WORK OVER PLATFORM APPARATUS AND METHOD
The disclosure relates to a work over platform apparatus and method for use with trenches and cellars. The apparatus includes two platform portions joined at the center by a set of hinges. The set of hinges is divided to allow for cutouts in each of the platform portions. When deployed the cutout portions are aligned to form an opening that allows work personnel to access the cellar through the work over platform. The work over platform may be collapsed along its hinges for compact transport to and from a work site. The method includes deploying, using, and collapsing the apparatus.
Latest Barr Fabrication, L.L.C. Patents:
The present disclosure relates to oil field maintenance, and specifically to a portable working platform for performing maintenance on production oil wells equipped with a containment cellar.
2. Description of the Related ArtWork over platforms are used in maintenance operations for production wells. Typically, production facilities are located below grade with well heads that protrude from the ground into a subsurface containment cellar. Often, drilling or development platforms are placed over the cellar to provide a working surface for vehicles, equipment, and personnel during maintenance or work over operations. Drilling platforms used in work overs typically weigh between 80,000 and 100,000 pounds (36.4 to 45.5 metric tons) and must be transported to the oil well cellar in pieces.
During work over operations, the drilling platform pieces are transported to the worksite on multiple flatbed trailers, offloaded, and assembled to form a completed platform that is then placed over the oil well cellar using a heavy duty crane. The completed platform includes an opening that is aligned with the well head to allow access for the work over equipment and personnel. One or more ramps are attached to the platform so that equipment trucks may drive onto the platform to position equipment for the well work over operation, and rails may be used to restrict access to the platform. Due to the size and weight of the drilling platform, the assembly may take one to two days, and disassembly requires a similar length of time. Work over operations may be completed in as little as one day.
A shortcoming of typical oil well work over platforms is that they are extremely large and heavy. The former drilling or development well platforms are difficult to manipulate and heavy, often requiring extensive crane time and costs for installation and removal, and a crane rated for handling a platform.
Another shortcoming of existing oil well work over platforms is that they are bulky, requiring disassembly into multiple segments for transportation on multiple semi-trailer trucks. When multiple well heads are arranged together at a job site, the bulk of the drilling platform prevents work over operations from taking place on adjacent well simultaneously.
Another shortcoming of existing oil well work over platforms is that they require extensive assembly and disassembly for installation and removal, which can take a day to set up and a day to breakdown. All of this assembly and disassembly time is consumed for a work over project that typically takes only one to two days.
Another shortcoming of existing oil well work over platforms is that they only provide limited approaches to the platform, often because vehicles must travel up a ramp to get onto the platform.
What is needed is a work over platform that can be transported and installed preassembled and removed without disassembling the platform, while being portable enough for transport on a single flatbed trailer.
BRIEF SUMMARY OF THE DISCLOSUREIn aspects, the present disclosure is related to an apparatus and method for performing work over operations on an oil well, specifically a work over platform and its use.
One embodiment according to the present disclosure includes a work over platform apparatus for installation over a trench, such as an oil field cellar, comprising: a platform including a first portion having a first cutout; a second portion having a second cutout; and a hinge system disposed between the first portion and the second portion; wherein the first cutout and the second cutout form an opening through the platform when the first portion and the second portion are aligned to form a planar surface. The hinge system may include a first hinge disposed on one side of the opening; and a second hinge disposed on the other side of the opening. The platform may be collapsible along the hinge system. The apparatus may include a cover disposed over the hinges and configured to allow movement of the first portion relative to the second portion. The first and second portions may be polygonal in shape when the first portion and the second portion form a planar surface. One or more of the polygonal side may include one or more attachment plates for coupling equipment or an outrigger. The opening may have a center that is offset from a center of the platform. The first and second cutouts may have their own doors or covers to block at least part of the opening. When folded, the apparatus can be transported on a commercial flatbed trailer.
