PARKING ASSISTANCE DEVICE
Parking a vehicle at a location where parking is possible even when an obstacle is falsely detected. In a parking assistance device 1, an external environment recognition unit 11 recognizes road surface environment around an own vehicle on the basis of information detected by an external environment sensor 4 installed in the own vehicle. The display control unit 17 performs screen display using the HMI device 2 to present, to an occupant of the own vehicle, road surface information indicating the presence of an obstacle on the road surface around the own vehicle on the basis of the road surface environment recognized by the external environment recognition unit 11. The road surface information correction unit 16 corrects the road surface information and invalidates the obstacle. The parking route calculation unit 14 calculates a parking route for parking the own vehicle on the basis of the road surface information corrected by the road surface information correction unit 16.
Latest HITACHI AUTOMOTIVE SYSTEMS, LTD. Patents:
The present invention relates to a parking assistance device that assists parking of a vehicle.
BACKGROUND ARTThere is conventionally known a parking assistance device that assists a vehicle to move to an appropriate parking position while avoiding an obstacle at the time of parking the vehicle. Patent Literature 1 discloses a parking assistance device including: an external detection sensor input processing unit that generates surrounding information on the basis of sensor input from an external detection sensor that detects the outside of a vehicle; a parking position setting unit that sets a parking position; a virtual obstacle generation unit that generates virtual information on the basis of the parking position set by the parking position setting unit; and a parking route generation unit that generates a parking route from the current position of the vehicle to the parking position on the basis of the surrounding information and the virtual obstacle information.
CITATION LIST Patent LiteraturePTL 1: JP 2013-241088 A
SUMMARY OF INVENTION Technical ProblemThe parking assistance device disclosed in Patent Literature 1 detects an obstacle present around the vehicle using an external detection sensor such as radar, an ultrasonic sensor, or a camera. Therefore, in a case where these external detection sensors falsely detect an object that is not an obstacle as an obstacle, the location where parking is actually possible might be judged that there is an obstacle, leading to a problem that the vehicle cannot be parked at that location.
Solution to ProblemThe parking assistance device according to the present invention includes: an external environment recognition unit that recognizes a road surface environment around a vehicle on the basis of information detected by an external environment sensor installed in the vehicle; an information presenting unit that presents, to an occupant of the vehicle, road surface information indicating a presence of an obstacle on a road surface around the vehicle on the basis of the road surface environment recognized by the external environment recognition unit; a road surface information correction unit that corrects the road surface information and invalidates the obstacle; and a parking route calculation unit that calculates a parking route for parking the vehicle on the basis of the road surface information corrected by the road surface information correction unit.
Advantageous Effects of InventionAccording to the present invention, it is possible to park a vehicle at a location where parking is possible even when an obstacle is falsely detected.
The HMI device 2 is a device that presents various pieces of information to the occupant of the own vehicle, receives various operation inputs from the occupant of the own vehicle, and outputs the operation to the parking assistance device 1. The HMI device 2 is implemented by a touch panel, for example.
The parking switch 3 is a switch to be operated when the occupant of the own vehicle operates the parking assistance device 1. The parking switch 3 is a physical switch installed on an instrument panel of the own vehicle, for example. Note that the HMI device 2 may be used as the parking switch 3.
The external environment sensor 4 detects the external situation around the own vehicle, and outputs detection information according to the detection result to the parking assistance device 1. The external environment sensor 4 includes a sensor capable of two-dimensional detection around the own vehicle, such as a camera, and a sensor capable of three-dimensional detection around the own vehicle, such as sonar. Note that sensors other than a camera or sonar, such as millimeter wave radar or a stereo camera may be used as the external environment sensor 4.
The driving force control device 5, the braking force control device 6, the steering control device 7, and the shift control device 8 are devices that respectively control the engine, the braking, the steering, and the transmission of the own vehicle. These devices operate to automatically park the own vehicle under the parking vehicle control performed by the parking assistance device 1.
