T _ Outdoor ) ( H ) ( 19 ) UA Auxiliary Heating = Q Gains - Auxiliary Heating ( T _ Indoor - T _ Outdoor ) ( H ) ( 20 )

Components of UABalance Point

For clarity, UABalance Point can be divided into three component values (step 61) by substituting Equation (8) into Equation (19):

UA Balance Point = Q Gains - Occupants + Q Gains - Electric + Q Gains - Solar ( T _ Indoor - T _ Outdoor ) ( H ) ( 21 )

Since UABalance Point equals the sum of three component values (as specified in Equation (15)), Equation (21) can be mathematically limited by dividing Equation (21) into three equations:

UA Occupants = Q Gains - Occupants ( T _ Indoor - T _ Outdoor ) ( H ) ( 22 ) UA Electric = Q Gains - Electric ( T _ Indoor - T _ Outdoor ) ( H ) ( 23 ) UA Solar = Q Gains - Solar ( T _ Indoor - T _ Outdoor ) ( H ) ( 24 )

Solutions for Components of UABalance Point and UAAuxiliary Heating

The preceding equations can be combined to present a set of results with solutions provided for the four thermal conductivity components as follows. First, the portion of the balance point thermal conductivity associated with occupants UAOccupants (step 62) is calculated by substituting Equation (9) into Equation (22). Next, the portion of the balance point thermal conductivity associated with internal electricity consumption UAElectric (step 63) is calculated by substituting Equation (10) into Equation (23). The portion of the balance point thermal conductivity associated with solar gains UASolar (step 64) is then calculated by substituting Equation (12) into Equation (24). Finally, thermal conductivity associated with auxiliary heating UAAuxiliary Heating (Step 64) is calculated by substituting Equation (13) into Equation (20).

UA Occupants = 250 ( P _ ) ( T _ Indoor - T _ Outdoor ) ( 25 ) UA Electric = ( Net + PV - External _ ) ( T _ Indoor - T _ Outdoor ) ( 3 , 412 Btu kWh ) ( 26 ) UA Solar = ( Solar _ ) ( W ) ( T _ Indoor - T _ Outdoor ) ( 3 , 412 Btu kWh ) ( 27 ) UA Auxiliary Heating = Q _ Fuel η HVAC ( T _ Indoor - T _ Outdoor ) ( 28 )

Determine Fuel Consumption

Referring back to FIG. 3, Equation (28) can used to derive a solution to annual (or periodic) heating fuel consumption. First, Equation (14) is solved for UAAuxilialy Heating:


UAAuxiliary Heating=UATotal−UABalance Point   (29)

Equation (29) is then substituted into Equation (28):

UA Total - UA Balance Point = Q _ Fuel η HVAC ( T _ Indoor - T _ Outdoor ) ( 30 )

Finally, solving Equation (30) for fuel and multiplying by the number of hours (H) in (or duration of) the time period yields:

Q Fuel = ( UA Total - UA Balance Point ) ( T _ Indoor - T _ Outdoor ) ( H ) η HVAC ( 31 )

Equation (31) is valid where UATotal≥UABalance Point. Otherwise, fuel consumption is 0.

Using Equation (31), annual (or periodic) heating fuel consumption QFuel can be determined (step 46). The building's thermal conductivity UATotal, if already available through, for instance, the results of an energy audit, is obtained. Otherwise, UATotal can be determined by solving Equations (25) through (28) using historical fuel consumption data, such as shown, by way of example, in the table of FIG. 7, or by solving Equation (46), as further described infra. UATotal can also be empirically determined with the approach described, for instance, in commonly-assigned U.S. Patent application, entitled “System and Method for Empirically Estimating Overall Thermal Performance of a Building,” Ser. No. 14/294,087, filed Jun. 2, 2014, pending, the disclosure of which is incorporated by reference. Other ways to determine UATotal are possible. UABalance Point can be determined by solving Equation (21). The remaining values, average indoor temperature TIndoor and average outdoor temperature TOutdoor, and HVAC system efficiency ηHVAC can respectively be obtained from historical weather data and manufacturer specifications.

Practical Considerations

Equation (31) is empowering. Annual heating fuel consumption QFuel can be readily determined without encountering the complications of Equation (1), which is an equation that is difficult to solve due to the number and variety of unknown inputs that are required. The implications of Equation (31) in consumer decision-making, a general discussion, and sample applications of Equation (31) will now be covered.

Change in Fuel Requirements Associated With Decisions Available to Consumers

Consumers have four decisions available to them that affects their energy consumption for heating. FIG. 6 is a process flow diagram showing, by way of example, consumer heating energy consumption-related decision points. These decisions 71 include:

    • 1. Change the thermal conductivity UATotal by upgrading the building shell to be more thermally efficient (process 72).
    • 2. Reduce or change the average indoor temperature by reducing the thermostat manually, programmatically, or through a “learning” thermostat (process 73).
    • 3. Upgrade the HVAC system to increase efficiency (process 74).
    • 4. Increase the solar gain by increasing the effective window area (process 75).
      Other decisions are possible. Here, these four specific options can be evaluated supra by simply taking the derivative of Equation (31) with respect to a variable of interest. The result for each case is valid where UATotal≥UABalance Point. Otherwise, fuel consumption is 0.

Changes associated with other internal gains, such as increasing occupancy, increasing internal electric gains, or increasing solar heating gains, could be calculated using a similar approach.

Change in Thermal Conductivity

A change in thermal conductivity UATotal can affect a change in fuel requirements. The derivative of Equation (31) is taken with respect to thermal conductivity, which equals the average indoor minus outdoor temperatures times the number of hours divided by HVAC system efficiency. Note that initial thermal efficiency is irrelevant in the equation. The effect of a change in thermal conductivity UATotal (process 72) can be evaluated by solving:

dQ Fuel dUA Total = ( T _ Indoor - T _ Outdoor ) ( H ) η HVAC ( 32 )

Change in Average Indoor Temperature

A change in average indoor temperature can also affect a change in fuel requirements. The derivative of Equation (31) is taken with respect to the average indoor temperature. Since UABalance Point is also a function of average indoor temperature, application of the product rule is required. After simplifying, the effect of a change in average indoor temperature (process 73) can be evaluated by solving:

dQ Fuel d T Indoor _ _ ( UA Total ) ( H η HVAC ) ( 33 )

Change in HVAC System Efficiency

As well, a change in HVAC system efficiency can affect a change in fuel requirements. The derivative of Equation (31) is taken with respect to HVAC system efficiency, which equals current fuel consumption divided by HVAC system efficiency. Note that this term is not linear with efficiency and thus is valid for small values of efficiency changes. The effect of a change in fuel requirements relative to the change in HVAC system efficiency (process 74) can be evaluated by solving:

dQ Fuel d η HVAC = - Q Fuel ( 1 η HVAC ) ( 34 )

Change in Solar Gains

An increase in solar gains can be accomplished by increasing the effective area of south-facing windows. Effective area can be increased by trimming trees blocking windows, removing screens, cleaning windows, replacing windows with ones that have higher SHGCs, installing additional windows, or taking similar actions. In this case, the variable of interest is the effective window area W. The total gain per square meter of additional effective window area equals the available resource (kWh/m2) divided by HVAC system efficiency, converted to Btus. The derivative of Equation (31) is taken with respect to effective window area. The effect of an increase in solar gains (process 74) can be evaluated by solving:

dQ Fuel d W _ = - [ ( Solar _ ) ( H ) η HVAC ] ( 3 , 412 Btu kWh ) ( 35 )

Discussion

Both Equations (1) and (31) provide ways to calculate fuel consumption requirements. The two equations differ in several key ways:

    • 1. UATotal only occurs in one place in Equation (31), whereas Equation (1) has multiple indirect and non-linear dependencies to UATotal.
    • 2. UATotal is divided into two parts in Equation (31), while there is only one occurrence of UATotal in Equation (1).
    • 3. The concept of balance point thermal conductivity in Equation (31) replaces the concept of balance point temperature in Equation (1).
    • 4. Heat from occupants, electricity consumption, and solar gains are grouped together in Equation (31) as internal heating gains, while these values are treated separately in Equation (1).

