Order Processing for Remotely Ordered Goods
A method for fulfilling a plurality of orders for goods at a provider location comprises obtaining an arrival sequence estimate for each of a plurality of users indicating the sequence in which the users are expected to arrive, and organizing completed orders according to the arrival sequence estimate. The arrival sequence estimate may be obtained by ordering users according to their respective radial distances from a target, and may also be used to schedule processing of the orders. Alternatively, arrival estimates for when each of the users is expected to arrive may be used to schedule processing of the orders. A dynamic arrival estimate may be obtained based on an expected travel path toward the destination during a first trip portion comprising travel within a constrained travel path network, and based on radial distance from the destination during a second trip portion subsequent to the first trip portion.
Latest Expose Retail Strategies, Inc. Patents:
This application is a continuation of U.S. patent application Ser. No. 13/746,109 filed on Jan. 21, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/355,132 filed on Jan. 20, 2012, which claims priority to U.S. Provisional Application No. 61/511,965 filed on Jul. 26, 2011. This application also claims priority to Canadian Patent Application No. 2,765,619 filed on Jan. 24, 2012, to European Patent Application No. 12176785.9 filed on Jul. 17, 2012 and to Patent Cooperation Treaty Application No. PCT/CA2012/000644 filed on Jul. 9, 2012. The teachings of each of the foregoing documents are hereby incorporated by reference.
TECHNICAL FIELDThe present disclosure relates to ordering systems for ordering goods, and more particularly to scheduling of order processing for remotely ordered goods and organizing the completed orders. The present disclosure also relates to obtaining dynamic arrival estimates for arrival at a destination.
BACKGROUNDThere are many remote ordering systems available that allow a user to place an order for goods using a networked mobile wireless telecommunication computing device, such as a smartphone. However, these systems do not account for the fact that the travel time and the preparation time may be different, resulting either in loss of quality or the individual having to wait. For example, before leaving work a user could use his or her smartphone to place an online order for food to be picked up from a restaurant, such as a pizzeria or a quick service restaurant, either on his or her lunch break or on the way home. However, in most cases the user will arrive at the restaurant either to find that the food has been ready for some time and is rapidly losing heat and freshness, or else the user will have to wait for the food to be ready, wasting valuable time.
Moreover, if the user arrives at the restaurant during a busy time, such as the lunch or dinner rush, there may be considerable disorganization and disorder. One possible solution is to provide a dedicated position within the restaurant for users picking up remote orders. However, even if a dedicated position is provided, where a large number of users have used their smartphones to place remote food orders and arrive at the restaurant around the same time, the restaurant staff must still match the orders to the respective users, which takes time. Even if the food is ready and fresh when the user arrives, the time taken for the restaurant staff to isolate a particular user's order from a large number of other remotely placed orders can be significant. This tends to defeat the purpose of placing a remote order in advance, and leads to irritation of the user and may also allow the food quality to degrade, even if it happened to have been ready precisely when the user arrived.
SUMMARYA user can use a networked computing device, for example a networked mobile wireless telecommunication computing device such as a smartphone, to identify a suitable location of a provider of goods, view a list of items available from the provider, and generate an order for goods in advance. The completed orders are organized according to the expected order of arrival of the users so when a user arrives, his or her order can be easily pulled and presented. Preferably, in cases where the goods are of a type which degrade fairly rapidly after preparation, processing of the order is also timed so that the order will generally be completed at about the same time as the user arrives.
One method for processing a plurality of orders for goods at a provider location comprises (i) obtaining arrival estimates for when each of a plurality of users is expected to arrive, with each user associated with a respective order, (ii) using the arrival estimates to schedule processing of the orders, (iii) obtaining an arrival sequence estimate for the users indicating a sequence in which the users are expected to arrive, (iv) processing the orders to produce completed orders, and (v) organizing the completed orders according to the arrival sequence estimate.
Another method for processing a plurality of orders for goods at a provider location comprises (i) obtaining an arrival sequence estimate for each of a plurality of users indicating a sequence in which the users are expected to arrive, with each user associated with a respective order, (ii) using the arrival sequence estimate to schedule processing of the orders, (iii) processing the orders to produce completed orders, and (iv) organizing the completed orders according to the arrival sequence estimate.
A method for fulfilling a plurality of orders for goods at a provider location comprises (i) obtaining an arrival sequence estimate for each of a plurality of users indicating a sequence in which the users are expected to arrive, with each user associated with a respective order, and (ii) organizing completed orders according to the arrival sequence estimate.
Preferably, the arrival sequence estimate is continuously updated and the step of organizing completed orders according to the arrival sequence estimate is repeated responsive to a change in the arrival sequence estimate.
Processing the orders to produce completed orders may comprise assembly of components of the orders into the completed orders.
The arrival sequence estimate may be obtained by ordering users according to their respective radial distances from a target. The radial distances may be obtained using location information received from networked mobile wireless telecommunication computing devices carried by the users. The location information may comprise, for example, global positioning system coordinates and/or cellular repeater triangulation coordinates.
In one embodiment, a two-stage process is used to determine an arrival estimate for a travelling target, such as a user travelling to a provider to pick up a remotely placed order for goods. The first stage uses conventional map-based techniques to estimate how long it will take the target to traverse an expected path toward the destination along a series of roads, sidewalks or other constrained paths, for example a user walking, driving or bicycling to a provider location. The second stage estimates how long it will take the target to travel to the destination along a direct linear path, for example a user walking from a parking lot into the provider location.
A computer-implemented method for obtaining a dynamic arrival estimate for arrival at a destination comprises, during at least a first trip portion comprising travel within a constrained travel path network, calculating the dynamic arrival estimate based on an expected travel path toward the destination through the constrained travel path network, and during at least a second trip portion subsequent to the first trip portion, calculating the dynamic arrival estimate based on a radial distance from the destination.
A transition from the first trip portion to the second trip portion may be determined, for example, by detecting a departure from the constrained travel path network or by the dynamic arrival estimate falling below a predetermined threshold.
Data processing systems and computer program products for implementing the above methods are also described.
These and other features will become more apparent from the following description in which reference is made to the appended drawings wherein:
As described and illustrated herein systems, methods and computer program products are provided for scheduling processing at a provider location of an order associated with a user, typically so that completion of processing of the order substantially coincides with arrival of the user at the provider location. These systems, methods and computer program products have particular application in the processing of orders for goods that spoil rapidly, such as in quick service restaurants, although they are not limited to these applications and may also be used, for example, in stores selling groceries or merchandise that is not subject rapid spoilage or degradation. In addition, various embodiments facilitate organization of the completed orders according to the sequence in which the users are expected to arrive, so as to improve the efficiency of order pickup. The approaches described herein may have environmental benefits, for example by reducing the amount of time spent idling in a drive-through line.
Referring first to
At step 102, the method 100 obtains an arrival estimate for when a user associated with the order is expected to arrive at the provider location, and at step 106, the method 100 uses the arrival estimate to schedule processing of the order. Physical processing of the order at the provider location may then proceed according to the scheduling determined at step 106.
As described in greater detail below, an arrival estimate may be obtained by using position information derived from a global positioning system (GPS) navigation system, from an address input manually into a data processing system by a user, from wireless triangulation, from information from a local Internet Service Provider (ISP) or by any other suitable technique.
Embodiments of the method 100 in
Preferably, using the arrival estimate to schedule processing of the order at step 106 comprises using the arrival estimate to schedule processing of the order so that completion of processing of the order is expected to substantially coincide with arrival of the user at the provider location. In one embodiment, the method 100 may determine a processing start time so that arrival of the user is expected to coincide with completion of order processing. For example, where the arrival estimate is a time of day (e.g. 1:47 p.m.) that the user is expected to arrive at the provider location, the method 100 may use the arrival estimate to retrieve a start time for processing the order from a look-up table. The start times in the lookup tables may be based solely on the arrival estimate (time of day), or may be based on the arrival estimate (time of day) and some indication of the size of the order, such as the number of items in the order or the cost of the order. Thus, the lookup table may comprise rows corresponding to times of day (or ranges thereof) and columns corresponding to cost (or ranges thereof) for the order, and the start time may be retrieved from the cell that is in the row corresponding to the arrival estimate and in the column corresponding to the cost of the order.
In one embodiment, where the arrival estimate is a time of day and the order completion estimate is a duration (e.g. a number of minutes), processing of the order may be scheduled by simply subtracting the order completion estimate from the arrival estimate. For example, if the arrival estimate is 1:50 p.m. and the order completion estimate is six minutes, processing of the order could be scheduled to begin at 1:44 p.m. so that completion of order processing is expected to coincide with arrival of the user at the provider location at 1:50 p.m. In this embodiment, the arrival estimate and the order completion estimate are not directly compared to one another, and the arrival estimate and the order completion estimate are not updated.