The external environment recognition unit 11 recognizes the road surface environment around the own vehicle at the parking of the own vehicle on the basis of the detection information output from the external environment sensor 4. The parking position search unit 12 searches for a candidate for a parking position at which the own vehicle parks on the basis of the road surface environment recognized by the external environment recognition unit 11. The parking position determination unit 13 determines a parking position at which the own vehicle is to actually park from among the parking position candidates found in the search by the parking position search unit 12. The parking route calculation unit 14 calculates a parking route for parking the own vehicle at the parking position determined by the parking position determination unit 13. The parking vehicle control unit 15 performs parking vehicle control based on the parking route calculated by the parking route calculation unit 14 and moves the own vehicle to the parking position. In a case where an obstacle exists on the road surface around the own vehicle, the road surface information correction unit 16 corrects road surface information in accordance with the operation of the occupant of the own vehicle.
The display control unit 17 causes the HMI device 2 to perform various screen displays to present information to the occupant of the own vehicle. The screen displayed on the HMI device 2 under the control of the display control unit 17 includes, for example, a road surface information correction screen described below to be used when the road surface information correction unit 16 corrects road surface information. The storage unit 18 stores various pieces of information used for the operation of the parking assistance device 1. The information stored in the storage unit 18 includes, for example, a correction history of the road surface information generated by the road surface information correction unit 16.
In the parking assistance device 1, the external environment recognition unit 11, the parking position search unit 12, the parking position determination unit 13, the parking route calculation unit 14, the parking vehicle control unit 15, the road surface information correction unit 16, and the display control unit 17 are implemented by processing performed by a CPU (not illustrated). Meanwhile, the storage unit 18 is implemented by, for example, a flash memory or a hard disk drive (HDD) which is not illustrated. The storage unit 18 may store programs enabling the CPU to operate as the external environment recognition unit 11, the parking position search unit 12, the parking position determination unit 13, the parking route calculation unit 14, the parking vehicle control unit 15, the road surface information correction unit 16, and the display control unit 17.
Next, details of the parking assistance of the own vehicle performed by the parking assistance device 1 will be described.
In step S10, the external environment recognition unit 11 performs external environment recognition processing based on the information detected by the external environment sensor 4. The external environment recognition processing recognizes the road surface environment around the own vehicle from the information detected by the external environment sensor 4 directed to the detection ranges 43 and 44 of
In step S20, the parking position search unit 12 performs parking position search processing. The parking position search processing searches for a candidate for a parking position at which the own vehicle can park within a predetermined range on the basis of the road surface environment around the own vehicle recognized in step S10. Note that details of the parking position search processing will be described below with reference to the flowchart of
In step S30, the parking position determination unit 13 performs parking position determination processing. The parking position determination processing determines a parking position to which the own vehicle is to be moved for parking from among the candidates of the parking position found in the search of step S20. Note that details of the parking position determination processing will be described below with reference to the flowchart of
In step S40, the road surface information correction unit 16 performs road surface information correction processing. The road surface information correction processing presents road surface information indicating the presence of an obstacle on the road surface around the own vehicle to the occupant of the own vehicle on the basis of the road surface environment around the own vehicle recognized in step S10. After receiving instruction from the occupant of the own vehicle to correct the road surface information, the road surface information correction processing corrects the road surface information in accordance with the instruction, and invalidates the obstacle. Note that details of the road surface information correction processing will be described below with reference to the flowchart of
In step S50, the parking route calculation unit 14 performs parking route calculation processing. The parking route calculation processing uses the road surface information based on the road surface environment around the own vehicle recognized in step S10 and calculates a parking route for moving the own vehicle to the parking position determined in step S30. At this time, in a case where the road surface information has been corrected in step S40, the parking route is calculated in accordance with the corrected road surface information. Note that details of the parking route calculation processing will be described below with reference to the flowchart of
In step S60, the parking vehicle control unit 15 performs parking vehicle control processing. The parking vehicle control processing performs vehicle control for moving the own vehicle to the parking position determined in step S30 in accordance with the parking route calculated in step S50. Note that details of the parking vehicle control processing will be described below with reference to the flowchart of
Subsequently, details of individual processing of steps S20 to S60 of
In step S21, the parking position search unit 12 determines whether the vehicle speed, that is, the traveling speed of the own vehicle, is less than a predetermined value, for example, 10 km/h. When it is determined, as a result, that the vehicle speed is less than the predetermined value, it is judged that the own vehicle can start parking, and the processing proceeds to step S22 to start searching for the parking position. In contrast, in a case where the vehicle speed is a predetermined value or more, the processing waits until the speed falls below the predetermined value.