Second, Equations (25) through (28) provide empirical methods to determine both the point at which a building has no auxiliary heating requirements and the current thermal conductivity. Equation (1) typically requires a full detailed energy audit to obtain the data required to derive thermal conductivity. In contrast, Equations (25) through (28), as applied through the first approach, can substantially reduce the scope of an energy audit.

Third, both Equation (4) and Equation (32) provide ways to calculate a change in fuel requirements relative to a change in thermal conductivity. However, these two equations differ in several key ways:

    • 1. Equation (4) is complex, while Equation (32) is simple.
    • 2. Equation (4) depends upon current building thermal conductivity, balance point temperature, solar savings fraction, auxiliary heating efficiency, and a variety of other derivatives. Equation (32) only requires the auxiliary heating efficiency in terms of building-specific information.

Equation (32) implies that, as long as some fuel is required for auxiliary heating, a reasonable assumption, a change in fuel requirements will only depend upon average indoor temperature (as approximated by thermostat setting), average outdoor temperature, the number of hours (or other time units) in the (heating) season, and HVAC system efficiency. Consequently, any building shell (or envelope) investment can be treated as an independent investment. Importantly, Equation (32) does not require specific knowledge about building construction, age, occupancy, solar gains, internal electric gains, or the overall thermal conductivity of the building. Only the characteristics of the portion of the building that is being replaced, the efficiency of the HVAC system, the indoor temperature (as reflected by the thermostat setting), the outdoor temperature (based on location), and the length of the winter season are required; knowledge about the rest of the building is not required. This simplification is a powerful and useful result.

Fourth, Equation (33) provides an approach to assessing the impact of a change in indoor temperature, and thus the effect of making a change in thermostat setting. Note that Equation (31) only depends upon the overall efficiency of the building, that is, the building's total thermal conductivity UATotal, the length of the winter season (in number of hours or other time units), and the HVAC system efficiency; Equation (31) does not depend upon either the indoor or outdoor temperature.

Equation (31) is useful in assessing claims that are made by HVAC management devices, such as the Nest thermostat device, manufactured by Nest Labs, Inc., Palo Alto, Calif., or the Lyric thermostat device, manufactured by Honeywell Int'l Inc., Morristown, N.J., or other so-called “smart” thermostat devices. The fundamental idea behind these types of HVAC management devices is to learn behavioral patterns, so that consumers can effectively lower (or raise) their average indoor temperatures in the winter (or summer) months without affecting their personal comfort. Here, Equation (31) could be used to estimate the value of heating and cooling savings, as well as to verify the consumer behaviors implied by the new temperature settings.

Balance Point Temperature

Before leaving this section, balance point temperature should briefly be discussed. The formulation in this first approach does not involve balance point temperature as an input. A balance point temperature, however, can be calculated to equal the point at which there is no fuel consumption, such that there are no gains associated with auxiliary heating (QGains-Auxiliary Heating equals 0) and the auxiliary heating thermal conductivity (UAAuxiliary Heating in Equation (28)) is zero. Inserting these assumptions into Equation (18) and labeling TOutdoor as TBalance Point yields:


QGains-Internal=UATotal(TIndoorTBalance Point)(H)   (36)

Equation (36) simplifies to:

T _ Balance Point = T _ Indoor - Q _ Gains - Internal UA Total where Q _ Gains - Internal = Q Gains - Internal H ( 37 )

Equation (37) is identical to Equation (2), except that average values are used for indoor temperature TIndoor, balance point temperature TBalance Point and fuel consumption for internal heating gains QGains-Internal, and that heating gains from occupancy (QGains-Occupants)electric (QGains-Electric), and solar (QGains-Solar) are all included as part of internal heating gains (QGains-Internal).

Application: Change in Thermal Conductivity Associated With One Investment

An approach to calculating a new value for total thermal conductivity Total after a series of M changes (or investments) are made to a building is described in commonly-assigned U.S. Patent application, entitled “System and Method for Interactively Evaluating Personal Energy-Related Investments,” Ser. No. 14/294,079, filed Jun. 2, 2014, pending, the disclosure of which is incorporated by reference. The approach is summarized therein in Equation (41), which provides:

Total = UA Total + j = 1 M ( U j - U ^ j ) A j + ρ c ( n - n ^ ) V ( 38 )

where a caret symbol ({circumflex over ( )}) denotes a new value, infiltration losses are based on the density of air (ρ), specific heat of air (c), number of air changes per hour (n), and volume of air per air change (V). (In addition, Uj and Ûj respectively represent the existing and proposed U-values of surface j, and Aj represents the surface area of surface j. The volume of the building V can be approximated by multiplying building square footage by average ceiling height. The equation, with a slight restatement, equals:

Total = UA Total + Δ UA Total and ( 39 ) Δ UA Total = j = 1 M ( U j - U ^ j ) A j + ρ c ( n - n ^ ) V . ( 40 )

If there is only one investment, the m superscripts can be dropped and the change in thermal conductivity UATotal equals the area (A) times the difference of the inverse of the old and new R-values R and {circumflex over (R)}:

Δ UA Total = A ( U - U ^ ) = A ( 1 R - 1 R ) . ( 41 )

Fuel Savings

The fuel savings associated with a change in thermal conductivity UATotal for a single investment equals Equation (41) times (32):

Δ Q Fuel = Δ UA Total dQ Fuel dUA Total = A ( 1 R - 1 R ) ( T _ Indoor - T _ Outdoor ) ( H ) η HVAC ( 42 )

where ΔQFuel signifies the change in fuel consumption.

Economic Value

The economic value of the fuel savings (Annual Savings) equals the fuel savings times the average fuel price (Price) for the building in question:

Annual Savings = A ( 1 R - 1 R ) ( T _ Indoor - T _ Outdoor ) ( H ) η HVAC ( Price ) where Price = { Price NG 10 5 if price has units of $ per therm Price Electrity 3 , 412 if price has units of $ per kWh ( 43 )

where PriceNG represents the price of natural gas and PriceElectrity represents the price of electricity. Other pricing amounts, pricing conversion factors, or pricing expressions are possible.

EXAMPLE

Consider an example. A consumer in Napa, Calif. wants to calculate the annual savings associating with replacing a 20 ft2 single-pane window that has an R-value of 1 with a high efficiency window that has an R-value of 4. The average temperature in Napa over the 183-day winter period (4,392 hours) from October 1 to March 31 is 50° F. The consumer sets his thermostat at 68° F., has a 60 percent efficient natural gas heating system, and pays $1 per therm for natural gas. How much money will the consumer save per year by making this change?

Putting this information into Equation (43) suggests that he will save $20 per year:

Annual Savings = 20 ( 1 1 - 1 4 ) ( 68 - 50 ) ( 4 , 392 ) 0.6 ( 1 10 5 ) = $20 ( 44 )

Application: Validate Building Shell Improvements Savings

Many energy efficiency programs operated by power utilities grapple with the issue of measurement and evaluation (M&E), particularly with respect to determining whether savings have occurred after building shell improvements were made. Equations (25) through (28) can be applied to help address this issue. These equations can be used to calculate a building's total thermal conductivity UATotal. This result provides an empirical approach to validating the benefits of building shell investments using measured data. Equations (25) through (28) require the following inputs:

1) Weather:

    • a) Average outdoor temperature (° F.).
    • b) Average indoor temperature (° F.).
    • c) Average direct solar resource on a vertical, south-facing surface.

2) Fuel and energy:

    • a) Average gross indoor electricity consumption.
    • b) Average natural gas fuel consumption for space heating.
    • c) Average electric fuel consumption for space heating.

3) Other inputs:

    • a) Average number of occupants.
    • b) Effective window area.
    • c) HVAC system efficiency.

Weather data can be determined as follows. Indoor temperature can be assumed based on the setting of the thermostat (assuming that the thermostat's setting remained constant throughout the time period), or measured and recorded using a device that takes hourly or periodic indoor temperature measurements, such as a Nest thermostat device or a Lyric thermostat device, cited supra, or other so-called “smart” thermostat devices. Outdoor temperature and solar resource data can be obtained from a service, such as Solar Anywhere SystemCheck, cited supra, or the National Weather Service. Other sources of weather data are possible.