In other embodiments, using the arrival estimate and the order completion estimate to schedule processing of the order (step 106A) comprises comparing the arrival estimate and the order completion estimate and updating at least one of the arrival estimate and the order completion estimate, such that the then-current arrival estimate and the then-current order completion estimate are compared. In cases where the goods being ordered will perish or degrade rapidly once prepared, such as in a quick service or “fast food” restaurant, it may be important to obtain updates to arrival estimate and/or the order completion estimate to enhance precision of the scheduling. Updating of the arrival estimate may be particularly important in this context, as a user may encounter unexpected delays, such as traffic congestion. If only an initial arrival estimate is used, a food order whose preparation was scheduled so that order completion coincides with the original arrival estimate may in fact be spoiled or degraded when a delayed user actually arrives. Additionally, an initial order completion estimate may become inaccurate if not updated, for example if there are significant changes in volume at a provider location, which may create a backlog or a temporary shortage of some items.
Reference is now made to
At step 202, an order for goods is received. The order will be associated with a provider location where the order is to be processed, as well as being associated with a user who is to pick up the order. For example, the order may specify the provider location by allowing the user to select from a list of provider locations when submitting the order. The list may be based on the user's present location. In some embodiments, the order may be entered into the user's data processing system, such as a home computer or a networked mobile wireless telecommunication computing device such as a smartphone, and the user's data processing system may complete all of the steps of the method 200. In other embodiments, the order may be received at a data processing system associated with the provider, and the method 200 would be executed by the data processing system associated with the provider. A data processing system associated with a provider may be, for example the order processing system for the provider location that is to process the order for goods, or a central order processing system for a plurality of provider locations (e.g. a restaurant chain having a plurality of locations), or a data processing system of a provider aggregator that processes orders for a plurality of different providers, each of which may have one or more provider locations.
At step 204, which corresponds to step 102 of the method 100A in
Map-based navigation technology determines an expected travel path that the user will follow along the various roads and calculates the expected trip duration based on the expected speed on each travel path segment. This approach generally assumes that the trip is complete when an object has arrived at the street address associated with the destination, and therefore generally does not account for time taken to park a vehicle or walk to a provider location. As a result, map-based trip duration estimates may underestimate the total travel time. Where the address used as the destination for a map-based trip duration estimate is imprecise, such as the street address for a large shopping mall, this underestimate may be considerable. Accordingly, arrival estimates generated using map-based navigation technology will preferably be adjusted to account for these additional portions of the trip. These adjustments may be a fixed value, for example assuming that it will take three minutes to park the car and walk to the provider building, or may be generated dynamically, as described in greater detail below.
At step 206, which corresponds to step 104 of the method 100A in
As noted above, in some embodiments a fixed value may be used as the order completion estimate. For example, where the method 200 is to be used in conjunction with a fast food restaurant, the order completion estimate may be set to a constant value based on the length of time for preparing a typical order and which will provide an adequate estimate for most cases. Thus, if in a particular fast food restaurant 90% of orders can be completed in three minutes or less, a constant value of three minutes may be used as the order completion estimate. If the order is completed sooner (e.g. one and a half or two minutes) spoilage will not be an issue (as compared to the three minute estimate), and those cases that take longer (e.g. four or five minutes) are unlikely to keep the user waiting for a substantial period of time.
In other embodiments, the order completion estimate may be generated dynamically. A dynamically generated order completion estimate may be based on the time of day, the number and/or type of items ordered, the current staffing level at the relevant provider location, the current volume of business at the relevant provider location, or some combination of the foregoing as well as other relevant factors.
In some embodiments, orders may be treated as a unit for the purpose of scheduling processing where this will not have a substantial adverse effect on quality. In such embodiments, the order completion estimate may be the longest estimated preparation time of the components contained in the order. For example, if an order is for a hamburger, drink and fries and the estimated preparation time for the hamburger is three minutes while the estimated preparation time for the drink and fries are one minute each, the order completion estimate may be three minutes (since the menu items can be processed in parallel) and scheduling is based on that three minute estimate, with processing of each component beginning at the same time. In other embodiments, orders may be broken down into components, with processing of each component being scheduled separately. In particular, the order completion estimate may comprise a component completion estimate for each component (or group of components) of an order, with processing of individual components (or groups of components) being scheduled separately. For example, in a food order whose components include a well-done steak and an ice cream sundae, it is preferable to begin cooking the steak well before beginning to make the ice cream sundae.
In some embodiments that are particularly well suited to restaurant applications, the estimated preparation time for each menu item can be varied based on volume. For example, the nominal estimated preparation time for a hamburger may be three minutes but might be increased to five minutes during peak hours. This increase can be triggered automatically at the appropriate times, or manually, and may be applied to individual menu items separately or universally to all menu items.
Although
Steps 208 and 210 together correspond to step 106A of the method 100A shown in
Several methodologies may be used to determine whether the arrival estimate and the order completion estimate substantially coincide. In a preferred embodiment, the arrival estimate and the order completion estimate will be considered to substantially coincide when they are within a predetermined threshold from one another, for example one or two minutes. Where both the order completion estimate and the arrival estimate are times of day, or both the order completion estimate and the arrival estimate are time periods (e.g. an estimated processing time and an estimated travel time, respectively), they may be compared directly. Where the arrival estimate and the order completion estimate are in different forms, such as where one is a time of day and the other is a time period, they may be prepared for comparison by converting one to the other. For example, if the arrival estimate is a time period but the order completion estimate is a time of day, the arrival estimate can be converted to a time of day by adding the time period to the current time of day, or the order completion estimate can be converted to a time period by subtracting the current time of day therefrom.
In some instances, a user will be close enough to the provider location that will process the order that it will take longer to process the order than it will for the user to arrive at that provider location. It is therefore preferred that at step 208, the arrival estimate and the order completion estimate are deemed to coincide when comparing the arrival estimate and the order completion estimate indicates that the user associated with the order is expected to arrive at the provider location before the order is expected to be completed. Thus, for example, in response to a determination at step 208 that the estimated processing time for the order is approximately equal to or exceeds the initial estimated travel time, the method 200 would proceed to step 220 and provide a signal to commence processing of the order for goods. This procedure will cause order processing to commence substantially immediately following receipt of the order so as to minimize the amount of time that the user will have to wait. In addition, in such situations the method 200 may notify the user that they are closer to the provider location than the estimated processing time, and may also continue to compare the arrival estimate and the order completion estimate and notify the user when he or she should depart so that his or her arrival will substantially coincide with order completion.
In response to a determination at step 208 that the arrival estimate and the order completion estimate do not substantially coincide, the method 200 proceeds to step 210 and obtains an updated arrival estimate, an updated order completion estimate, or obtains both an updated arrival estimate and an updated order completion estimate.
Step 210A shows updating of the order completion estimate, and step 210B shows updating of the arrival estimate; when both steps 210A and 210B are carried out these steps may be carried out in any order. Either step 210A or step 210B may be omitted in appropriate circumstances. For example, where the arrival estimate and the order completion estimate are both represented as a time of day, step 210B may be omitted and the arrival estimate may be held constant with only the order completion estimate being updated (step 210A), since the order completion estimate will depend on the time at which processing begins. In this situation, updating the order completion estimate at step 210A would comprise updating the start time upon which the order completion estimate is based. In another example, where the arrival estimate and the order completion estimate are both represented as a time period or duration, step 210A may be omitted and the order completion estimate may be held constant, with only the arrival estimate being updated (step 210B), since the time period that is the arrival estimate in this case will generally decrease as time elapses. In this situation, updating the arrival estimate may comprise decrementing the previous arrival estimate based on the amount of time that has elapsed, i.e. counting down. Thus, where the arrival estimate is an estimated travel time, determining the updated estimated travel time may comprise decrementing a most recent previously estimated travel time by an interval substantially equal to the time elapsed since determination of the most recent previously estimated travel time. Alternatively, updating the arrival estimate may comprise executing a new calculation of the arrival estimate. In such an embodiment, where the arrival estimate is an estimated travel time, obtaining the updated estimated travel time may comprise, in the case of a networked mobile wireless telecommunication computing device, updating the current location, calculating the updated estimated travel time from the updated location, the provider location and an updated travel route between the updated location and the provider location, for example from an onboard GPS system. Where the arrival estimate is an estimated travel time and the method 200 is being executed by a data processing system associated with a provider, updating the estimated travel time by the data processing system may comprise the data processing system querying a mobile wireless telecommunication computing device associated with the user, receiving, in response to the query, an identification of an updated location, and then the data processing system calculating the updated estimated travel time from the updated location, the provider location and an updated travel route between the updated location and the provider location. The updated travel route may be obtained from the mobile wireless telecommunication computing device or determined by the data processing system associated with the provider. The updated travel route will typically be a projected travel route based on the current location of the user, since the actual travel route cannot be known with certainty since it has not yet been taken.
The updated order completion estimate determined at step 210A may be obtained in the same way as the initial order completion estimate determined at step 206. For example, where the order completion estimate is obtained from a lookup table based on a given start time for the order, updating the order completion estimate may comprise accessing the same lookup table again using the then-current start time. Similarly, updating of the order completion estimate at step 210A may comprise dynamically recalculating the order completion estimate in embodiments where the order completion estimate is generated dynamically, such as where the order completion estimate may change due to the volume of business at a particular provider location, for example. Alternatively, the updated order completion estimate at step 210A may be determined in a different way than the initial order completion estimate obtained at step 206.
