System And Method For Detecting Retina Disease
A system and method for diagnosing retina disease is disclosed. The method comprises capturing a plurality of images of the vascular network within the retina, such as through the use of optical coherence tomography (OCT). This plurality of images are then processed to determine the location and diameter of each vessel in the three-dimensional vascular network in the retina. The vascular network is then divided into a plurality of equal unit volumes. The vessel density, vascular volume density and other metrics can then be determined for each unit volume. This information can then be used to identify retina disease. The information can be parsed and presented in a variety of ways.
This application is a Continuation of U.S. patent application Ser. No. 15/581,315 filed Apr. 28, 2017, which claims priority to U.S. Provisional patent application Ser. Nos. 62/330,297 and 62/330,337, filed May 2, 2016, the disclosures of which are incorporated herein by reference in their entireties.
FIELDThis disclosure describes systems and methods for detecting retina disease.
BACKGROUNDOcular disease is commonplace, especially in people with diabetes. Typically, patients visit an ophthalmologist, retinologist or other eye care professional on a regular basis. During that visit, the eye care professional may observe the patient's retina, such as by looking through the patient's pupil. In some instances, the eye care professional may have automated equipment to photograph the patient's retina.
The eye care professional may then look at the images and mentally compare these to other retinas that they have observed. Abnormalities, such as blood leaks, partial detachment of the macula or retina, or macular degeneration. The eye care professional may also view earlier images taken from the patient's history to determine if there are any changes to the patient's eye.
This examination, while effective at detecting gross abnormalities and large changes, may not be effective in observing small changes to the patient's retina.
Therefore, it would be beneficial if there were an objective method for determining the health of a patient's eye. Further, it would be advantageous if there were a system that could provide this objective test method.
SUMMARYA system and method for diagnosing retina disease is disclosed. The method comprises capturing a plurality of images of the vascular network within the retina, such as through the use of optical coherence tomography (OCT). This plurality of images are then processed to determine the location and diameter of each vessel in the vascular network in the retina. The vascular network is then divided into a plurality of equal unit volumes. The vessel density, vascular volume density and other metrics can then be determined for each unit volume. This information can then be used to identify retina disease. The information can be parsed and presented in a variety of ways.
For a better understanding of the present disclosure, reference is made to the accompanying drawings, in which like elements are referenced with like numerals, and in which:
There are various methods that can be used to extract vascular networks from a plurality of images. For example, in one embodiment, a filter is used to identify the center of a blood vessel. This filter may assume that the density of the blood vessel is greatest at its centerline, and decreases as one moves away from the center toward the outer edge of the vessel. In one particular embodiment, thin slices of a vessel are created using this filter. These slices may be referred to as disks. A series of disks are linked together to form a three-dimensional structure containing information relating to the local size, shape, branching, and other structural features at any point in the vascular tree.
Some embodiments of a vessel representation that employ these discs are referred to herein as the Poker Chip™ representation due to the similarity to a stack of poker chips. The Poker Chip™ representation treats a vessel as an aggregation of cylindrical cross-sections or discs with continuously varying diameters, wherein each disc in the Poker Chip™ representation is hereinafter referred to simply as a Poker Chip™ or collectively as Poker Chips™. While in theory, the “thickness” of each Poker Chip™ is infinitesimally small, in practice the thickness of each Poker Chip™ may be related to the resolution of the image(s) from which the geometry was extracted. Thus, each Poker Chip™ may have associated geometry including, for example, center location, radius and orientation, as discussed in further detail below.
To compute some of the higher order information, it may be beneficial to also include in the Poker Chip™ representation information about neighboring Poker Chips™. For example, information about how the Poker Chips™ link together may be valuable in understanding the vessel structure as a whole. Algorithms have been developed that facilitate linking Poker Chips™ together to provide membership information with respect to which Poker Chips™ belong to which vessel and information regarding which Poker Chips™ are adjacent to one another. After linking has been achieved, more sophisticated vessel analysis may be performed.
One system for extracting geometry from images may include a number of processing blocks including: a scale detector, an orientation detector, centerline filtering, non-maximum suppression and linkage. Each of these processing blocks may be a software module or application that is executed on a computer or other processing unit. The processing unit can be implemented in numerous ways, such as with dedicated hardware, or with general purpose hardware, such as personal computers, that is programmed using microcode or software to perform the functions recited herein. A local memory device may contain the instructions, which, when executed by the processing unit, enable the system to perform the functions described herein. This local memory device may be a non-volatile memory, such as a FLASH ROM, an electrically erasable ROM or other suitable devices. In other embodiments, the local memory device may be a volatile memory, such as a RAM or DRAM.