Fuel and energy data can be determined as follows. Monthly utility billing records provide natural gas consumption and net electricity data. Gross indoor electricity consumption can be calculated by adding PV production, whether simulated using, for instance, the Solar Anywhere SystemCheck service, cited supra, or measured directly, and subtracting out external electricity consumption, that is, electricity consumption for electric devices that do not deliver all heat that is generated into the interior of the building. External electricity consumption includes electric vehicle (EV) charging and electric water heating. Other types of external electricity consumption are possible. Natural gas consumption for heating purposes can be estimated by subtracting non-space heating consumption, which can be estimated, for instance, by examining summer time consumption using an approach described in commonly-assigned U.S. Patent application, entitled “System and Method for Facilitating Implementation of Holistic Zero Net Energy Consumption,” Ser. No. 14/531,933, filed Nov. 3, 2014, pending, the disclosure of which is incorporated by reference. Other sources of fuel and energy data are possible.

Finally, the other inputs can be determined as follows. The average number of occupants can be estimated by the building owner or occupant. Effective window area can be estimated by multiplying actual south-facing window area times solar heat gain coefficient (estimated or based on empirical tests, as further described infra), and HVAC system efficiency can be estimated (by multiplying reported furnace rating times either estimated or actual duct system efficiency), or can be based on empirical tests, as further described infra. Other sources of data for the other inputs are possible.

Consider an example. FIG. 7 is a table 80 showing, by way of example, data used to calculate thermal conductivity. The data inputs are for a sample house in Napa, Calif. based on the winter period of October 1 to March 31 for six winter seasons, plus results for a seventh winter season after many building shell investments were made. (Note the building improvements facilitated a substantial increase in the average indoor temperature by preventing a major drop in temperature during night-time and non-occupied hours.) South-facing windows had an effective area of 10 m2 and the solar heat gain coefficient is estimated to be 0.25 for an effective window area of 2.5 m2. The measured HVAC system efficiency of 59 percent was based on a reported furnace efficiency of 80 percent and an energy audit-based duct efficiency of 74 percent.

FIG. 8 is a table 90 showing, by way of example, thermal conductivity results for each season using the data in the table 80 of FIG. 7 as inputs into Equations (25) through (28). Thermal conductivity is in units of Btu/h-° F. FIG. 9 is a graph 100 showing, by way of example, a plot of the thermal conductivity results in the table 90 of FIG. 8. The x-axis represents winter seasons for successive years, each winter season running from October 1 to March 31. They-axis represents thermal conductivity. The results from a detailed energy audit, performed in early 2014, are superimposed on the graph. The energy audit determined that the house had a thermal conductivity of 773 Btu/h-° F. The average result estimated for the first six seasons was 791 Btu/h-° F. A major amount of building shell work was performed after the 2013-2014 winter season, and the results show a 50-percent reduction in heating energy consumption in the 2014-2015 winter season.

Application: Evaluate Investment Alternatives

The results of this work can be used to evaluate potential investment alternatives. FIG. 10 is a graph 110 showing, by way of example, an auxiliary heating energy analysis and energy consumption investment options. The x-axis represents total thermal conductivity, UATotal in units of Btu/hr-° F. The y-axis represents total heating energy. The graph presents the analysis of the Napa, Calif. building from the earlier example, supra, using the equations previously discussed. The three lowest horizontal bands correspond to the heat provided through internal gains 111, including occupants, heat produced by operating electric devices, and solar heating. The solid circle 112 represents the initial situation with respect to heating energy consumption. The diagonal lines 113a, 113b, 113c represent three alternative heating system efficiencies versus thermal conductivity (shown in the graph as building losses). The horizontal dashed line 114 represents an option to improve the building shell and the vertical dashed line 115 represents an option to switch to electric resistance heating. The plain circle 116 represents the final situation with respect to heating energy consumption.

Other energy consumption investment options (not depicted) are possible. These options include switching to an electric heat pump, increasing solar gain through window replacement or tree trimming (this option would increase the height of the area in the graph labeled “Solar Gains”), or lowering the thermostat setting. These options can be compared using the approach described with reference to Equations (25) through (28) to compare the options in terms of their costs and savings, which will help the homeowner to make a wiser investment.

Second Approach: Time Series Fuel Consumption

The previous section presented an annual fuel consumption model. This section presents a detailed time series model. This section also compares results from the two methods and provides an example of how to apply the on-site empirical tests.

Building-Specific Parameters The building temperature model used in this second approach requires three building parameters: (1) thermal mass; (2) thermal conductivity; and (3) effective window area. FIG. 11 is a functional block diagram showing thermal mass, thermal conductivity, and effective window area relative to a structure 121. By way of introduction, these parameters will now be discussed.

Thermal Mass (M)

The heat capacity of an object equals the ratio of the amount of heat energy transferred to the object and the resulting change in the object's temperature. Heat capacity is also known as “thermal capacitance” or “thermal mass” (122) when used in reference to a building. Thermal mass Q is a property of the mass of a building that enables the building to store heat, thereby providing “inertia” against temperature fluctuations. A building gains thermal mass through the use of building materials with high specific heat capacity and high density, such as concrete, brick, and stone.

The heat capacity is assumed to be constant when the temperature range is sufficiently small. Mathematically, this relationship can be expressed as:


QΔt=M(Tt+ΔtIndoor−TtIndoor)   (45)

where M equals the thermal mass of the building and temperature units T are in ° F. Q is typically expressed in Btu or Joules. In that case, M has units of Btu/° F. Q can also be divided by 1 kWh/3,412 Btu to convert to units of kWh/° F.

Thermal Conductivity (UATotal)

The building's thermal conductivity UATotal (123) is the amount of heat that the building gains or losses as a result of conduction and infiltration. Thermal conductivity UATotal was discussed supra with reference to the first approach for modeling annual heating fuel consumption.

Effective Window Area (W)

The effective window area (in units of m2) (124), also discussed in detail supra, specifies how much of an available solar resource is absorbed by the building. Effective window area is the dominant means of solar gain in a typical building during the winter and includes the effect of physical shading, window orientation, and the window's solar heat gain coefficient. In the northern hemisphere, the effective window area is multiplied by the available average direct irradiance on a vertical, south-facing surface (kW/m2), times the amount of time (H) to result in the kWh obtained from the windows.

Energy Gain or Loss

The amount of heat transferred to or extracted from a building (Q) over a time period of Δt is based on a number of factors, including:

    • 1) Loss (or gain if outdoor temperature exceeds indoor temperature) due to conduction and infiltration and the differential between the indoor and outdoor temperatures.
    • 2) Gain associated with:
      • a) Occupancy and heat given off by people.
      • b) Heat produced by consuming electricity inside the building.
      • c) Solar radiation.
      • d) Auxiliary heating.

Mathematically, Q can be expressed as:

Q Δ t = [ UA Total ( T _ Outdoor - T _ Indoor ) Envelope Gain or Loss + ( 250 ) P _ Occupancy Gain + Electric _ ( 3 , 412 Btu 1 kWh ) Internal Electric Gain + W Solar _ ( 3 , 412 Btu 1 kWh ) Solar Gain + R Furnace η HVAC Status _ Auxliary Heating Gain ] Δ t ( 46 )

where:

    • Except as noted otherwise, the bars over the variable names represent the average value over Δt hours, that is, the duration of the applicable empirical test. For instance, TOutdoor represents the average outdoor temperature between the time interval of t and t+Δt.
    • UATotal is the thermal conductivity (in units of Btu/hour-° F.).
    • W is the effective window area (in units of m2).
    • Occupancy Gain is based on the average number of people (P) in the building during the applicable empirical test (and the heat produced by those people). The average person is assumed to produce 250 Btu/hour.
    • Internal Electric Gain is based on heat produced by indoor electricity consumption (Electric), as averaged over the applicable empirical test, but excludes electricity for purposes that do not produce heat inside the building, for instance, electric hot water heating where the hot water is discarded down the drain, or where there is no heat produced inside the building, such as is the case with EV charging.
    • Solar Gain is based on the average available normalized solar irradiance (Solar) during the applicable empirical test (with units of kW/m2). This value is the irradiance on a vertical surface to estimate solar received on windows; global horizontal irradiance (GHI) can be used as a proxy for this number when W is allowed to change on a monthly basis.
    • Auxiliary Heating Gain is based on the rating of the furnace (R in Btu), HVAC system efficiency (ηHVAC, including both furnace and delivery system efficiency), and average furnace operation status (Status) during the empirical test, a time series value that is either off (0 percent) or on (100 percent).
    • Other conversion factors or expressions are possible.