Similarly, the updated arrival estimate determined at step 210B may be obtained in the same way as the initial arrival estimate determined at step 204, such as by obtaining a dynamically recalculated arrival estimate. In one embodiment, a dynamically updated location for the user, such as from a GPS-equipped smartphone, may be used to generate an updated arrival estimate in the same way that the original arrival estimate was generated. For example, the user's updated location may indicate that the user has deviated from the anticipated route upon which the previous arrival estimate was based. In other embodiments, the updated arrival estimate determined at step 210B may be obtained in a different way than the initial arrival estimate obtained at step 204. For example, the initial arrival estimate obtained at step 204 may be an estimated travel time dynamically calculated, such as from a GPS or manually entered location, and may be updated simply by decrementing according to elapsed time. Such an approach may be used, for example, if the order is transmitted from a desktop computer and is not associated with a networked mobile wireless telecommunication computing device.
Alternatively, step 210B may be performed in more than one way, such as by generating a dynamically updated arrival estimate based on new GPS location data on every A update while decrementing the previous estimate for the other updates, or decrementing the arrival estimates between updates thereof.
Optionally, a delay may be interposed between steps 208 and 210 to limit the use of processing resources; that is, the order completion estimate and/or the arrival estimate would be updated periodically at intervals rather than constantly. Typically, mapping applications on networked mobile wireless telecommunication computing devices will check for position updates at set intervals; this consumes battery life and may also require data usage and thereby increase user costs. As such, in one preferred embodiment the frequency with which the arrival estimate is updated may be varied based on the arrival estimate itself—the closer the arrival estimate is to the order completion estimate, the more frequently the arrival estimate will be updated.
After updating either the order completion estimate or the arrival estimate or both at step 210, the method 200 returns to step 208 to again compare the order completion estimate and the arrival estimate to see if they substantially coincide. Thus, the second and subsequent iterations of step 208 compare the then-current arrival estimate to the then-current order completion estimate, with at least one, and possibly both, of the then-current arrival estimate and order completion estimate being an updated arrival estimate and order completion estimate, respectively. Alternatively, in the second and subsequent iterations of step 208 the then-current arrival estimate may be the initial arrival estimate with only the order completion estimate being updated, or the then-current order completion estimate may be the initial order completion estimate, with only the arrival estimate being updated.
In the method 200A shown in
If the method 200A determines at step 214 that a delay instruction has been received, the method then proceeds to step 216 to check whether the delay has elapsed. If the method 200A determines at step 216 that the delay has elapsed, the method 200A returns to step 212 to send a further notification to the user and give the user an opportunity to provide a further delay instruction. If the method 200A determines at step 216 that the delay has not yet elapsed, then the method 200A proceeds to step 218 to check whether a command to cancel the delay instruction has been received. Responsive to a determination at step 218 that no delay cancel command has been received, the method 200 returns to step 216 to again check whether the delay has elapsed. If the method 200A determines at step 218 that a delay cancel command has been received, then the method 200A proceeds to step 220 and provides the signal to commence order processing.
In embodiments in which a delay instruction can be provided, the order completion estimate may include a buffer time to account for the time associated with steps 212 to 218.
While
The smartphone 310 is equipped with a locating system, which in the illustrated embodiment is a global positioning system (“GPS”) receiver 340 that receives signals 344 from orbiting satellites 342 and, either directly or in cooperation with a processor of the smartphone 310, determines the position of the smartphone 10. For simplicity of illustration only a single satellite 342 is shown, in operation a plurality of satellites 342 are used in a global positioning system, as is known in the art.
In the embodiment shown in
Preferably, the remote ordering application 350 provides for voice control so that it can be used by a driver in a motor vehicle without the driver having to use his or her hands to control the remote ordering application 350, and uses text-to-voice or similar functionality to enable orders to be audibly read back to the user.
The optional payment support 354 is used by the remote ordering application 350 to facilitate payment for an order for goods generated by the remote ordering application 350. In one embodiment, the payment support 354 enables a user to enter payment information, such as a credit card number or a prepaid value card number, at the time an order is generated; in another embodiment the payment support 354 stores payment information for reuse. In a further embodiment, the payment support 354 links to an external payment service 368, such as a credit card processor or that provided by PayPal, having an address at 2211 North First Street, San Jose, Calif. 95131, to facilitate payment for an order. Such linking may be direct, or may be via a separate application program provided by the external payment service 368 and stored on the smartphone 310. In another embodiment, a data processing system associated with the provider 360 may store payment information. For example, a person may establish a user account with a provider 360, which account may include identifying information for the person as well as enabling information for one or more payment methods, such as a credit card, bank account or prepaid value storage, that can be used to pay for goods either upon receipt of an order or upon collection of the goods by a user. In such embodiments, the payment support 354 may be used to select among multiple payment methods.
In one embodiment, payment processing is handled by first pre-authorizing a credit card transaction at the time the order 372 is confirmed, which pre-authorization may be initiated, for example, by the user selecting an “I'm on my way” button, and completed once the user has collected the goods and the provider has marked the order as “complete” on their side, in each case as described in greater detail below. This method of payment processing is advantageous because it avoids certain complications that would arise if the payment transaction were completed before the goods were collected, such as chargebacks in the event that the user is dissatisfied.
In other embodiments, the remote ordering application 350 may not include any payment support 354 and payment may be made in any conventional manner when the user collects the goods at the provider location 366. Because the payment support 354 and the use of the external payment service 368 is optional, the payment support 354 as well as the external payment service 368 and the communications 368P, 368C therewith are shown in dashed lines in
In the embodiment illustrated in
In operation, in the embodiment shown in
The smartphone 310 then obtains an order completion estimate for the order 372 (step 206 of the method 200 shown in
After the order 372 has been generated, at the appropriate time, as explained in greater detail below, the order 372 is transmitted by the smartphone 310 through the network 320 to the order processing system 362 operated by the provider 360. Where the order 372 includes payment information 376, the order processing system 362 processes the payment information 376 and, responsive to successful processing of the payment information 376, transmits an order receipt 378 to the smartphone 310. Where the payment information 376 is a credit card number and associated information, the order processing system 362 can process this information in a known manner, and the order receipt 378 may be transmitted to the smartphone 310 using the remote ordering application 350, via e-mail to an e-mail account associated with the smartphone 310, by text message to a phone number associated with the smartphone, or by other suitable technique. Where the payment information 376 indicates that payment instructions 368P were sent to an external payment service 368, the order processing system will receive and verify payment confirmation 368C from the external payment service 368 and, once payment is verified, transmit the order receipt 378 via the network either directly to the smartphone 310 as shown in
After successful processing of the payment information 376, or in a permitted case where no payment information is provided, the order processing system 362 processes the order 372 and routes it for physical processing and fulfillment 364 at a physical location 366 (see
In the exemplary arrangement shown in
An alternate embodiment of the arrangement in
In embodiments such as the one shown in
Optionally, determination and monitoring of the arrival estimate may be deferred for some time after receiving the order 372 in the smartphone 310. In one embodiment, the user may enter the order 372 into the smartphone 310, but the smartphone 310 would not transmit the order 372 until the user selects an “I'm on my way” or similar button on the smartphone 310. For example, the user may place a dinner order in the early afternoon while still at work, several hours before he or she plans to leave.
Optionally, the smartphone 310 provides a notification 371 (step 212 of the method 200A in
Reference is now made to
In the embodiment shown in
Similarly to the embodiment described in respect of
The order processing system 362 then executes step 208 of the method 200/200A in
If the order processing system 362 determines that the arrival estimate and the order completion estimate do not substantially coincide, then the order processing system 362 will update one or both of the order completion estimate (step 210 of the method 200/200A in
Updating the arrival estimate by the order processing system 362 may comprise receiving updated location information 396 from the smartphone 310, either in response to a query from the order processing system 362 or with the location information 396 being sent automatically, such as periodically, from the smartphone 310. In such embodiments, the updated location information 396 may comprise an updated arrival estimate calculated by the GPS receiver 340 or other locating system, in which case step 210B of the method 200/200A in
In one embodiment of the arrangement shown in
Optionally, in a manner similar to the embodiments shown in
In certain other embodiments, the order 372 may be sent from a different networked computing device than the user's networked mobile wireless telecommunication computing device, such as a computer's home computer or office computer. In such embodiments, the user's networked mobile wireless telecommunication computing device would still provide either a signal 373 to commence processing, or location information 396 to enable the order processing system 362 to determine when to commence processing. For example, a user could use his or her office computer to submit the order 372 that he or she intends to pick up on the way home from work. In such embodiments, the order may be prepared and sent using a web page operated by the provider 360.
The arrangements shown in
Linking can also be used to provide for an approvals process, for example by providing a master account with one or more sub-accounts linked to the master account. Generally, the master account is associated with an individual who is paying for the goods. For example, a minor child who has a smartphone or other suitable device could be given a sub-account under his or her parents' master account. On her lunch break at school, the minor child may use the remote ordering application 350 to place an order at a quick service restaurant near her school. This would trigger an alert on one or both of her parents' smartphones, allowing them to see what she has ordered and approve or reject it. The remote ordering application 350 would not allow the order 372 or the signal 373 to be sent so as to initiate order processing unless the order was approved by a master account holder. The master account could include other features such as spend tracking and/or tracking the location of the minor child.