Another embodiment according to the present disclosure includes a method of using a work over platform on a trench, the work over platform including a first portion having a first cutout; a second portion having a second cutout; and a hinge system disposed between the first portion and the second portion; wherein the first cutout and the second cutout form an opening through the platform when the first portion and the second portion are aligned to form a planar surface; the method including the steps of: moving the hinge system to an open position to form the opening; locking the hinge system into the open position; positioning the opening over a well head in the trench; unlocking the hinge system; and moving the hinge system into a closed position. The method may also include the steps of: transporting the platform to a work site in the closed position; positioning the work platform over the trench; and lifting the platform in the closed position onto a transport vehicle. The method may also include the steps of: inserting safety rails around part of a perimeter of the platform; removing the safety rails from around the part of a perimeter of the platform; and transporting the platform off of the work site. The method may also include the steps of: connecting an outrigger to the platform; and disconnecting the outrigger from the platform. The method may also include the step of conducting work over operations on the well head. The closed position of the platform may be when the first and second portions are parallel and facing one another. The locking step may include inserting a locking pin into a locking mechanism coupled to the hinge system, and wherein unlocking the hinge system comprises removing a locking pin from the locking mechanism coupled to the hinge system.
Examples of the more important features of the disclosure have been summarized rather broadly in order that the detailed description thereof that follows may be better understood and in order that the contributions they represent to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
For a detailed understanding of the present disclosure, reference should be made to the following detailed description of the embodiments, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals, wherein:
Generally, the present disclosure relates to oil field maintenance. Specifically, the present disclosure relates to a portable working platform for performing maintenance on production oil wells equipped with a containment cellar
There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the present disclosure and is not intended to limit the present disclosure to that illustrated and described herein.
The apparatus 100 includes a hinge system attached to and between the first portion 110 and the second portion 115. The hinge system includes a first hinge 140 and may include an optional second hinge 145. When the first hinge 140 and the second hinge 145 are present, they are disposed or positioned opposite one another on either side of the center of the opening 170. The first hinge 140 is shown as shorter in length than the second hinge 145; however, the first hinge 140 and the second hinge 145 may be the same or different lengths. The varying lengths of the hinges 140, 145 may depend on whether the opening 170 is in the center of the apparatus 100 or offset. While the hinges 140, 145 are shown extending from an edge of the opening 170 to an edge of the combine portions 110, 115, it is also contemplated that, in some embodiments, one or both of the hinges 140, 145 may not extend to full distance between the edge of the opening 170 and the respective edge of the combined portion 110, 115. Locking mechanism 175 may be disposed on the first portion 110 and the second portion 115 adjacent to the hinges 140, 145 and configured to receive a pin to lock the hinges 140, 145 in an open position when the apparatus 100 is deployed. When the locking mechanism 175 is engaged, the apparatus 100 is prevented from closing during repositioning, thus mitigating the risk of the apparatus closing along the hinges 140, 145 inadvertently. The apparatus 100 is shown as octagonal in shape to provide multiple access faces 165 for work vehicles to approach the apparatus 100 during work over operations; however, the apparatus 100 is not limited to an octagonal form. When the opening 170 is offset from the center of the apparatus 100, the access faces 165 provide different distances between the edges of the top layers 120, 125 and the opening 170, which provides flexibility to the user for controlling the distances between vehicles or structures adjacent to the apparatus 100 and the opening 170. This means that adjusting the placement of the apparatus 100 relative to a well head can avoid a situation where a vehicle has to be parked on the apparatus 100 in order for equipment to be operated or offloaded to reach the opening 170. Rectangular, hexagonal, and other polygonal shapes may be used as would be understood by a person of skill in the art.
Each of the first portion 110 and the second portion 115 include the top layer 120, 125, which may be supported by multiple layers constructed of materials to support work over equipment, work over stresses, and personnel on the apparatus 100. Correspondingly, the hinges 140 and 145 are also constructed of materials designed to endure the same conditions. In some embodiments, the apparatus 100 may be constructed to support at least 200,000 pounds (90.9 metric tons) in order to support the weight of equipment, pull stresses for moving tubulars through a well head, and personnel. In some embodiments, the designed weight supported by apparatus 100 may be increased or decreased based on the desired application.
As shown, each of the portions 110, 115 may include a bottom layer 150 and one or more intermediate layers 155. The layers 110, 115, 150, 155, 160 may be supported by vertical members 160 to provide structural strength. While the top layers 120, 125 may be substantially continuous to prevent equipment or personnel from falling through the apparatus 100, the one or more intermediate layers 155 and the bottom layer 150 may be continuous surfaces or include open areas to reduce the overall mass of the apparatus 100. Substantially continuous surfaces include solid surface and grillwork, which allows airflow but prevents persons and hand tools from falling through. In some embodiments, the layers 110, 115, 150, 155 and the vertical members 160 may be constructed of steel; however, it is contemplated that any sufficiently strong materials to provide the structural strength required is suitable, as would be understood by a person of skill in the art.