Energy Balance

Equation (45) reflects the change in energy over a time period and equals the product of the temperature change and the building's thermal mass. Equation Error! Reference source not found. reflects the net gain in energy over a time period associated with the various component sources. Equation (45) can be set to equal Equation Error! Reference source not found., since the results of both equations equal the same quantity and have the same units (Btu). Thus, the total heat change of a building will equal the sum of the individual heat gain/loss components:

M ( T t + Δ t Indoor - T t Indoor ) Total Heat Change = [ UA Total ( T _ Outdoor - T _ Indoor ) Envelop Gain or Loss + ( 250 ) P _ Occupancy Gain + Electric _ ( 3 , 412 Btu 1 kWh ) Internal Electric Gain + W Solar _ ( 3 , 412 Btu 1 kWh ) Solar Gain + R Furnace η HVAC Status _ Auxliary Heating Gain ] Δ t ( 47 )

Equation Error! Reference source not found. can be used for several purposes. FIG. 12 is a flow diagram showing a computer-implemented method 130 for modeling interval building heating energy consumption in accordance with a further embodiment. Execution of the software can be performed with the assistance of a computer system, such as further described infra with reference to FIG. 22, as a series of process or method modules or steps.

As a single equation, Equation Error! Reference source not found. is potentially very useful, despite having five unknown parameters. In this second approach, the unknown parameters are solved by performing a series of short duration empirical tests (step 131), as further described infra with reference to FIG. 14. Once the values of the unknown parameters are found, a time series of indoor temperature data can be constructed (step 132), which will then allow annual fuel consumption to be calculated (step 133) and maximum indoor temperature to be found (step 134). The short duration tests will first be discussed.

Empirically Determine Building- and Equipment-Specific Parameters Using Short Duration Tests

A series of tests can be used to iteratively solve Equation Error! Reference source not found. to obtain the values of the unknown parameters by ensuring that the portions of Equation Error! Reference source not found. with the unknown parameters are equal to zero. FIG. 13 is a table 140 showing the characteristics of empirical tests used to solve for the five unknown parameters in Equation Error! Reference source not found. The empirical test characteristics are used in a series of sequentially-performed short duration tests; each test builds on the findings of earlier tests to replace unknown parameters with found values.

FIG. 14 is a flow diagram showing a routine 150 for empirically determining building- and equipment-specific parameters using short duration tests for use in the method 130 of FIG. 12. The approach is to run a serialized series of empirical tests. The first test solves for the building's total thermal conductivity (UATotal) (step 151). The second test uses the empirically-derived value for UATotal to solve for the building's thermal mass (M) (step 152). The third test uses both of these results, thermal conductivity and thermal mass, to find the building's effective window area (W) (step 153). Finally, the fourth test uses the previous three test results to determine the overall HVAC system efficiency (step 145). Consider how to perform each of these tests.

Test 1: Building Thermal Conductivity (UATotal)

The first step is to find the building's total thermal conductivity (UATotal) (step 151). Referring back to the table in FIG. 13, this short-duration test occurs at night (to avoid any solar gain) with the HVAC system off (to avoid any gain from the HVAC system), and by having the indoor temperature the same at the beginning and the ending of the test by operating an electric controllable interior heat source, such as portable electric space heaters that operate at 100% efficiency, so that there is no change in the building temperature's at the beginning and at the ending of the test. Thus, the interior heart source must have sufficient heating capacity to maintain the building's temperature state. Ideally, the indoor temperature would also remain constant to avoid any potential concerns with thermal time lags.

These assumptions are input into Equation Error! Reference source not found:

M ( 0 ) = [ UA Total ( T _ Outdoor - T _ Indoor ) + ( 250 ) P _ + Electric _ _ ( 3 , 412 Btu 1 kWh ) + W ( 0 ) ( 3 , 412 Btu 1 kWh ) + R Furnace η HVAC ( 0 ) ] Δ t _ ( 48 )

The portions of Equation Error! Reference source not found. that contain four of the five unknown parameters now reduce to zero. The result can be solved for UATotal:

UA Total = [ ( 250 ) P _ + Electric _ ( 3 , 412 Btu 1 kWh ) ] ( T _ Indoor - T _ Outdoor ) ( 46 )

where TIndoor represents the average indoor temperature during the empirical test, TOutdoor represents the average outdoor temperature during the empirical test, P represents the average number of occupants during the empirical test, and Electric represents average indoor electricity consumption during the empirical test.

Equation (46) implies that the building's thermal conductivity can be determined from this test based on average number of occupants, average power consumption, average indoor temperature, and average outdoor temperature.

Test 2: Building Thermal Mass (M)

The second step is to find the building's thermal mass (M) (step 152). This step is accomplished by constructing a test that guarantees M is specifically non-zero since UATotal is known based on the results of the first test. This second test is also run at night, so that there is no solar gain, which also guarantees that the starting and the ending indoor temperatures are not the same, that is, Tt+ΔtIndoor≠TtIndoor, respectively at the outset and conclusion of the test by not operating the HVAC system. These assumptions are input into Equation Error! Reference source not found. and solving yields a solution for M:

M = [ UA Total ( T _ Outdoor - T _ Indoor ) + ( 250 ) P _ + Electric _ ( 3 , 412 Btu 1 kWh ) ( T t + Δ t Indoor - T t Indoor ) ] Δ t ( 50 )

where UATotal represents the thermal conductivity, TIndoor represents the average indoor temperature during the empirical test, TOutdoor represents the average outdoor temperature during the empirical test, F represents the average number of occupants during the empirical test, Electric represents average indoor electricity consumption during the empirical test, t represents the time at the beginning of the empirical test, Δt represents the duration of the empirical test, Tt+ΔtIndoor represents the ending indoor temperature, TtIndoor represents the starting indoor temperature, and Tt+ΔtIndoor≠TtIndoor.

Test 3: Building Effective Window Area (W)

The third step to find the building's effective window area (W) (step 153) requires constructing a test that guarantees that solar gain is non-zero. This test is performed during the day with the HVAC system turned off. Solving for W yields:

W = { [ M ( T t + Δ t Indoor - T t Indoor ) 3 , 412 Δ t ] + UA Total ( T _ Indoor - T _ Outdoor ) 3 , 412 - ( 250 ) P _ 3 , 412 - Electric _ } [ 1 Solar _ ] ( 47 )

where M represents the thermal mass, t represents the time at the beginning of the empirical test, Δt represents the duration of the empirical test, Tt+ΔtIndoor represents the ending indoor temperature, and TtIndoor represents the starting indoor temperature, UATotal represents the thermal conductivity, TIndoorrepresents the average indoor temperature, TOutdoor represents the average outdoor temperature, P represents the average number of occupants during the empirical test, Electric represents average electricity consumption during the empirical test, and Solar represents the average solar energy produced during the empirical test.

Test 4: HVAC System Efficiency (ηFurnaceηDelivery)

The fourth step determines the HVAC system efficiency (step 154). Total HVAC system efficiency is the product of the furnace efficiency and the efficiency of the delivery system, that is, the duct work and heat distribution system. While these two terms are often solved separately, the product of the two terms is most relevant to building temperature modeling. This test is best performed at night, so as to eliminate solar gain. Thus:

η HVAC = [ M ( T t + Δ t Indoor - T t Indoor ) Δ t - UA Total ( T _ Outdoor - T _ Indoor ) - ( 250 ) P _ - Electric _ ( 3 , 412 Btu 1 kWh ) ] [ 1 R Furnace Status _ ] ( 52 )

where M represents the thermal mass, t represents the time at the beginning of the empirical test, Δt represents the duration of the empirical test, Tt+ΔtIndoor represents the ending indoor temperature, and TtIndoor represents the starting indoor temperature, UATotal represents the thermal conductivity, TIndoor represents the average indoor temperature, TOutdoor represents the average outdoor temperature, P represents the average number of occupants during the empirical test, Electric represents average electricity consumption during the empirical test, Status represents the average furnace operation status, and RFurnace represents the rating of the furnace.