Reference is now made to
As the user 370, vehicle 380 and smartphone 310 travel toward the provider location 366, the estimated travel time is updated, continuously or periodically, and compared to the estimated processing time for the order 372 by the smartphone 310. When the user 370, vehicle 380 and smartphone 310 are a second distance D2 from the provider location 366, which is less than the distance D1, the estimated travel time remaining to arrive at the provider location 366 is approximately equal to the estimated processing time for the order 372; that is, the arrival estimate and the order completion estimate substantially coincide. The remote ordering application 350 then transmits the order 372 to the order processing system 362, via the network 320. The order processing system 362 then processes the payment information 376 and sends the order receipt 378 and also causes physical processing and fulfillment 364 of the order 372 at the appropriate provider location 366 to commence.
In one embodiment, handling of a situation where the smartphone 310 becomes unable to determine its location, for example because of a failure of the GPS receiver 340, may depend on whether the order processing has commenced. If order processing has not started (or the signal to commence processing has not been transmitted), then an error message is generated, which may suspend or cancel the order, or give the user the option to continue with the order despite the fact that order completion may not coincide with his or her arrival. If the user chooses to proceed, then the smartphone 310 or order processing system 362 may use the most recent arrival estimate and decrement from it as time elapses (e.g. if the last arrival estimate was seven minutes, the system will count down from seven minutes). On the other hand, if order processing has already commenced (or the signal to commence processing has been transmitted), then the smartphone 310 or order processing system 362 will simply use the most recent arrival estimate. Thus, decrementing may also be used as a “fallback” procedure for updating the arrival estimate in the case where dynamic recalculation is the primary procedure but such dynamic recalculation fails.
Because processing of the order 372 is delayed until receipt of a location-triggered communication sent when the estimated processing time for the order 372 is approximately equal to the estimated travel time to the provider location 366, the user 370 will generally arrive at the provider location at about the same time as physical processing and fulfillment 364 of the order 372 is completed. As a result, in most circumstances, when the user 370 arrives at the provider location 366, physical processing and fulfillment 364 of the order 372 will either be about to be completed, or have just been completed, so that there is very little waiting by the user 370 for the goods or by the goods for the user 370. This is particularly important where the quality of the goods deteriorates quickly over time, such as with restaurant meals, and can also reduce the amount of time that a user waits in line, as compared to the case where the user places the order upon arrival at the provider location. As such, although these methods are not limited to these establishments, certain systems, methods and computer program products described herein have particular application in respect of quick service or “fast food” type restaurants and coffee and donut shops. For example, a remote order can be placed in advance as described above, specifying a drive through pick-up, and the user could simply drive up to the window, present the order receipt 378 and pick up the order, rather than having to drive up, stop to order, stop to pay and then stop and wait for the order to be assembled. Where the order identifier 3781 for the order receipt 378 comprises a bar code or a QR code, the user could present the order receipt 378 by presenting the bar code or QR code on the display 312 of the smartphone 310, to be scanned by a suitable scanning device at the provider location 366. This enables the provider location 366 to ensure that the right orders go to the right users.
The provision of a notification 371 and the ability of a user to provide a delay instruction 375 allows for flexibility to adapt to unexpected events. For example, a user may find that he or she is in heavier than expected traffic such that the estimated travel time to the provider location 366 will be inaccurate, or may decide to do an errand on the way to the provider location, and can use the delay instruction 375.
In one exemplary embodiment, a user who regularly visits a coffee shop for morning coffee on the way to work would use the remote ordering application 350 to generate their order 372 before leaving home, and as the user gets close enough to the coffee shop, the order (or signal) would be sent and payment executed (or pre-approved) so that all the user would have to do is pick up the order, thereby circumventing the line. The remote ordering application 350, or a web site of the provider 360 accessed from a desktop computer 316, can enable creation of a “regular” order, such as the daily coffee order described above, which would be automatically initiated when the user gets close enough to the relevant provider unless cancelled by the user. For example, when the user first activates the smartphone 310 on a given day, the remote ordering application 350 can remind the user of the “regular” order and present the user with the option to cancel it for that day. Such a “regular” order can be set to operate only on certain days, such as weekdays for the coffee shop example described above.
A “regular” order as described above can be created manually by a user, or automatically by a remote ordering application 350 based on tracking or previous orders. For example, where a user demonstrates a consistent pattern of ordering coffee from a particular location on weekday mornings for pickup around 8:00, for example over a period of one or two weeks, the remote ordering application 350 may automatically generate a “regular” order and provide a prompt at 6:30 such as “I have noticed you order coffee about this time—shall I order it for you?”
In the restaurant context, the methods, systems and computer program products described herein are not limited to take-out orders, and in some embodiments a “dine in” feature may be provided. For example, where a group of friends are going to a restaurant after work, one of them can order drinks and/or appetizers, the preparation of which could then be scheduled so that they are ready when the group arrives. In addition, where two or more people who are going to a restaurant from different locations one of them could place an order using his or her smartphone and link it to the other smartphone(s), or each could place his or her own orders and the orders could then be linked. Arrival estimates would be obtained and updated for each person, and order processing would be scheduled to substantially coincide with arrival of the last of them to arrive. Another application of a “dine in” feature is for meals after organized children's sporting events. It is not uncommon for a coach to take a children's sports team to a quick service restaurant after a game, often overwhelming the establishment. As a result, the turnaround time can be quite long, whereas with the methods, systems and computer program products described herein, the order can be ready when the team arrives.
It is also contemplated that in certain embodiments, one “master” networked mobile wireless telecommunication computing device could aggregate orders entered onto a plurality of other networked devices into a “master” order. Such embodiments could be used, for example, to enable a single order to be placed in advance for the passengers of a long-distance coach bus.
The methods, systems and computer program products described herein are not limited to restaurant applications, and may also be used for other retailers, such as a beer or liquor retailer. Certain of the methods, systems and computer program products described herein, although not limited thereto, may have particular application in respect of a grocery store, where an order may contain certain items that require refrigeration and may degrade or perish if the order is left out for too long after being assembled, while also containing other items that could be degraded if placed in refrigeration. To facilitate such applications, a dedicated grocery pick up facility may be provided. By removing many of the aspects associated with conventional grocery shopping, such as wide aisles, large footprint product placement, large open produce sections, cash registers and the like, a condensed facility dedicated to picking and order pickup can be provided that is substantially smaller than a conventional grocery store carrying the same product range. Such dedicated facilities may be provided as standalone locations, or as adjuncts to existing grocery stores.
In the exemplary arrangement shown in
By aggregating a plurality of providers 360A, 360B . . . 360n the provider aggregator 390 can enable a user to place orders with one or more of a plurality of providers 360A, 360B . . . 360n using a single interface, such as a single web site accessed from a desktop computer 316 or a single remote ordering application 350, which will typically include a plurality of item lists 352A . . . 352n, one for each provider 360A, 360B . . . 360n. For example, where the providers 360A, 360B . . . 360n are restaurants or restaurant chains, the remote ordering application 350 could present a list of restaurants or restaurant locations within a chain and, responsive to one of the restaurants being selected, then present the item list 352A . . . 352n, typically a form of menu, for that restaurant or location, enabling a user to generate the order 372. At the appropriate time, the order 372 is transmitted through the network 320 to the order processing system 392 of the provider aggregator 390 and the payment information 376 processed, and the order 372, or at least the identification 374 of the goods ordered, is routed to the appropriate provider 360A, 360B . . . 360n for physical processing and fulfillment, typically via the order processing system of the respective provider.
Payment arrangements for the provider aggregator 390 are similar to those for the case of an individual provider 360, and may provide for processing of payments by the provider aggregator 390, either on an order-by-order basis or via a pre-established user account, or via an external payment service 368. In such embodiments, the provider aggregator 390 will typically have an arrangement by which the providers 360A, 360B . . . 360n receive the payments processed by the provider aggregator, possibly with a deduction of a service charge by the provider aggregator 390. Alternatively, a user may make payment directly to the provider 360, for example on an order-by-order basis, through a user account established with that provider, or when picking up the goods.
As with the embodiment illustrated in
The arrangements shown in
Optionally, where the order 372 was sent ahead of time, instead of automatically transmitting the signal 373 to commence processing based on a detected location, a user may manually trigger the signal 373. For example, a user who has previously submitted an order 372 could manually use his or her smartphone 310 or desktop computer 316 to send the signal 373 just before he or she leaves to pick up the ordered goods. This arrangement would have particular application to situations where rapid spoilage or degradation of the goods being prepared is unlikely to be an issue, such as general merchandise stores, video rental stores, jewelry stores, liquor and beer stores, and grocery stores (depending on the items ordered). Also optionally, a remote ordering application may permit a user to send an indication (not shown) that they are ready to pick up a previously submitted order. In response to such an indication, the order processing system 362, 392 of the provider 360 or provider aggregator 390 could determine and transmit an order completion estimate to the remote ordering application indicating when processing of the order will be complete. The order completion estimate may be based on current demand, staffing and the like at the provider location. The user could then use the remote ordering application to either confirm that he or she will attend at the provider location, or request that the order processing system 362, 392 send a notification either when the order processing is complete or when the location information from the user's networked mobile wireless telecommunication computing device indicates that the user's travel time is approximately equal to the order processing time.