In step S22, the parking position search unit 12 calculates road surface information around the own vehicle on the basis of the result of the external environment recognition processing performed in step S10 of
In step S23, the parking position search unit 12 searches for a location at which the own vehicle can park on the basis of the road surface information calculated in step S22. For example, a location enclosed by a parking frame line or a space sandwiched by other vehicles is searched as a location at which the own vehicle can park.
In step S24, the parking position search unit 12 extracts parking position candidates of the own vehicle from among the locations where parking is possible searched in step S23. For example, in a case where locations in which other vehicles are already parked, or locations not having enough space for the size of the own vehicle or the like are included in the parking locations that have been found in the search, locations obtained by excluding the above are extracted as parking position candidates. In addition, in a case where there is a location that is more difficult to park in compared to other locations where parking is possible, such as distant from the own vehicle, the parking position candidate may be extracted by excluding this location. After extracting the parking position candidate in step S24, the parking position search unit 12 finishes the parking position search processing of
Next, details of the parking position determination processing executed in step S30 of
In step S31, the parking position determination unit 13 uses the display control unit 17 to display a camera image of the surroundings of the own vehicle, on the HMI device 2. The camera image displayed here is, for example, an image captured using the camera 41 included in the external environment sensor 4. At this time, the camera image may be displayed after performing processing, for example, predetermined viewpoint conversion processing on the camera image.
Returning to the explanation of
In step S33, the parking position determination unit 13 determines whether the parking switch 3 is on. When it is determined, as a result, that the parking switch 3 is on, the processing proceeds to step S34. When it is determined that the parking switch 3 is off, the parking position determination processing of
In step S34, the parking position determination unit 13 determines whether a parking position candidate has been extracted in step S24 of
In step S35, the parking position determination unit 13 uses the display control unit 17 to display the parking position candidate extracted by the parking position search unit 12 in step S24 on the camera image displayed in step S31.
Returning to the explanation of
In step S37, the parking position determination unit 13 determines the parking position candidate selected in step S36 as the parking position at which the own vehicle to be parked. After determination of the parking position in step S37, the parking position determination unit 13 finishes the parking position determination processing of
Next, details of the road surface information correction processing executed in step S40 of
In step S41, the road surface information correction unit 16 determines whether the road surface information display has been selected by the occupant of the own vehicle. This determination is performed, for example, on the basis of whether there is input operation of selecting the road surface information button 70 on the screen illustrated in
In step S42, the road surface information correction unit 16 causes the HMI device 2 to display the road surface information using the display control unit 17 so as to present the road surface information to the occupant of the own vehicle. The road surface information includes information regarding the two-dimensional object 62 and the three-dimensional object 63 which are present on the road surface around the own vehicle and have been recognized as obstacles in step S10 of
Furthermore, obstacle marks 82 and 83 indicating obstacles are displayed at positions respectively corresponding to the locations where the two-dimensional object 62 and the three-dimensional object 63 were present on the camera image display screen of
Here is an exemplary case where the parking position candidate 71 is determined as the parking position in step S37 of
Moreover, here is another exemplary case where the parking position candidate 72 or 73 is determined as the parking position in step S37 of
However, as described above, the two-dimensional object 62 is a manhole, a puddle or the like existing on the road surface, and thus, would not be an obstacle at the time of parking. That is, the obstacle mark 82 indicates road surface information by which the two-dimensional object 62 which is not actually an obstacle has been falsely recognized as an obstacle. In such a case, even though nothing intervenes in parking at the parking position 72 or 73 for the occupant of the own vehicle, the parking assistance device 1 will not give parking assistance to these positions with no apparent cause. This might greatly impair the practicability of the parking assistance device 1, leading to the feeling on the occupant of discontent or suspect of malfunction in the parking assistance device 1.