Note that HVAC duct efficiency can be determined without performing a duct leakage test if the generation efficiency of the furnace is known. This observation usefully provides an empirical method to measure duct efficiency without having to perform a duct leakage test.

Time Series Indoor Temperature Data

The previous subsection described how to perform a series of empirical short duration tests to determine the unknown parameters in Equation Error! Reference source not found. Commonly-assigned U.S. patent application Ser. No. 14/531,933, cited supra, describes how a building's UATotal can be combined with historical fuel consumption data to estimate the benefit of improvements to a building. While useful, estimating the benefit requires measured time series fuel consumption and HVAC system efficiency data. Equation Error! Reference source not found, though, can be used to perform the same analysis without the need for historical fuel consumption data.

Referring back to FIG. 12, Equation Error! Reference source not found. can be used to construct time series indoor temperature data (step 132) by making an approximation. Let the time period (Δt) be short (an hour or less), so that the average values are approximately equal to the value at the beginning of the time period, that is, assume T˜TtOutdoor. The average values in Equation Error! Reference source not found. can be replaced with time-specific subscripted values and solved to yield the final indoor temperature.

T t + Δ t Indoor = T t Indoor = [ 1 M ] [ UA Total ( T t Outdoor - T t Indoor ) + ( 250 ) P t + Electric t ( 3 , 412 Btu 1 kWh ) + W Solar t ( 3 , 412 Btu 1 kWh ) + R Furnace η HVAC Status t ] Δ t ( 48 )

Once Tt+ΔtIndoor is known, Equation (48) can be used to solve for Tt+2ΔtIndoor and so on.

Importantly, Equation (48) can be used to iteratively construct indoor building temperature time series data with no specific information about the building's construction, age, configuration, number of stories, and so forth. Equation (48) only requires general weather datasets (outdoor temperature and irradiance) and building-specific parameters. The control variable in Equation (48) is the fuel required to deliver the auxiliary heat at time t, as represented in the Status variable, that is, at each time increment, a decision is made whether to run the HVAC system.

Annual Fuel Consumption

Equation Error! Reference source not found. can also be used to calculate annual fuel consumption (step 133) by letting Δt equal the number of hours in the entire time period (II) (and not the duration of the applicable empirical test), rather than making Δt very short (such as an hour, as used in an applicable empirical test). The indoor temperature at the start and the end of the season can be assumed to be the same or, alternatively, the total heat change term on the left side of the equation can be assumed to be very small and set equal to zero. Rearranging the equation provides:

R Furnace η HVAC Status _ ( H ) = UA Total ( T _ Indoor - T _ Outdoor ) ( H ) - [ ( 250 ) P _ - Electric _ ( 3 , 412 Btu 1 kWh ) + W Solar _ ( 3 , 412 Btu 1 kWh ) ] ( H ) ( 49 )

The left side of the equation, RFurnaceηHVACStatus(H), equals total heating or cooling energy gained from heating or air conditioning. Dividing equation (54) by ηHVAC gives the total fuel energy consumed. The second term in the right side of the equation equals the internal gains described in Equation (21). When Equation (21) is rearranged, UABalance Point(TIndoorTOutdoor)(H)=QGains-Occupants+QGains-Electric+QGains-Solar. After substituting into Equation (54), the total fuel consumption using the time series method produces a result that is identical to the one produced using the annual method described in Equation (31).

Q Fuel = ( UA Total - UA Balance Point ) ( T _ Indoor - T _ Outdoor ) ( H ) η HVAC ( 50 )

Maximum Indoor Temperature

Allowing consumers to limit the maximum indoor temperature to some value can be useful from a personal physical comfort perspective. The limit of maximum indoor temperature (step 134) can be obtained by taking the minimum of Tt+ΔtIndoor and TIndoor-Max, the maximum indoor temperature recorded for the building during the heating season. There can be some divergence between the annual and detailed time series methods when the thermal mass of the building is unable to absorb excess heat, which can then be used at a later time. Equation (48) becomes Equation (51) when the minimum is applied.

T t + Δ t Indoor = Min { T Indoor - Max , T t Indoor + [ 1 M ] [ UA Total ( T t Outdoor - T t Indoor ) + ( 250 ) P t + Electric t ( 3 , 412 Btu 1 kWh ) + W Solar t ( 3 , 412 Btu 1 kWh ) + R Furnace η HVAC Status t ] Δ t } ( 51 )

Comparison to Annual Method (First Approach)

Two different approaches to calculating annual fuel consumption are described herein. The first approach, per Equation (31), is a single-line equation that requires six inputs. The second approach, per Equation (51), constructs a time series dataset of indoor temperature and HVAC system status. The second approach considers all of the parameters that are indirectly incorporated into the first approach. The second approach also includes the building's thermal mass and the specified maximum indoor temperature, and requires hourly time series data for the following variables: outdoor temperature, solar resource, non-HVAC electricity consumption, and occupancy.

Both approaches were applied to the exemplary case, discussed supra, for the sample house in Napa, Calif. Thermal mass was 13,648 Btu/° F. and the maximum temperature was set at 72° F. The auxiliary heating energy requirements predicted by the two approaches was then compared. FIG. 15 is a graph 160 showing, by way of example, a comparison of auxiliary heating energy requirements determined by the hourly approach versus the annual approach. The x-axis represents total thermal conductivity, UATotal in units of Btu/hr-° F. The y-axis represents total heating energy. FIG. 15 uses the same format as the graph in FIG. 10 by applying a range of scenarios. The red line in the graph corresponds to the results of the hourly method. The dashed black line in the graph corresponds to the annual method. The graph suggests that results are essentially identical, except when the building losses are very low and some of the internal gains are lost due to house overheating, which is prevented in the hourly method, but not in the annual method.

The analysis was repeated using a range of scenarios with similar results. FIG. 16 is a graph 170 showing, by way of example, a comparison of auxiliary heating energy requirements with the allowable indoor temperature limited to 2° F. above desired temperature of 68° F. Here, the only cases that found any meaningful divergence occurred when the maximum house temperature was very close to the desired indoor temperature. FIG. 17 is a graph 180 showing, by way of example, a comparison of auxiliary heating energy requirements with the size of effective window area tripled from 2.5 m2 to 7.5 m2. Here, internal gains were large by tripling solar gains and there was insufficient thermal mass to provide storage capacity to retain the gains.

The conclusion is that both approaches yield essentially identical results, except for cases when the house has inadequate thermal mass to retain internal gains (occupancy, electric, and solar).

EXAMPLE

How to perform the tests described supra using measured data can be illustrated through an example. These tests were performed between 9 PM on Jan. 29, 2015 to 6 AM on Jan. 31, 2015 on a 35 year-old, 3,000 ft2 house in Napa, Calif. This time period was selected to show that all of the tests could be performed in less than a day-and-a-half. In addition, the difference between indoor and outdoor temperatures was not extreme, making for a more challenging situation to accurately perform the tests.

FIG. 18 is a table 190 showing, by way of example, test data. The sub columns listed under “Data” present measured hourly indoor and outdoor temperatures, direct irradiance on a vertical south-facing surface (VDI), electricity consumption that resulted in indoor heat, and average occupancy. Electric space heaters were used to heat the house and the HVAC system was not operated. The first three short-duration tests, described supra, were applied to this data. The specific data used are highlighted in gray. FIG. 19 is a table 200 showing, by way of example, the statistics performed on the data in the table 190 of FIG. 18 required to calculate the three test parameters. UATotal was calculated using the data in the table of FIG. 10 and Equation (46). Thermal Mass (M) was calculated using UATotal , the data in the table of FIG. 10, and Equation Error! Reference source not found. Effective Window Area (W) was calculated using UATotal, M the data in the table of FIG. 10, and Equation (47).