Referring now to
At step 602, the method 600 receives a user selection comprising at least one item selected from a list of items; this is a particular embodiment of step 202 of the method 200 shown in
At step 604, the method 600 determines an estimated processing time for the user selection; this is a particular embodiment of step 206 of the method 200 shown in
At step 606, the method 600 obtains location information from a locating system for the mobile wireless telecommunication computing device. Where the method 600 is executed by a mobile wireless telecommunication computing device, step 606 involves communication between the remote ordering application 350 and the locating system for the mobile wireless telecommunication computing device, such as the GPS receiver 340 in the case of the smartphone 310, possibly with the cooperation of a navigation application. Where the method 600 is executed by the order processing system of either a provider or a provider aggregator, the location information will typically be sent by the mobile wireless telecommunication computing device to the order processing system. The location information may comprise an identification of the user's location, which is associated with the order for goods, and may be obtained by the order processing system querying the mobile wireless telecommunication computing and receiving the identification of the initial location from the mobile wireless telecommunication computing device in response to the query.
At step 608, the method 600 uses the location information to determine the estimated travel time for further travel to the selected provider location of the provider associated with the list of items from which the selection was received. The algorithm may incorporate information about a planned travel route to enhance the accuracy of the estimated travel time. Various algorithms for determining estimated travel time are known in the field of GPS navigation and hence are within the capability of one skilled in the art, now informed by the herein disclosure.
Steps 606 and 608 together comprise a particular embodiment of step 204 of the method 200 shown in
At step 610, the method 600 compares the estimated processing time to the estimated travel time, and determines whether the difference between the estimated processing time and the estimated travel time satisfies a threshold, generally indicating that the estimated processing time and the estimated travel time are at least approximately equal. Step 610 is a particular implementation of step 208 of the method 200 shown in
If the method 600 determines that the difference between the estimated processing time and the estimated travel time does not satisfy the threshold (a “no” at step 610), the method 600 returns to step 606 to obtain updated location information. The return from step 610 to step 606 to obtain new location information, and then using the new location information to determine a new estimated travel time at step 608, is a particular embodiment of step 210B of the method 200 shown in
If the method 600 determines that the difference between the estimated processing time and the estimated travel time satisfies the threshold (a “yes” at step 610), the method 600 proceeds to step 620. At step 620, in response to the determination at step 610 that the difference between the estimated processing time and the estimated travel time satisfies the threshold, the method 600 transmits a communication to commence processing of an order comprising the user selection. Where the method 600 is executed by a mobile wireless telecommunication computing device such as the smartphone 310, step 620 may comprise transmitting the order 372, including the payment information 354, to the order processing system 362, 392 of the provider 360 or provider aggregator 390, in which case the signal to commence processing is embodied in the order 372. Alternatively, where order 372 was sent in advance, the signal to commence processing would be a signal 373 separate from but associated with the order 372. Where the method 600 is executed by the order processing system of a provider aggregator, the signal to commence processing of the order would be sent to the order processing system of the relevant provider, or possibly directly to the relevant provider location, and where the method 600 is executed by the provider, the signal would be sent to the relevant provider location, or where the provider comprises a single location, may be a signal to alert the staff to begin processing the order. The signal may comprise the order 372 itself or, if the order 372 was sent by the relevant processing system in advance, a signal separate from but associated with the order 372 may be sent. Step 620 corresponds to step 220 of the method 200 shown in
Continuing to refer to
Reference is now made to
At step 702, which is a particular embodiment of step 202 of the method 200 shown in
At step 704, in a particular embodiment of step 206 of the method 200 shown in
At step 706, which is a particular embodiment of step 204 of the method 200 shown in
An order processing system of a provider or provider aggregator executing the method 700 can execute step 706 either by querying the user's mobile wireless telecommunication device to obtain an identification of the user's location and using that location information to execute its own calculation of the estimated arrival time, by causing the user's mobile wireless telecommunication device to determine an estimated arrival time and send it to the order processing system, or by causing the user's mobile wireless telecommunication device to determine and send to the order processing system an estimated travel time, which the order processing system can add to the current time to obtain the estimated arrival time.
At step 708, which is a particular implementation of step 208 of the method 200 shown in
In response to a “yes” at step 706, the method 700 proceeds to step 720, at which the method 700 transmits a communication to commence processing of an order comprising the user selection. Step 720 corresponds to step 220 of the method 200 shown in
In response to a “no” determination at step 708, indicating that the difference between the estimated processing completion time and the estimated arrival time does not satisfy the threshold, the method 700 returns to step 706 to obtain an updated estimated arrival time; the return from step 708 to step 706 is a particular embodiment of step 210B of the method 200 shown in
As the number of remote orders increases, it will become more difficult to match orders to arriving users if the sequence of arrival of the users is unknown. The result is that arriving users who have placed remote orders may have to wait while staff attempt to locate their order amongst all the other orders associated with other users. If multiple users arrive around the same time, the users may form a queue. This can lead to frustration on the user's part, and if the delay is considerable, can lead to a degradation in the quality of the goods in the order, defeating the purpose of scheduling processing so that order completion coincides with user arrival. Moreover, the greater the number of remote orders, the worse the problem gets, especially in a high volume context like a quick service restaurant. Accordingly, in addition to scheduling the processing of an order for goods so that completion of the order will substantially coincide with the arrival of the user, the present disclosure also describes systems, methods and computer program products for organizing the presentation of those orders to the users according to the sequence in which the users are expected to arrive, which is not necessarily the same order in which processing is triggered. Knowing the sequence in which the users are expected to arrive allows staff (or automated systems) at the provider location to have the orders sorted in a manner corresponding to that sequence so that they can be easily retrieved and presented as the users arrive.
At step 1102, the method 1100 obtains arrival estimates for when the users associated with the orders are expected to arrive at the provider location, and at step 1106, the method 1100 uses the arrival estimate to schedule processing of the orders. Physical processing of the order at the provider location may then proceed according to the scheduling determined at step 1106, and at step 1130, the method 1100 processes the orders according to the schedule to produce completed orders. At step 1132 the method 1100 obtains an arrival sequence estimate for the users indicating a sequence in which the users are expected to arrive and, at step 1134 the method 1100 organizes the completed orders according to the arrival sequence estimate. Steps 1130 and 1132 may be performed in any order or substantially simultaneously. Preferably, the arrival sequence estimate is continuously updated and step 1134 is repeated responsive to a change in the arrival sequence estimate. For example, the expected sequence of current users may change, or a new user may be added to the arrival sequence estimate. Thus, at optional step 1134, the method 1100 checks whether there are more completed orders that have not yet been transferred to a user and, as long as some such orders remain, the method 1100 returns to step 1132 to obtain an updated arrival sequence estimate. Where the arrival sequence estimate determined at step 1132 is unchanged, step 1134 may be a trivial step of maintaining the previous organization; where the arrival sequence estimate determined at step 1132 has changed, step 1134 will comprise organizing the completed orders according to the new arrival sequence estimate.
In one embodiment, the arrival sequence estimate may be derived from the arrival estimates for the individual users. For example, where the arrival estimates are estimated times of arrival, the arrival sequence estimate may be obtained by ordering the estimated times of arrival in time sequence. Similarly, where the arrival estimates are estimated time periods until arrival, the arrival sequence estimate may be obtained by ranking the estimated time periods from lowest to highest.
Although the arrival sequence estimate may be derived from the arrival estimates for the individual users, other approaches may produce a more accurate arrival sequence estimate, and this increased accuracy may be advantageous in certain high volume applications, such as quick service restaurants. Where an object (including a human being) is travelling through a constrained travel path network, calculating an estimated time of arrival or estimated time until arrival is usually based on predicting the object's path through the network. A constrained travel path network is one where travel is limited (constrained) to certain predefined path segments. A network of roads through a city is an example of a constrained path travel network, since automobiles are effectively confined to the roads when travelling between non-adjacent locations—the automobiles cannot (or at least should not) drive through houses or other structures to get from one location to another. A location tracking system that predicts an estimated time of arrival or estimated time until arrival will typically include one or more maps containing information about the layout of the roads, that is, the travel path segments, and expected speeds of travel on those travel path segments. The location tracking system will use that information, together with the predicted path of the target (and possibly information about its actual speed) to estimate how long it will take for the object to reach the goal location. While this approach can produce highly accurate estimates about when an object such as an automobile or other road vehicle will arrive in the general vicinity of the goal location, for example the street location in front of a restaurant, the predictive power is greatly diminished once the object leaves the constrained travel path network. For example, when a vehicle pulls off the road into the parking lot, the vehicle's path toward the goal location is no longer constrained. If the parking lot near the restaurant is empty, the vehicle may cut diagonally across the rows of parking spots, whereas if the parking lot is full, the vehicle may move parallel to those rows. Moreover, once the driver exits the vehicle, he or she may follow a virtually limitless number of paths toward the goal location, for example deviating from an otherwise direct path toward the goal location to pet a small, cute dog. Thus, during the final portion of the journey toward a goal location, map-based methodologies encounter significant limitations on accuracy because they cannot effectively predict the path the object will take.