The apparatus 300 includes a hinge system attached to and between the first portion 310 and the second portion 315. The hinge system, shown on
Locking mechanism 375 may be disposed on the first portion 310 and the second portion 315 adjacent to the hinges 340, 345 and configured to receive a locking pin 260, just as the locking mechanism 175 to lock the hinges 340, 345 in an open position when the apparatus 300 is deployed. When the locking mechanism 375 is engaged, the apparatus 300 is prevented from closing during repositioning, thus mitigating the risk of the apparatus closing along the hinges 340, 345 inadvertently. The apparatus 300 is shown as octagonal in shape to provide multiple access faces 365 for work vehicles to approach the apparatus 300 during work over operations; however, the apparatus 300 is not limited to an octagonal form. As with the opening 170 in the apparatus 100, when the opening 370 is offset from the center of the apparatus 300, the access faces 365 provide different distances between the edges of the top layers 320, 325 and the opening 370, which provides flexibility to the user for controlling the distances between vehicles or structures adjacent to the apparatus 300 and the opening 370. This means that adjusting the placement of the apparatus 300 relative to a well head can avoid a situation where a vehicle has to be parked on the apparatus 300 in order for equipment to be operated or offloaded to reach the opening 370. Rectangular, hexagonal, and other polygonal shapes may be used as would be understood by a person of skill in the art. One or more of the access faces 365 may include attachment plates 390. The attachment plate 390 may act as a connection point for equipment, including an outrigger (see
Each of the first portion 310 and the second portion 315 include the top layer 320, 325, which may be supported by multiple layers constructed of materials to support work over equipment, work over stresses, and personnel on the apparatus 300. Correspondingly, the hinges 340, 345 are also constructed of materials designed to endure the same conditions. In some embodiments, the apparatus 300 may be constructed to support at least 200,000 pounds (90.9 metric tons) in order to support the weight of equipment, pull stresses for moving tubulars through a well head, and personnel. In some embodiments, the designed weight supported by apparatus 100 may be increased or decreased based on the desired application.
As shown, each of the portions 310, 315 may include a bottom layer 350 and one or more intermediate layers 355. The layers 310, 315, 350, 355, 360 may be supported by vertical members 360 to provide structural strength. While the top layers 320, 325 may be substantially continuous to prevent equipment or personnel from falling through the apparatus 300, the one or more intermediate layers 355 and the bottom layer 350 may be continuous surfaces or include open areas to reduce the overall mass of the apparatus 300. Substantially continuous surfaces include solid surface and grillwork, which allows airflow but prevents persons and hand tools from falling through. In some embodiments, the layers 310, 315, 350, 355 and the vertical members 360 may be constructed of steel; however, it is contemplated that any sufficiently strong materials to provide the structural strength required is suitable, as would be understood by a person of skill in the art.
The apparatus 700 includes a hinge system attached to and between the first portion 710 and the second portion 715. The hinge system, shown on
Locking mechanism 775 may be disposed on the first portion 710 and the second portion 715 adjacent to the hinges 740, 745 and configured to receive a locking pin 260, just as the locking mechanism 175 to lock the hinges 740, 745 in an open position when the apparatus 700 is deployed. When the locking mechanism 775 is engaged, the apparatus 700 is prevented from closing during repositioning, thus mitigating the risk of the apparatus closing along the hinges 740, 745 inadvertently. Lifting lugs (or similar attaching means) 795 are provided around the perimeter of the first portion 710 and the second portion 715 to provide connection locations for a crane to reposition or otherwise move the apparatus 700. These lifting lugs 795 may be used with the apparatus 100 and the apparatus 300 as well. The apparatus 700 is shown as octagonal in shape to provide multiple access faces 765 for work vehicles to approach the apparatus 700 during work over operations; however, the apparatus 700 is not limited to an octagonal form. As with the openings 170, 370 in the apparatuses 100, 300, respectively, when the opening 770 is offset from the center of the apparatus 700, the access faces 765 provide different distances between the edges of the top layers 720, 725 and the opening 770, which provides flexibility to the user for controlling the distances between vehicles or structures adjacent to the apparatus 700 and the opening 770. This means that adjusting the placement of the apparatus 700 relative to a well head can avoid a situation where a vehicle has to be parked on the apparatus 700 in order for equipment to be operated or offloaded to reach the opening 770. One or more of the access faces 765 may include attachment plates 790. The attachment plate 790 may act as a connection point for equipment, including an outrigger (see
In some embodiments, the apparatus 700 may be constructed to support at least 200,000 pounds (90.9 metric tons) in order to support the weight of equipment, pull stresses for moving tubulars through a well head, and personnel. In some embodiments, the designed weight supported by apparatus 100 may be increased or decreased based on the desired application. As shown, each of the portions 710, 715 may include bottom layers 350, intermediate layers 355, and vertical layers 360 as shown for the apparatus 300. 755.