These test parameters, plus a furnace rating of 100,000 Btu/hour and assumed efficiency of 56%, can be used to generate the end-of-period indoor temperature by substituting them into Equation (48) to yield:

T t + Δ t Indoor = T t Indoor + [ 1 18 , 084 ] [ 429 ( T t Outdoor - T t Indoor ) + ( 250 ) P t + 3412 Electric t + 11 , 600 Solar t + ( 100 , 000 ) ( 0.56 ) Status t ] Δ t ( 52 )

Indoor temperatures were simulated using Equation (52) and the required measured time series input datasets. Indoor temperature was measured from Dec. 15, 2014 to Jan. 31, 2015 for the test location in Napa, Calif. The temperatures were measured every minute on the first and second floors of the middle of the house and averaged. FIG. 20 is a graph 210 showing, by way of example, hourly indoor (measured and simulated) and outdoor (measured) temperatures. FIG. 21 is a graph 220 showing, by way of example, simulated versus measured hourly temperature delta (indoor minus outdoor). FIG. 20 and FIG. 21 suggest that the calibrated model is a good representation of actual temperatures.

Energy Consumption Modeling System

Modeling energy consumption for heating (or cooling) on an annual (or periodic) basis, as described supra with reference FIG. 3, and on an hourly (or interval) basis, as described supra beginning with reference to FIG. 12, can be performed with the assistance of a computer, or through the use of hardware tailored to the purpose. FIG. 22 is a block diagram showing a computer-implemented system 230 for modeling building heating energy consumption in accordance with one embodiment. A computer system 231, such as a personal, notebook, or tablet computer, as well as a smartphone or programmable mobile device, can be programmed to execute software programs 232 that operate autonomously or under user control, as provided through user interfacing means, such as a monitor, keyboard, and mouse. The computer system 231 includes hardware components conventionally found in a general purpose programmable computing device, such as a central processing unit, memory, input/output ports, network interface, and non-volatile storage, and execute the software programs 232, as structured into routines, functions, and modules. In addition, other configurations of computational resources, whether provided as a dedicated system or arranged in client-server or peer-to-peer topologies, and including unitary or distributed processing, communications, storage, and user interfacing, are possible.

In one embodiment, to perform the first approach, the computer system 231 needs data on heating losses and heating gains, with the latter separated into internal heating gains (occupant, electric, and solar) and auxiliary heating gains. The computer system 231 may be remotely interfaced with a server 240 operated by a power utility or other utility service provider 241 over a wide area network 239, such as the Internet, from which fuel purchase data 242 can be retrieved. Optionally, the computer system 231 may also monitor electricity 234 and other metered fuel consumption, where the meter is able to externally interface to a remote machine, as well as monitor on-site power generation, such as generated by a photovoltaic system 235. The monitored fuel consumption and power generation data can be used to create the electricity and heating fuel consumption data and historical solar resource and weather data. The computer system 231 then executes a software program 232 to determine annual (or periodic) heating fuel consumption 244 based on the empirical approach described supra with reference to FIG. 3.

In a further embodiment, to assist with the empirical tests performed in the second approach, the computer system 231 can be remotely interfaced to a heating source 236 and a thermometer 237 inside a building 233 that is being analytically evaluated for thermal performance, thermal mass, effective window area, and HVAC system efficiency. In a further embodiment, the computer system 231 also remotely interfaces to a thermometer 238 outside the building 163, or to a remote data source that can provide the outdoor temperature. The computer system 231 can control the heating source 236 and read temperature measurements from the thermometer 237 throughout the short-duration empirical tests. In a further embodiment, a cooling source (not shown) can be used in place of or in addition to the heating source 236. The computer system 231 then executes a software program 232 to determine hourly (or interval) heating fuel consumption 244 based on the empirical approach described supra with reference to FIG. 12.

Applications

The two approaches to estimating energy consumption for heating (or cooling), hourly and annual, provide a powerful set of tools that can be used in various applications. A non-exhaustive list of potential applications will now be discussed. Still other potential applications are possible.

Application to Homeowners

Both of the approaches, annual (or periodic) and hourly (or interval), reformulate fundamental building heating (and cooling) analysis in a manner that can divide a building's thermal conductivity into two parts, one part associated with the balance point resulting from internal gains and one part associated with auxiliary heating requirements. These two parts provide that:

    • Consumers can compare their house to their neighbors' houses on both a total thermal conductivity UATotal basis and on a balance point per square foot basis. These two numbers, total thermal conductivity UATotal and balance point per square foot, can characterize how well their house is doing compared to their neighbors' houses. The comparison could also be performed on a neighborhood- or city-wide basis, or between comparably built houses in a subdivision. Other types of comparisons are possible.
    • As strongly implied by the empirical analyses discussed supra, heater size can be significantly reduced as the interior temperature of a house approaches its balance point temperature. While useful from a capital cost perspective, a heater that was sized based on this implication may be slow to heat up the house and could require long lead times to anticipate heating needs. Temperature and solar forecasts can be used to operate the heater by application of the two approaches described supra, so as to optimize operation and minimize consumption. For example, if the building owner or occupant knew that the sun was going to start adding a lot of heat to the building in a few hours, he may choose to not have the heater turn on. Alternatively, if the consumer was using a heater with a low power rating, he would know when to turn the heater off to achieve desired preferences.

Application to Building Shell Investment Valuation

The economic value of heating (and cooling) energy savings associated with any building shell improvement in any building has been shown to be independent of building type, age, occupancy, efficiency level, usage type, amount of internal electric gains, or amount solar gains, provided that fuel has been consumed at some point for auxiliary heating. As indicated by Equation (43), the only information required to calculate savings includes the number of hours that define the winter season; average indoor temperature; average outdoor temperature; the building's HVAC system efficiency (or coefficient of performance for heat pump systems); the area of the existing portion of the building to be upgraded; the R-value of the new and existing materials; and the average price of energy, that is, heating fuel. This finding means, for example, that a high efficiency window replacing similar low efficiency windows in two different buildings in the same geographical location for two different customer types, for instance, a residential customer versus an industrial customer, has the same economic value, as long as the HVAC system efficiencies and fuel prices are the same for these two different customers.

This finding vastly simplifies the process of analyzing the value of building shell investments by fundamentally altering how the analysis needs to be performed. Rather than requiring a full energy audit-style analysis of the building to assess any the costs and benefits of a particular energy efficiency investment, only the investment of interest, the building's HVAC system efficiency, and the price and type of fuel being saved are required.

As a result, the analysis of a building shell investment becomes much more like that of an appliance purchase, where the energy savings, for example, equals the consumption of the old refrigerator minus the cost of the new refrigerator, thereby avoiding the costs of a whole house building analysis. Thus, a consumer can readily determine whether an acceptable return on investment will be realized in terms of costs versus likely energy savings. This result could be used in a variety of places:

    • Direct display of economic impact in ecommerce sites. A Web service that estimates economic value can be made available to Web sites where consumers purchase building shell replacements. The consumer would select the product they are purchasing, for instance, a specific window, and would either specify the product that they are replacing or a typical value can be provided. This information would be submitted to the Web service, which would then return an estimate of savings using the input parameters described supra.
    • Tools for salespeople at retail and online establishments.
    • Tools for mobile or door-to-door sales people.
    • Tools to support energy auditors for immediate economic assessment of audit findings. For example, a picture of a specific portion of a house can be taken and the dollar value of addressing problems can be attached.
    • Have a document with virtual sticky tabs that show economics of exact value for each portion of the house. The document could be used by energy auditors and other interested parties.
    • Available to companies interacting with new building purchasers to interactively allow them to understand the effects of different building choices from an economic (and environmental) perspective using a computer program or Internet-based tool.
    • Enable real estate agents working with customers at the time of a new home purchase to quantify the value of upgrades to the building at the time of purchase.
    • Tools to simplify the optimization problem because most parts of the problem are separable and simply require a rank ordering of cost-benefit analysis of the various measures and do not require detailed computer models that applied to specific houses.
    • The time to fix the insulation and ventilation in a homeowner's attic is when during reroofing. This result could be integrated into the roofing quoting tools.
    • Incorporated into a holistic zero net energy analysis computer program or Web site to take an existing building to zero net consumption.
    • Integration into tools for architects, builders, designers for new construction or retrofit. Size building features or HVAC system. More windows or less windows will affect HVAC system size.