Accordingly, in one preferred embodiment the arrival sequence estimate may be obtained by ordering the users according to their respective radial distances from a target.
The arrival sequence estimate may be based solely on the radial distances of the users from the target, as shown in
The radial distances D1, D2, D3 may be obtained in known manner using location information received from networked mobile wireless telecommunication computing devices carried by the users. For example, a remote ordering application on a networked mobile wireless telecommunication computing device may use native functionality of that device to obtain the location information by interfacing with a location module on the device through the operating system of the device. The velocities Vi, V2, V3 may similarly be determined in known manner, by computing the change in position over time. For example, in the embodiments shown in
The location information may be obtained using known techniques, and may comprise, for example, global positioning system coordinates, cellular repeater triangulation coordinates, Wi-Fi triangulation coordinates, or coordinates derived from a combination of these. In particular, it is not intended that the present disclosure be confined to presently existing methods for determining location information, and the use of technologies developed subsequent to the filing hereof are expressly contemplated.
While a combination of radial distance from a target and velocity may be used to obtain a dynamic arrival estimate (either estimated time of arrival or estimated time until arrival), the predictive value will be relatively high only where travel is relatively unconstrained, for example through a parking lot. For travel through a constrained travel path network such as a road system, however, the predictive power of a dynamic arrival estimate based on radial distance and velocity will be poor because it is based on the unrealistic assumption of a direct travel path, rather than a travel path that is constrained by the requirement to traverse the travel path segments. In contrast, a map-based dynamic arrival estimate will provide a good prediction for travel through a constrained travel path network such as a road system, but is of limited value for travel that is substantially unconstrained. An improved dynamic travel estimate can be obtained by combining the two techniques such that a map-based approach is used for travel through a constrained travel path network while an approach based on radial distance is used for relatively unconstrained travel.
As noted above, map-based navigation technology may underestimate a trip duration because it generally assumes that a trip is complete when an object has arrived at the street address associated with the destination, and it is therefore preferable for an arrival estimate generated in this way to be adjusted to account for the final portion of a trip, such as parking and walking to the pick-up location. For example, if the provider location is part of a ten acre shopping mall, two users may arrive at the mall simultaneously but at different entrances that are a kilometer apart and are located at substantially different distances from the provider location. One exemplary method for generating an arrival estimate that adjusts for these types of factors will now be described.
Reference is now made to
At step 1302, during a first trip portion comprising travel within a constrained travel path network, the method 1300 calculates the arrival estimate based on an expected travel path of the object toward the destination through the constrained travel path network. At step 1304, the method 1300 checks for a transition from the first portion of the trip to a second portion of the trip; the second trip portion is subsequent to the first trip portion. Typically, the second portion of the trip is one in which travel is expected to be substantially unconstrained. In one embodiment, transition from the first trip portion to the second trip portion is determined by detecting a departure from the constrained travel path network. For example, a map-based tracking system may detect that a user has left the roadway and entered a parking lot. Alternatively, transition from the first trip portion to the second trip portion may be determined by the dynamic arrival estimate falling below a predetermined threshold. If the method determines at step 1304 that transition from the first trip portion to the second trip portion has not yet occurred, the method 1300 returns to step 1302 to recalculate the arrival estimate. Responsive to a determination at step 1304 that transition from the first trip portion to the second trip portion has occurred, the method 1300 proceeds to step 1306.
At step 1306, during the second trip portion, the method 1300 calculates the arrival estimate based on the radial distance of the object from the destination. As noted above, the calculation may be based solely on radial distance, or may incorporate the velocity of the object as well as other factors.
At step 1308, the method 1300 checks whether the object has arrived at the destination. This check may be carried out by comparing the detected location of the object to the location of the destination and, where the detected location of the object matches the location of the destination (possibly within a margin of error to account for imprecision in the detected location or other factors). Responsive to a determination at step 1308 that the object has not arrived at the destination, the method 1300 returns to step 1306 to recalculate the arrival estimate based on the radial distance of the object from the location. Responsive to a determination at step 1308 that the object has arrived at the destination, the method 1300 ends.
Since the arrival estimate is continuously or periodically recalculated (at steps 1302 and 1306), the arrival estimate is a dynamic arrival estimate. Step 1306 adjusts the arrival estimate generated at step 1302.
In the embodiment shown in
Having an arrival sequence estimate for the sequence in which the users are expected to arrive allows the completed orders for goods to be organized for easy presentation. For example, the orders for goods may be arranged in a queue in which the next order in the queue corresponds to the user who is expected to arrive next. This can provide considerably improved efficiency.
It is also contemplated that in certain circumstances, it may be advantageous to schedule order processing based solely on an arrival sequence estimate, without use of an arrival estimate for when a user is expected to arrive. For example, toys are generally nonperishable and do not physically degrade when pulled from shelves to fill an order. As such, it would not be particularly disadvantageous if a remotely-placed order for toys were ready well before the user arrived to pick up that order. In such circumstances, scheduling processing of the order according to an arrival sequence estimate (e.g. the order for which the user is expected to arrive next is processed next) may be suitable.
In a preferred embodiment, the arrival sequence estimate is continuously updated and step 1408 will be repeated if the arrival sequence estimate changes. Accordingly, at optional step 1410, the method 1400 checks whether there are more completed orders that have not yet been picked up or otherwise disposed of. Where step 1410 determines that there are still some such orders, the method 1400 proceeds to optional step 1412 to obtain an updated arrival sequence estimate, and then returns to step 1408 to organize the order according to the updated arrival sequence estimate. If the updated arrival sequence estimate is the same as the initial arrival sequence estimate, step 1408 may consist of merely maintaining the previous organization; if the arrival sequence estimate changes, step 1408 comprises organizing the completed orders according to the new arrival sequence estimate. Optionally, instead of returning to step 1408 after optional step 1412, the method 1400 may return to step 1404 update the scheduling of order processing.
Steps 1402, 1404, 1410 and 1412 will generally be implemented by a processor of a computer system, while steps 1406 and 1408 may be implemented either by an automated processing system or by one or more human individuals, or a combination thereof.
In some instances, little or no physical processing is required in order to fulfill an order for goods. Picking up a parcel at the post office is an example of this, as there is no physical processing of the parcel itself—when a user arrives to collect a parcel, it is merely a matter of finding the parcel and handing it to the user (as well as having the user present identification, sign for the parcel, etc.). However, time may be consumed in finding the right parcel while the user waits at the counter, since the post office staff did not know when the user was coming. If the post office staff knew the sequence in which users were coming to collect parcels, the staff could organize those parcels according to that sequence, simplifying the process considerably. The same approach could be applied to the storage and retrieval of luggage by a hotel concierge, as well as a variety of other contexts.
Certain aspects of operation of an exemplary remote ordering application, such as the exemplary remote ordering application 350, will now be described by reference to
Selecting the “New Orders” icon 1504, either on the main landing page in
A horizontal navigation region 1538 is provided at the bottom of many of the pages, as shown in
Selecting the “Favorites” icon 1506, either on the main landing page in
Selecting the “All Orders” icon 1508, either on the main landing page in
In
By selecting one of the menu item entries 1566, a user can access a menu item detail page for that menu item, as shown in
The “I'm on my way” button 1583 is used when the user who placed the order will be picking it up and will, depending on the configuration, cause the remote ordering application to perform one of a number of sets of actions. In one embodiment, selecting the “I'm on my way” button 1583 may cause the remote ordering application to store the order and begin monitoring the location of the networked mobile wireless telecommunication computing device so that the order can be transmitted to an associated order processing system at the appropriate time. In another embodiment, selecting the “I'm on my way” button 1583 may cause the remote ordering application to transmit the order to an associated order processing system and begin monitoring the location of the networked mobile wireless telecommunication computing device so that a signal to commence processing can, when appropriate, be transmitted to the order processing system. In a further embodiment, selecting the “I'm on my way” button 1583 may cause the remote ordering application to transmit the order to an associated order processing system and begin monitoring the location of the networked mobile wireless telecommunication computing device for the purpose of transmitting the location information to the order processing system. Typically, selecting the “I'm on my way” button 1583 will trigger at least a payment pre-authorization process.
Selecting the “Save” button 1584 will store the order, either locally on the networked mobile wireless telecommunication computing device or on an order processing system for later use, for example as “Favourite”. Selecting the “Link” button 1585 will associate the order with a different networked mobile wireless telecommunication computing device to facilitate pickup by a user different from the user who placed the order.
Establishing the list 1586 of available users with whose networked mobile wireless telecommunication computing device the order may be associated may be done in a number of ways. In one embodiment, a first user may identify the networked mobile wireless telecommunication computing device of a second user by entering a unique identifier, such as a telephone number, for that device. The remote ordering application may then send an invitation to the networked mobile wireless telecommunication computing device of a second user, and the second user would only be added to the list 1586 of available users if the second user indicated his or her assent. The invitation could be handled by a remote ordering application on the networked mobile wireless telecommunication computing device of the second user or, where a corresponding remote ordering application has not been installed, on that device, may include instructions for such installation. For example, an invitation may comprise a text message with a link for installation.