To avoid this, the present embodiment displays a road surface information correction button 80 on the road surface information screen of
Returning to the explanation of
In step S44, the road surface information correction unit 16 causes the HMI device 2 to display the road surface information correction list using the display control unit 17 so as to prompt the occupant of the own vehicle to correct road surface information. Here, a road surface information correction screen listing the two-dimensional object 62 and the three-dimensional object 63, which are present on the road surface around the own vehicle and recognized as obstacles in step S10 of
When the occupant selects the erase button 92 on the screen of
In the screen of
In contrast, when the occupant selects the erase button 93 on the screen of
When “Yes” is selected in the notification window 98, the processing is switched to the screen of
Unlike the case of the two-dimensional object 62 described above, the three-dimensional object 63 being an obstacle corresponding to the obstacle mark 83 is an object that has been detected by the sonar 42 being a sensor capable of three-dimensional detection of the surroundings of the own vehicle. Therefore, it is highly possible that the three-dimensional object 63 is actually an obstacle. Therefore, in the present embodiment, as described in
Note that, in a case where the erase button 93 is selected, it is also allowable to display one of the notification window 98 illustrated in
Returning to the description of
In step S46, the road surface information correction unit 16 executes correction of road surface information. Here, the road surface information displayed in step S42 is partially rewritten and corrected so that the information indicating the obstacle designated as the target to be erased or restored at the time of determination in step S45 is invalidated or validated. With this operation, the road surface information is corrected for the obstacle selected by the occupant on the road surface information correction screen displayed in step S44, and the obstacle is invalidated or the obstacle once invalidated is re-validated.
In step S47, the road surface information correction unit 16 updates the display of the road surface information performed in step S42 in accordance with the road surface information corrected in step S46. With this operation, the corrected road surface information is reflected on the road surface information screen displayed on the HMI device 2, and the invalidated obstacle is displayed in a grayed-out form on the road surface information screen, or the re-validated obstacle is redisplayed in an original display form. As a result, for example, a screen as illustrated in
In step S48, the road surface information correction unit 16 saves and stores the correction history of the road surface information performed in step S46 in the storage unit 18. At this time, the correction history of the road surface information may be stored in combination with the position information of the own vehicle and the map information. In this manner, when parking assistance is performed at a location where the road surface information has been corrected in the past, it is possible to prompt the occupant to correct the road surface information on the basis of the correction history, or perform automatic correction. Furthermore, when the own vehicle is incapacitated by getting stuck or due to a collision at the time of parking assistance, the correction history of the road surface information can be used for the cause verification or the like. After saving the correction history of the road surface information in step S48, the road surface information correction unit 16 finishes the road surface information correction processing of
Next, details of the parking route calculation processing executed in step S50 of
In step S51, the parking route calculation unit 14 calculates a parking route for parking the own vehicle at the parking position determined in step S37 in
In step S52, the parking route calculation unit 14 determines whether the calculation of the parking route is successful in step S51. After completion of calculation of the parking route, the processing proceeds to step S53. In contrast, in a case where the parking route calculation failed due to the presence of an obstacle between the current position and the parking position, or the like, the parking route calculation processing of
In step S53, the parking route calculation unit 14 reconfirms the determined parking position as the control target position of the own vehicle. After step S53 is performed, the parking route calculation unit 14 finishes the parking route calculation processing of
Next, details of the parking vehicle control processing executed in step S60 of
In step S61, the parking vehicle control unit 15 determines whether the parking switch 3 is on. When it is determined, as a result, that the parking switch 3 is on, the processing proceeds to step S62. When it is determined that the parking switch 3 is off, the parking vehicle control processing of
In step S62, the parking vehicle control unit 15 executes vehicle control of the own vehicle on the basis of the parking route calculated in step S51 of
In step S63, the parking vehicle control unit 15 determines whether the own vehicle has reached the control target position determined in step S53 of
In step S64, the parking vehicle control unit 15 causes the display control unit 17 to display on the HMI device 2 a message indicating that the parking of the own vehicle has been completed. With this operation, the occupant of the own vehicle is notified of the fact that parking assistance by the parking assistance device 1 is successful and it is possible to leave the vehicle. In addition, notification may be issued with sound, etc. instead of display of the HMI device 2. After execution of step S64, the parking vehicle control unit 15 finishes the parking vehicle control processing of
According to an embodiment of the present invention described above, the following effects can be obtained.