Application to Thermal Conductivity Analysis

A building's thermal conductivity can be characterized using only measured utility billing data (natural gas and electricity consumption) and assumptions about effective window area, HVAC system efficiency and average indoor building temperature. This test could be used as follows:

    • Utilities lack direct methods to measure the energy savings associated with building shell improvements. Use this test to provide a method for electric utilities to validate energy efficiency investments for their energy efficiency programs without requiring an on-site visit or the typical detailed energy audit. This method would help to address the measurement and evaluation (M&E) issues currently associated with energy efficiency programs.
    • HVAC companies could efficiently size HVAC systems based on empirical results, rather than performing Manual J calculations or using rules of thumb. This test could save customers money because Manual J calculations require a detailed energy audit. This test could also save customers capital costs since rules of thumb typically oversize HVAC systems, particularly for residential customers, by a significant margin.
    • A company could work with utilities (who have energy efficiency goals) and real estate agents (who interact with customers when the home is purchased) to identify and target inefficient homes that could be upgraded at the time between sale and occupancy. This approach greatly reduces the cost of the analysis, and the unoccupied home offers an ideal time to perform upgrades without any inconvenience to the homeowners.
    • Goals could be set for consumers to reduce a building's heating needs to the point where a new HVAC system is avoided altogether, thus saving the consumer a significant capital cost.

Application to Building Performance Studies

A building's performance can be fully characterized in terms of four parameters using a suite of short-duration (several day) tests. The four parameters include thermal conductivity, that is, heat losses, thermal mass, effective window area, and HVAC system efficiency. An assumption is made about average indoor building temperature. These (or the previous) characterizations could be used as follows:

    • Utilities could identify potential targets for building shell investments using only utility billing data. Buildings could be identified in a two-step process. First, thermal conductivity can be calculated using only electric and natural gas billing data, making the required assumptions presented supra. Buildings that pass this screen could be the focus of a follow-up, on-site, short-duration test.

The results from this test suite can be used to generate detailed time series fuel consumption data (either natural gas or electricity). This data can be combined with an economic analysis tool, such as the PowerBill service (http://www.cleanpower.com/products/powerbill/), a software service offered by Clean Power Research, L.L.C., Napa, Calif., to calculate the economic impacts of the changes using detailed, time-of-use rate structures.

Application to “Smart” Thermostat Users

The results from the short-duration tests, as described supra with reference to FIG. 4, could be combined with measured indoor building temperature data collected using an Internet-accessible thermostat, such as a Nest thermostat device or a Lyric thermostat device, cited supra, or other so-called “smart” thermostat devices, thereby avoiding having to make assumptions about indoor building temperature. The building characterization parameters could then be combined with energy investment alternatives to educate consumers about the energy, economic, and environmental benefits associated with proposed purchases.

While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope.

Claims

1. A system for modeling interval building temperature-control energy consumption with the aid of a digital computer, comprising:

a computer configured to: find parameters comprising total thermal conductivity, thermal mass, and effective window area for a building based on a series of sequentially-performed empirical tests, at least one of the tests conducted using at least one of an electric controllable interior heating source and an electric controllable interior cooling source, each successive empirical test building on findings of the earlier empirical tests; measure a difference between average indoor temperatures and average of outdoor temperatures over the course of each of the empirical tests using an indoor thermometer and at least one of an outdoor thermometer or a remote data source of the outdoor temperature; and determine interval temperature-control fuel consumption of the building over a season based on the total thermal conductivity, the temperature difference, and average occupancy, non-HVAC electricity consumption and solar resource; model a change of one of the parameters associated with making a change to the building; and calculate a value of energy savings associated with the building change using the interval temperature-control fuel consumption and the change in the one parameter; wherein the change is performed based on the value of the energy savings.

2. A system according to claim 1, the computer further configured to:

find the total thermal conductivity based on the occupancy and the non-HVAC electricity consumption through an empirical test conducted in the absence of solar gain with constant indoor temperature and no HVAC;
find the thermal mass based on the thermal conductivity, the occupancy and the non-HVAC electricity consumption through another empirical test conducted in the absence of solar gain and no HVAC; and
find the effective window area based on the thermal mass, the thermal conductivity, the occupancy and the non-HVAC electricity consumption through a further empirical test conducted in the presence of solar gain and no HVAC.

3. A system according to claim 1, the computer further configured to: R Furnace  η HVAC  Status _  ( H ) = UA Total  ( T _ Indoor - T _ Outdoor )  ( H ) -   [ ( C 1 )  P _ + Electric _   ( C 2 ) + W  Solar ( _  C 2 ) ]  ( H ) where RFurnaceηHVACStatus(H) represents the total energy gained from the heating based on H hours in the heating season and the HVAC system for the building having an efficiency of ηHVAC and a furnace with a rating of RFurnace, UATotal represents the thermal conductivity, TIndoor represents the average indoor temperature throughout the heating season, TOutdoor represents the average outdoor temperature throughout the heating season, C1 represents a conversion factor for occupant heating gains, P represents the average number of occupants throughout the heating season, Electric represents average indoor electricity consumption throughout the heating season, C2 represents a conversion factor for non-HVAC electric heating gains, W represents the effective window area, and Solar represents the average solar energy produced throughout the heating season.

finding the interval fuel consumption for heating in accordance with:

4. A system according to claim 1, the computer further configured to remotely interface to the indoor thermometer, the outdoor thermometer, and the remote data source.

5. A system according to claim 1, the computer further configured to remotely interface to the electric controllable interior heating source and the electric controllable interior cooling source.

6. A system for modeling building thermal performance parameters through empirical testing with the aid of a digital computer, comprising:

a computer configured to: record a building's indoor electricity consumption and difference in indoor and outdoor average temperatures over an empirical test conducted in the absence of solar gain with constant indoor temperature and no HVAC; find thermal conductivity of the building as a function of occupancy and the electricity consumption over the average temperature difference; record the building's indoor electricity consumption, difference in indoor and outdoor average temperatures, and change in indoor temperature over another empirical test conducted in the absence of solar gain and no HVAC; find thermal mass of the building as a function of the thermal conductivity and the average temperature difference, occupancy, and the electricity consumption, all over the indoor temperature change; record the building's indoor electricity consumption, difference in indoor and outdoor average temperatures, and change in indoor temperature over a further empirical test conducted in the presence of solar gain and no HVAC; find effective window area of the building as a function of the thermal mass and the change in indoor temperature, the thermal conductivity and the average temperature difference, occupancy, the electricity consumption, all over the average solar energy produced during the empirical test; model a change to one or more parameters comprising the thermal conductivity, the thermal mass, and the effective window area associated with a change to the building; and model a value of energy savings associated with the one or more changed parameter using the effective window area, the thermal mass, and the thermal conductivity and one or more of the changed parameters, wherein the change to the building is performed based on the value of the energy savings.

7. tem according to claim 6, the computer further configured to:

record the building's indoor electricity consumption, difference in indoor and outdoor average temperatures, change in indoor temperature, and HVAC status over a final empirical test conducted with HVAC and in the absence of solar gain; and
find HVAC efficiency for the building as a function of the thermal mass and the change in indoor temperature, the thermal conductivity and the average temperature difference, the occupancy, and the electricity consumption, all over furnace efficiency and average HVAC status during the final empirical test.

8. A system according to claim 6, the computer further configured to:

perform the empirical test over a short duration in the absence of solar gain into the building during which the HVAC for the building is not operated, comprising the steps of: maintain the constant indoor temperature throughout the empirical test using at least one of an electric controllable interior heat source or an electric controllable interior cooling source and express the constant indoor temperature as an average indoor temperature; obtain the outdoor temperature throughout the empirical test, over which an average is taken; measure the indoor electricity consumption during the empirical test, over which an average is taken; and tally the occupancy within the building, over which an average is taken; find the temperature difference between the average indoor and the average outdoor temperatures; and evaluate the thermal conductivity as a function of the average occupancy and the average indoor electricity consumption over the temperature difference.