While the disclosure has been described with reference to exemplary embodiments, it would be understood that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications will be appreciated to adapt a particular instrument, situation or material to the teachings of the disclosure without departing from the essential scope thereof Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.
Claims
1. A work over platform apparatus for installation over a trench, comprising:
- a platform comprising a first portion having a first cutout; a second portion having a second cutout; and a hinge system disposed between the first portion and the second portion; wherein the first cutout and the second cutout form an opening through the platform when the first portion and the second portion are aligned to form a planar surface.
2. The apparatus of claim 1, wherein the hinge system comprises:
- a first hinge disposed on one side of the opening; and
- a second hinge disposed on the other side of the opening.
3. The apparatus of claim 1, wherein the platform is collapsible along the hinge system.
4. The apparatus of claim 1, further comprising:
- a cover disposed over the hinges and configured to allow movement of the first portion relative to the second portion.
5. The apparatus of claim 1, wherein the first portion and second portion are polygonal in shape when the first portion and the second portion form a planar surface.
6. The apparatus of claim 5, further comprising:
- one or more attachment plates attached to at least one of the polygonal sides of the platform; and an outrigger attached to the one or more attachment plates.
7. The apparatus of claim 1, wherein the opening forms a rectangular opening.
8. The apparatus of claim 1, wherein the opening has a center that is offset from a center of the platform.
9. The apparatus of claim 1, further comprising:
- a first door disposed on the first portion to cover the first cutout; and
- a second door disposed on the second portion to cover the second cutout.
10. The apparatus of claim 1, wherein the platform can be transported on a commercial flatbed trailer when the platform is in a closed position.
11. The apparatus of claim 1, where the trench comprises an oil field cellar.
12. A method of using a work over platform on a trench, the work over platform comprising:
- a first portion having a first cutout;
- a second portion having a second cutout; and
- a hinge system disposed between the first portion and the second portion;
- wherein the first cutout and the second cutout form an opening through the platform when the first portion and the second portion are aligned to form a planar surface;
- the method comprising moving the hinge system to an open position to form the opening; locking the hinge system into the open position; positioning the opening over a well head in the trench; unlocking the hinge system; and moving the hinge system into a closed position.
13. The method of claim 12, the method further comprising:
- transporting the platform to a work site in the closed position;
- positioning the work platform over the trench; and
- lifting the platform in the closed position onto a transport vehicle.
14. The method of claim 12, the method further comprising:
- inserting safety rails around part of a perimeter of the platform;
- removing the safety rails from around the part of a perimeter of the platform; and
- transporting the platform off of the work site.
15. The method of claim 12, the method further comprising:
- connecting an outrigger to the platform; and
- disconnecting the outrigger from the platform.
16. The method of claim 12, the method further comprising:
- conducting work over operations on the well head.
17. The method of claim 12, wherein the first portion and the second portion are parallel to one another when the platform is in the closed position.
18. The method of claim 12, wherein locking the hinge system comprises inserting a locking pin into a locking mechanism coupled to the hinge system, and wherein unlocking the hinge system comprises removing a locking pin from the locking mechanism coupled to the hinge system.
19. The method of claim 12, prior to the unlocking the hinge system, further comprising:
- repositioning the opening over another well head in the trench.
Type: Application
Filed: Nov 9, 2018
Publication Date: Mar 5, 2020
Applicant: Barr Fabrication, L.L.C. (Brownwood, TX)
Inventor: Hugh C. Barr (May, TX)
Application Number: 16/186,482