Once the user has selected the “I'm on my way” button 1583, the remote ordering application may present navigation information for travelling from the present location of the user's networked mobile wireless telecommunication computing device to the provider location. The navigation information may be presented either as a map 1588, as shown in
Selecting the “Offers” icon 1510 causes the remote ordering application to present an “Offers” page, as shown in
Regardless of whether orders are transmitted to the order processing system 362 of a provider 360 or the order processing system 392 of a provider aggregator 390, in a preferred embodiment a point-of-sale (POS) system integrated with the relevant order processing system is used at the provider location(s). In one preferred embodiment, the POS system is provided as software which can be installed on a computer system at the provider location. The computer system may comprise a single computer or a plurality of computers. Any type of computer system may be used, although preferably a computer system having a location module enabling geolocation of the computer system is used. Tablet computers having geolocation modules, such as those offered under the trademark iPad by Apple, having an address at 1 Infinite Loop, Cupertino, Calif. 95014, are well-suited to this function, although other tablet computers may also be used. One particular advantage of using a computer that includes a location module is that the position of the computer, as determined using its location module, may be used as the target 1204 (
The exemplary provider order fulfillment support application is intended for use in an embodiment in which the order 372 is transmitted separately from, and in advance of, the signal 373 to commence processing, and has five primary functions, each of which is described below.
In many cases, orders can be separated into components. For example, in a sandwich-type quick service restaurant, components may be beef sandwiches (hamburgers), chicken and fish items, side orders, and drinks, each of which is prepared at a separate station. In a grocery store context, components may be, for example, non-perishable items, bakery items, deli items, seafood items, butcher items and produce items. In a toy store context, components may be, for example, toys for boys, toys for girls, baby toys, and electronics. One aspect of the exemplary provider order fulfillment support application facilitates separate, simultaneous processing of various components of an order.
Preferably, a provider order fulfillment support application will enable different pages to be displayed for different components of an order. In one embodiment, touchscreen displays may be provided at each preparation station for a given component, with each display coupled to a central computer system. In another embodiment, a networked mobile telecommunication computing device executing a provider order fulfillment support application may be provided at each preparation station. Such arrangements allow staff at each preparation station to view a page showing only those items that are to be processed at that preparation station. For example, in a sandwich-type quick service restaurant, a page displaying only beef sandwiches may be displayed at the beef sandwich station, a page displaying only chicken and fish items may be displayed at the chicken and fish station, and so on. Presenting different pages for different component types may be achieved in a number of ways. In one presently preferred embodiment suitable for multi-station restaurant applications, each menu item is assigned a number designating the type of component that the menu item is. For example, “1” may designate a menu item as a “drink” component, “2” may designate a menu item as a “side order” component, “3” may designate a menu item as a “beef sandwich” component, “4” may designate a menu item as a “chicken/fish” component, and so on. Then, by selecting a number, menu items designated by that number, and hence corresponding to a particular component, may be isolated and displayed.
The exemplary page for the “Incoming Orders” function of the exemplary provider order fulfillment support application shown in
Reference is now made to
Each of the pages shown in
It is contemplated that a provider order fulfillment support application of the type described and illustrated in respect of
It is also contemplated that, where services are provided by a provider aggregator, pick-up of goods orders from multiple locations may be supported. A user could enter multiple orders for multiple providers, and the order processing system can recommend a sequence for pick-up based on the user's location as well as other factors (e.g. perishable food last). Alternatively, a user could manually set the sequence.
Optionally, the remote ordering application 350 may permit an order, generated by that user or linked by another user, to create an appointment to serve as a reminder, for example by synchronizing with a calendar application on the networked mobile wireless telecommunication computing device. In one exemplary application, one spouse could send a dinner order to the other and also generate a reminder appointment in the latter spouse's calendar so the latter spouse does not forget to pick up dinner.
It is further contemplated that a remote ordering application may include suitable recognition software and be integrated with a camera on the networked mobile wireless telecommunication computing device to generate orders by scanning bar codes or QR codes, or by capturing an image of the item. For example, a user could build a grocery order from a paper grocery store flyer, or by scanning the bar code on empty containers.
In addition, a remote ordering application may incorporate a “sharing” or social media functions. For example, one user may use the remote ordering application to recommend a product or provider to another user, who could then generate an order from the recommendation. A first user may also grant selected other users access to his or her prior orders to see what he or she has purchased, without necessarily allowing the other users to place orders and link them to that first user.
A user may allow himself or herself to be openly solicited based on location information or based on a category of interest, or both. For example, a user may be hungry but not sure where he or she would like to eat, or may be in an unfamiliar area and unsure of what restaurant options are available. The user could open an application, such as the remote ordering application 350, on his or her networked mobile wireless telecommunication computing device, such as the smartphone 310, and choose to be solicited. Individual restaurants associated with a provider aggregator 390 may have submitted commercial data to the provider aggregator 390 in advance, such as daily specials, or may determine that a user is requesting such a commercial solicitation, for example by way of a request from an order processing system 392 of the provider aggregator 390, and submit the relevant commercial data in response. The provider aggregator 390 then generates the commercial solicitations based on the location information and/or the area of interest, and transmits them to the remote ordering application 350 on the user's networked mobile wireless telecommunication computing device. The commercial solicitations may be displayed, for example, on an “Offers” page like that shown in
In certain embodiments, a general search for commercial solicitations can be provided, without reference to the user's current or planned location, for cases where a user may wish to be made aware of the various commercial solicitations, such as daily specials, within a wider geographic area. For example, a user may be at home and be hungry but not sure where to eat, and can determine what daily specials are available from restaurants associated with the provider aggregator 390, or may be interested in acquiring a particular product such as a television, and can specify “electronics” as an area of interest to see if there are any relevant special offers among the providers 360A, 360B . . . 360n associated with the provider aggregator 390. In such cases, the user may not wish to set geographical limitations in advance, because he or she may be willing to travel further depending on how enticing the offer is.
Reference is now made to
A user of the smartphone 310 generates a query 802 using the remote ordering application 350, and the smartphone 310 then transmits the query 802 through the network 320 to the order processing system 392 of a provider aggregator 390. The query 802 includes location information 804 and a specification 806 indicating an area of interest to the user. The location information 804 may be the current location of the smartphone 310 (and hence the user) derived from the GPS receiver 340, or may be manually entered by the user. For example, if the user is travelling, the user may wish to specify his or her destination rather than his or her present location. In another embodiment, the query may be sent from a user's desktop computer instead of from a networked mobile wireless telecommunication device, in which case the location information may be manually entered or obtained from an ISP. Optionally, the location information 804 may comprise a planned travel route, so that providers 360A, 360B . . . 360n along the planned travel route can be identified. This would enable, for example, a user who is about to head home from work and wants to pick up food to receive commercial solicitations from providers located along his or her planned route, and then place an order in accordance with the methods described above.
The specification 806 indicating an area of interest to the user is optional, and is used in cases where the provider aggregator 390 coordinates the offerings of providers 360A, 360B . . . 360n in different areas of interest. For example, if the provider aggregator 390 aggregates restaurants, the specification 806 could specify different types of restaurant, and if the provider aggregator 390 is the management of a shopping mall, it may coordinate providers 360A, 360B . . . 360n in such diverse areas of interest as restaurants, electronics, furniture, jewellery, hairstyling, general merchandise, clothing (including both men's and women's clothing and various subcategories of clothing such as formal wear, casual wear, urban wear, swim wear and the like), pet stores, and so on. By providing for the specification 806 indicating an area of interest to the user, the provider aggregator 390 can provide a more useful response to the query 802.
The order processing system 392 of the provider aggregator 390 receives the query 802, including the location information 804 and specification 806 of an area of interest, if any, and in response, determines at least one local provider 360A, 360B . . . 360n having a provider location within a predetermined proximity to the location specified by the location information 804. The order processing system 392 selects only local providers 360A, 360B . . . 360n whose offerings correspond with the area of interest indicated by the specification 806. The determination and selection can be made in any order. For example, the providers 360A, 360B . . . 360n corresponding to the area of interest can be selected first, and then those providers having a provider location within a predetermined proximity to the location specified by the location information 804 can be determined from that subset. Alternatively, the order processing system 392 may first determine those providers having a provider location within a predetermined proximity to the location specified by the location information 804, and then select the providers 360A, 360B . . . 360n corresponding to the area of interest. Once the order processing system 392 has identified the local providers 360A, 360B . . . 360n having a provider location within a predetermined proximity to the location specified by the location information 804, and also corresponding to the area of interest, if applicable, the order processing system 392 will transmit at least one commercial solicitation 808 associated with a respective one of the at least one local provider 360A, 360B . . . 360n to the smartphone 310 via the network 320.