9. A system according to claim 8, wherein the computer is remotely interfaced to at least one of the electric controllable interior heat source or the electric controllable interior cooling source.

10. A system according to claim 8, wherein the outdoor temperature is obtained from at least one of an outdoor thermometer remotely interfaced to the computer and a remote data source interfaced to the computer.

11. A system according to claim 8, the computer further configured to: UA Total = [ ( C 1 )  P _ + Electric _   ( C 2 ) ] ( T _ Indoor - T _ Outdoor ) where TIndoor represents the average indoor temperature, TOutdoor represents the average outdoor temperature, C1 represents a conversion factor for occupant heating gains, P represents the average number of occupants, Electric represents average indoor electricity consumption, and C2 represents a conversion factor for non-HVAC electric heating gains.

find the thermal conductivity UATotal of the building in accordance with:

12. A system according to claim 8, the computer further configured to:

perform the another empirical test over a short duration in the absence of solar gain into the building during which HVAC for the building is not operated, comprising: measure the indoor temperature throughout the another empirical test, over which an average is taken; obtain the outdoor temperature throughout the another empirical test, over which an average is taken; measure the indoor electricity consumption during the another empirical test, over which an average is taken; and tally the occupancy within the building, over which an average is taken; find the temperature difference between the average indoor and the average outdoor temperatures; find the change in the indoor temperature over the another empirical test; and evaluate the thermal mass as a function of the thermal conductivity and the temperature difference, the average occupancy, and the average indoor electricity consumption, all over the change in the indoor temperature.

13. A system according to claim 12, the computer further configured to: M = [ UA Total  ( T _ Indoor - T _ Outdoor ) + ( C 1 )   P _ + Electric _  ( C 2 ) ( T t + Δ   t Indoor - T t Indoor ) ]  Δ   t where UATotal represents the thermal conductivity, TIndoor represents the average indoor temperature, TOutdoor represents the average outdoor temperature, C1 represents a conversion factor for occupant heating gains, P represents the average number of occupants, Electric represents average electricity consumption, C2 represents a conversion factor for non-HVAC electric heating gains, t represents the time at the beginning of the another empirical test, Δt represents the short duration, Tt+ΔtIndoor represents the ending indoor temperature, and TtIndoor represents the starting indoor temperature.

find the thermal mass M of the building in accordance with:

14. A system according to claim 12, the computer further configured to:

perform the further empirical test over a short duration in the presence of solar gain into the building during which HVAC for the building is not operated, comprising: measure the indoor temperature throughout the further empirical test, over which an average is taken; obtain the outdoor temperature throughout the further empirical test, over which an average is taken; measure the indoor electricity consumption during the further empirical test, over which an average is taken; tally the occupancy within the building, over which an average is taken; and measure solar energy produced throughout the further empirical test, over which an average is taken;
find the temperature difference between the average indoor and the average outdoor temperatures;
find the change in the indoor temperature over the further empirical test; and
find the effective window area as a function of the thermal mass and the change in the indoor temperature, the thermal conductivity and the average temperature difference, the average occupancy, and the average electricity consumption, all over the average solar energy.

15. A system according to claim 14, the computer further configured to: W = { [ M  ( T t + Δ   t Indoor - T t Indoor ) C 2  Δ   t ] + UA Total  ( T _ Indoor - T _ Outdoor ) C 2 - ( C 1 )   P _ C 2 - Electric _ } [ 1 Solar _ ] where M represents the thermal mass, t represents the time at the beginning of the further empirical test, Δt represents the short duration, Tt+ΔtIndoor represents the ending indoor temperature, TtIndoor represents the starting indoor temperature, UATotal represents the thermal conductivity, TIndoor represents the average indoor temperature, TOutdoor represents the average outdoor temperature, C1 represents a conversion factor for occupant heating gains, P represents the average number of occupants, C2 represents a power unit conversion factor, Electric represents average electricity consumption, and Solar represents the average solar energy produced.

find the effective window area W of the building in accordance with:

16. A system according to claim 14, the computer further configured to:

perform the final empirical test over a short duration during which HVAC for the building is operated in the absence of solar gain into the building, comprising: measure the indoor temperature throughout the final empirical test, over which an average is taken; obtain the outdoor temperature throughout the final empirical test, over which an average is taken; measure the indoor electricity consumption during the final empirical test, over which an average is taken; tally the occupancy within the building, over which an average is taken; measure solar energy produced throughout the final empirical test, over which an average is taken; and observe HVAC status throughout the final empirical test, over which an average is taken;
obtain the rating of a furnace for the HVAC;
find the temperature difference between the average indoor and the average outdoor temperatures;
find the change in the indoor temperature over the final empirical test; and
find the HVAC efficiency as a function of the thermal mass and the change in the indoor temperature, the thermal conductivity and the average temperature difference, the average occupancy, and the average electricity consumption, all over the furnace rating and the average HVAC status.

17. A system according to claim 16, the computer further configured to: η HVAC = [ M  ( T t + Δ   t Indoor - T t Indoor ) Δ   t - UA Total  ( T _ Indoor - T _ Outdoor ) - ( C 1 )  P _ - Electric _  ( C 2 ) ]  [ 1 R Furnace  Status _ ] where M represents the thermal mass, t represents the time at the beginning of the final empirical test, Δt represents the short duration, Tt+ΔtIndoor represents the ending indoor temperature, TtIndoor represents the starting indoor temperature, UATotal represents the thermal conductivity, TIndoor represents the average indoor temperature, TOutdoor represents the average outdoor temperature, C1 represents a conversion factor for occupant heating gains, P represents the average number of occupants, Electric represents average electricity consumption, C2 represents a conversion factor for non-HVAC electric heating gains, Status represents the average furnace operation status, and RFurnace represents the rating of the furnace.

find the efficiency of the HVAC system ηHAVC of the building in accordance with:

18. A system according to claim 6, the computer further configured to:

generate a time series of temperature data points with each successive data point in the time series determined as a function of the inverse of the thermal mass, the thermal conductivity, the difference between the outdoor temperature and the indoor temperature of the building at the time of the current data point, occupancy at the time of the current data point, the indoor electricity consumption in the building at the time of the current data point, the effective window area, the solar energy produced for the building at the time of the current data point, the rating of the furnace of the HVAC system, the HVAC efficiency, and the status of the furnace at the time of the current data point.

19. A system according to claim 18, the computer further configured to: T t + Δ   t Indoor = T t Indoor = [ 1 M ]    [ UA Total  ( T t Outdoor - T t Indoor ) + ( C 1 )   P t + Electric t    ( C 2 ) + WSolar t  ( C 2 ) + R Furnace  η HVAC  Status t ]  Δ   t where Δt represents the fixed time interval, TtIndoor represents the indoor temperature at the time of the current data point t, M represents the thermal mass, UATotal represents the thermal conductivity, TtOutdoor represents the outdoor temperature at time t, TtIndoor represents the indoor temperature at time t, C1 represents a conversion factor for occupant heating gains, Pt represents the number of occupants at time t, Electrict represents indoor electricity consumption at time t, C2 represents a power unit conversion factor, W represents the effective window area, Solart represents the solar energy produced at time t, RFurnace represents the rating of the furnace, ηHVAC represents the efficiency of the HVAC system, and statust represents the status of the furnace at time t.

find each successive data point Tt+ΔtIndoor in the time series of temperature data of the building at time t+Δt in accordance with:

20. A system according to claim 18, further comprising:

determine maximum indoor temperature as the minimum of the data points in the temperature time series and the maximum indoor temperature recorded for the building during the heating season.
Patent History
Publication number: 20200065445
Type: Application
Filed: Nov 4, 2019
Publication Date: Feb 27, 2020
Inventor: Thomas E. Hoff (Napa, CA)
Application Number: 16/673,458
Classifications
International Classification: G06F 17/50 (20060101); G06F 17/10 (20060101); F24F 11/64 (20060101); G05B 15/02 (20060101); F24F 11/62 (20060101);