(1) The parking assistance device 1 includes the external environment recognition unit 11, the display control unit 17, the road surface information correction unit 16, and the parking route calculation unit 14. The external environment recognition unit 11 recognizes the road surface environment around the own vehicle on the basis of the detection information obtained by the external environment sensor 4 installed in the own vehicle. The display control unit 17 performs screen display using the HMI device 2 to present, to an occupant of the own vehicle, road surface information indicating the presence of an obstacle on the road surface around the own vehicle on the basis of the road surface environment recognized by the external environment recognition unit 11. The road surface information correction unit 16 corrects the road surface information and invalidates the obstacle. The parking route calculation unit 14 calculates a parking route for parking the own vehicle on the basis of the road surface information corrected by the road surface information correction unit 16. According to this configuration, it is possible to park the own vehicle at a location where parking is possible even when an obstacle is falsely detected.
(2) The external environment sensor 4 includes a sensor capable of two-dimensional detection of the periphery of the own vehicle, such as the camera 41, for example, and a sensor capable of three-dimensional detection of the periphery of the own vehicle, such as the sonar 42, for example. As described in
(3) When the occupant of the own vehicle has performed predetermined operation, for example, operation of selecting “Yes” in the notification window 98 or the alerting window 99, the parking assistance device 1 cancels the prohibition of the correction of the road surface information to the three-dimensional object 63. With this configuration, the correction of the road surface information is possible also for the three-dimensional object 63 in consideration of the possibility of false detection by the sonar 42, making it possible, as a result, to achieve both practicality and safety.
(4) The parking assistance device 1 further includes the storage unit 18 that stores the correction history of the road surface information. With this configuration, it is possible to use history information to automatically correct the road surface information and investigate the cause of the incapacity in a case where the parking assistance is performed at the location where the road surface information was corrected in the past, or where the own vehicle is incapacitated.
(5) When a plurality of obstacles has been detected, the display control unit 17 causes the HMI device 2 to display a road surface information correction screen as illustrated in
The embodiments and the various modifications described above are merely examples, and the present invention is not limited to these examples as long as the features of the invention are not impaired. While various embodiments and modifications have been described above, the present invention is not limited to these examples. Other aspects conceivable within the technical scope of the present invention are also included within the scope of the present invention.
REFERENCE SIGNS LIST
- 1 parking assistance device
- 2 HMI device
- 3 parking switch
- 4 external environment sensor
- 5 driving force control device
- 6 braking force control device
- 7 steering control device
- 8 shift control device
- 11 external environment recognition unit
- 12 parking position search unit
- 13 parking position determination unit
- 14 parking route calculation unit
- 15 parking vehicle control unit
- 16 road surface information correction unit
- 17 display control unit
- 18 storage unit
Claims
1. A parking assistance device comprising:
- an external environment recognition unit that recognizes a road surface environment around a vehicle on the basis of information detected by an external environment sensor installed in the vehicle;
- an information presenting unit that presents, to an occupant of the vehicle, road surface information indicating a presence of an obstacle on a road surface around the vehicle on the basis of the road surface environment recognized by the external environment recognition unit;
- a road surface information correction unit that corrects the road surface information and invalidates the obstacle; and
- a parking route calculation unit that calculates a parking route for parking the vehicle on the basis of the road surface information corrected by the road surface information correction unit.
2. The parking assistance device according to claim 1,
- wherein the external environment sensor includes a first sensor capable of two-dimensional detection around the vehicle, and a second sensor capable of three-dimensional detection around the vehicle,
- a correction of the road surface information by the road surface information correction unit is permitted for the obstacle detected by the first sensor and not detected by the second sensor, and
- the correction of the road surface information by the road surface information correction unit is prohibited for the obstacle detected by the second sensor.
3. The parking assistance device according to claim 2,
- wherein the prohibition of correction of the road surface information is cancelled in a case where predetermined operation is performed by the occupant.
4. The parking assistance device according to claim 1, further comprising a storage unit that stores correction history of the road surface information.
5. The parking assistance device according to claim 1,
- wherein in a case where a plurality of obstacles has been detected, the information presenting unit causes a display device to display a road surface information correction screen listing the plurality of obstacles, and
- the road surface information correction unit corrects the road surface information for the obstacle selected by the occupant on the road surface information correction screen.
Type: Application
Filed: Mar 29, 2018
Publication Date: Apr 2, 2020
Patent Grant number: 10974735
Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD. (Hitachinaka-shi, Ibaraki)
Inventor: Koji TAKAHASHI (Hitachinaka-shi)
Application Number: 16/622,740