In one alternative embodiment, such as where the provider aggregator 390 coordinates the offerings of providers 360A, 360B . . . 360n in only a single area of interest, the specification 806 indicating an area of interest, and the provision therefor, may be omitted and determination of providers may be based on the location information 804, without reference to area of interest. In another alternative embodiment, the location information 804 may be omitted and the providers may be selected based on area of interest, without reference to location. This latter embodiment would be suitable for cases where the provider aggregator 390 is the management of a shopping mall. Thus, a user who is planning to head to the mall to purchase jeans, for example, could select “jeans”, either from a list or by entering “jeans” as a key word, and receive commercial solicitations from jean stores within the shopping mall. The user may also be provided with directions for navigation within the mall to a selected one of the jean stores.
The query 802 may also include additional criteria for identifying providers, such as hours of operation, price ranges, and other suitable factors.
The commercial solicitations 808 may be in the form of advertisements, special offers, and the like, and may be stored by the order processing system 392 and updated periodically, or alternatively, may be dynamically generated by the order processing system 392 by requesting commercial data from the local providers 360A, 360B . . . 360n identified in response to the query, and then using that commercial data to generate the commercial solicitation(s) 808.
The commercial solicitations 808 may be presented to the user via the remote ordering application 350 which, as noted above, may be a separate application program installed on the smartphone 310 or may be a page or pages within a web browser application on the smartphone 310 or on a desktop computer. The user can then select one of the commercial solicitations 808, and send a request 810 to the order processing system 392 indicating the selection, and the order processing system 392 will then send a response 812 to the request. In one embodiment, the response 812 may comprise directions to the relevant provider location corresponding to the selection indicated by the request 810. In another embodiment, the response 812 may comprise an item list for the relevant provider (or provider location), such as item list 354, comprising a list of available items and corresponding processing times for each item in the list, so that the ordering methods described above may be implemented.
In some embodiments, the remote ordering application 350 may, alone or in combination with systems and software hosted by a provider aggregator 390, include functionality which allows it to “learn” certain user preferences and automatically check for commercial solicitations 808 corresponding to those user preferences. For example, the remote ordering application 350 and/or provider aggregator system may detect that a user frequently searches for a particular brand of shoes, and may automatically begin to check periodically (e.g. daily) with the relevant providers 360A, 360B . . . 360n for commercial solicitations 808 relating to that brand of shoes. When a suitable commercial solicitation 808 is detected, the remote ordering application 350 can notify the user. Users can also be provided with an option to set such periodic checks manually.
Aspects of the arrangement and method described in respect of
Any suitable networked mobile wireless telecommunication computing device, such as a smartphone, tablet computer, laptop computer or the like may be used in accordance with the systems, methods and computer program products disclosed herein. The locating system for the networked mobile wireless telecommunication computing device may be a GPS-based locating system, or where appropriate may be a Wi-Fi locating system or other suitable locating system.
The exemplary smartphone 900 is merely one example of a networked mobile wireless telecommunication computing device, and is not intended to be limiting. Other examples of networked mobile wireless telecommunication computing devices include tablet computers, in-vehicle networked computing devices, among others. The term “networked mobile wireless telecommunication computing device” is intended to include technology developed subsequent to the filing hereof.
References to “buttons” herein, including in respect of
The methods described herein may be implemented on any suitable computer or microprocessor-based system. An illustrative computer system in respect of which the methods herein described may be implemented is presented as a block diagram in
The computer 1006 may contain one or more processors or microprocessors, such as a central processing unit (CPU) 1010. The CPU 1010 performs arithmetic calculations and control functions to execute software stored in an internal memory 1012, preferably random access memory (RAM) and/or read only memory (ROM), and possibly additional memory 1014. The additional memory 1014 may include, for example, mass memory storage, hard disk drives, optical disk drives (including CD and DVD drives), magnetic disk drives, magnetic tape drives (including LTO, DLT, DAT and DCC), flash drives, program cartridges and cartridge interfaces such as those found in video game devices, removable memory chips such as EPROM or PROM, emerging storage media, such as holographic storage, or similar storage media as known in the art. This additional memory 1014 may be physically internal to the computer 1006, or external as shown in
The computer system 1000 may also include other similar means for allowing computer programs or other instructions to be loaded. Such means can include, for example, a communications interface 1016 which allows software and data to be transferred between the computer system 1000 and external systems and networks. Examples of communications interface 1016 can include a modem, a network interface such as an Ethernet card, a wireless communication interface, or a serial or parallel communications port. Software and data transferred via communications interface 1016 are in the form of signals which can be electronic, acoustic, electromagnetic, optical or other signals capable of being received by communications interface 1016. Multiple interfaces, of course, can be provided on a single computer system 1000. The computer system 1000 may further include a location module 1022 including GPS receiver hardware that is also coupled to the computer 1006.
Input and output to and from the computer 1006 is administered by the input/output (I/O) interface 1018. This I/O interface 1018 administers control of the display 1002, keyboard 1004A, external devices 1008 and other such components of the computer system 1000. The computer 1006 also includes a graphical processing unit (GPU) 1020. The latter may also be used for computational purposes as an adjunct to, or instead of, the (CPU) 1010, for mathematical calculations.
The various components of the computer system 1000 are coupled to one another either directly or by coupling to suitable buses.
The methods described herein may be provided as a computer program products comprising a tangible computer readable storage medium, such as non-volatile memory of the mobile wireless telecommunication computing device or of the order processing system of either a provider or a provider aggregator, having computer readable program code embodied therewith for executing the method. Thus, the non-volatile memory of the mobile wireless telecommunication computing device or order processing system would contain instructions which, when executed by the processor of the mobile wireless telecommunication computing device or order processing system, cause the mobile wireless telecommunication computing device or order processing system to execute the relevant method.
The above systems and methods may be implemented entirely in hardware, entirely in software, or by way of a combination of hardware and software. In a preferred embodiment, implementation is by way of software, which includes but is not limited to firmware, resident software, microcode, and the like. Furthermore, the above systems and methods may be implemented in the form of a computer program product accessible from a computer usable or computer readable medium providing program code for use by or in connection with a computer or any instruction execution system. In such embodiments, the computer program product may reside on a computer usable or computer readable medium in a computer such as the memory 912 of the onboard computer system 906 of the smartphone 900 or the memory 1012 of the computer 1006, or on a computer usable or computer readable medium external to the onboard computer system 906 of the smartphone 900 or the computer 1006, or on any combination thereof.
One or more currently preferred embodiments have been described by way of example. It will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the claims.
Claims
1. A method for processing a plurality of orders for goods at a provider location, comprising:
- (i) obtaining, by a data processing system, arrival estimates for when each of a plurality of users is expected to arrive, each user associated with a respective order, wherein: the arrival estimates are calculated by networked mobile wireless telecommunication computing devices associated with the respective orders, based on respective locations of the networked mobile wireless telecommunication computing devices; and whereby the data processing system does not have to calculate the arrival estimates to thereby distribute processing load away from the data processing system to the networked mobile wireless telecommunication computing devices;
- (ii) the data processing system using the arrival estimates to schedule processing of the orders;
- (iii) the data processing system obtaining an arrival sequence estimate for the users indicating a sequence in which the users are expected to arrive at a target within the provider location, wherein: the arrival sequence estimate is different from the arrival estimates for the users, and is also obtained other than from the arrival estimates for the users because: the arrival estimates are based on at least predicting paths of the networked mobile wireless telecommunication computing devices through a constrained travel path network; whereas obtaining the arrival sequence estimate comprises the data processing system ordering the users according to their respective radial distances from another networked mobile wireless telecommunication computing device located at a target within the provider location, wherein the radial distances are calculated independent of the constrained travel path network; the radial distances being obtained by the data processing system using location information received from the networked mobile wireless telecommunication computing devices and obtained using at least one of global positioning system coordinates, cellular repeater triangulation coordinates and Wi-Fi triangulation coordinates;
- (iv) processing the orders to produce completed orders; and
- (v) organizing the completed orders for presentation to the users according to the arrival sequence estimate, wherein organization of the completed orders according to the arrival sequence estimate is independent of the arrival estimate;
- wherein the sequence in which the users are expected to arrive at the target within the provider location, as represented by the arrival sequence estimate, is different from the sequence in which order processing is triggered according to the arrival estimates.
2. The method of claim 1, wherein the arrival sequence estimate is continuously updated and step (v) is repeated responsive to a change in the arrival sequence estimate.
3. The method of claim 1, wherein processing the orders to produce completed orders comprises assembly of components of the orders into the completed orders.
4. The method of claim 1, wherein the networked mobile wireless telecommunication computing devices are carried by the users.
5. The method of claim 4, wherein the location information comprises global positioning system coordinates.
6. The method of claim 4, wherein the location information comprises cellular repeater triangulation coordinates.
7. The method of claim 1, wherein the provider location is a restaurant and the target is one of (a) a pick-up counter or window inside the restaurant and (b) the entrance to a drive-through lane.
8. The method of claim 7, wherein the another networked mobile wireless telecommunication computing device is disposed at a pick-up position within the provider location.
Type: Application
Filed: Dec 2, 2019
Publication Date: Apr 2, 2020
Applicant: Expose Retail Strategies, Inc. (St. Catharines)
Inventor: David Napper (St. Catharines)
Application Number: 16/700,985