Briefly speaking, the system works as follows: firstly, the scale detection and orientation detection modules may be applied on 3D images to obtain correct size and orientation parameters for centerline detection (e.g., scale and orientation parameters for the centerline filters); secondly, based on the parameters obtained from scale detection and orientation detection modules, the centerline filter may be applied on every voxel of a 3D image, or applied on a subsection of voxels for which centerline detection is desired. The generated response field formed by applying the centerline filter indicates the likelihood that the associated voxel corresponds to the vessel centerline; finally, non-maximum suppression and linkage is applied on the centerline response field to extract the vessel centerline and obtain a vessel mathematical representation (e.g., a linked Poker Chip™ representation). One illustrative example of this system may be found in U.S. Patent Publication 2015/0302584, which is incorporated herein by reference in its entirety. Of course, other methods of extracting vasculature from a set of images may also be used.
As a result of linking the centerline points together, each of which represents a Poker Chip™ having a center location (the centerline point), a radius and a direction of the centerline at the center location, further geometry of the vessel may be computed. Referring back to the schematic of the Poker Chip™ representation in
In addition, the linked Poker Chips™ may be used to determine higher order and/or more sophisticated geometrical properties. For example, derivatives of the linked orientation vectors may be used to determine the curvature of the vessel. The centerline curve, length of the curve and curvature parameters may be used to determine various tortuosity parameters, which may be used to characterize the vessels. Moreover, the Poker Chip™ representation carries distribution information with respective to the density of vessel material, the relative distribution of vessels at different radii, etc. These geometrical, structural and distribution parameters may be used in a number of ways to analyze vasculature, as discussed in further detail below.
After the images have been processed to create the Poker Chip™ representation, additional processing may be performed. For example, in one embodiment, the Poker Chip™ representation, which is a three-dimensional computer model where the vasculature is represented by a series of stacked disks or Poker Chips™, can be divided into smaller equal sized volumes. This processing may be performed using a computing device, such as a personal computer or server, having a processor and non-transitory storage medium to store instructions. Those instructions, when executed by the processor, enable the computing device to perform the functions and create the images described herein.
In one particular embodiment, the equal sized volumes may be cubes, where each side of the cube has a length of 200 μm. Of course, the cubes may also have any other dimension. Cubes may be advantageous, since these cubes can be used to fill the entire volume, without any empty space. In some cases, these unit volumes may be referred to as Ice Cubes. Of course, the disclosure is not limited to using cubes as the equal sized volumes. For example, any rectangular prism may be used. Further, other equal sized three-dimensional shapes that can be placed adjacent to one another without any empty space may be used.
The subdivision of the Poker Chip™ representation into a plurality of Ice Cubes allows higher level calculations to be performed. For example, in one embodiment, the number of Poker Chips™ in each Ice Cube can be counted. This metric may be defined as the vascular density per Ice Cube. In another embodiment, the volume of the vasculature may be important. This may be calculated by summing the volumes of all of the Poker Chips™ in each Ice Cube. This can be achieved since each Poker Chip™ includes, as one of its parameters, a radius. This metric may be referred to as Vascular Volume density per Ice Cube.
Either of these two metrics, Vascular Density per Ice Cube and Vascular Volume Density per Ice Cube, may provide an indication of the perfusion of blood within the retina. Further, these metrics may provide objective data regarding the degree of perfusion, enabling detection of potential retina disease and disease progression.
As described above, the 3D Poker Chip™ Representation is subdivided into a plurality of Ice Cubes. In other words, assume that the Poker Chip™ Representation is divided into a plurality of Ice Cubes, where there are x Ice Cubes in the X direction, y Ice Cubes in the Y direction and z Ice Cubes in the Z direction, for a total of x*y*z Ice Cubes. In this illustration, Z may represent the depth direction. In this particular embodiment, the Ice Cubes being displayed may all lie in a single plane. In other words, these graphs may show x*y Ice Cubes, where there is only one Ice Cube in the Z direction. This plane may represent a layer or a portion of a layer of the retina. In another embodiment, the graphs may represent more than one Ice Cube in the Z direction. In these embodiments, the graphs may average the vascular density of all Ice Cubes in the Z direction and display that average in the graph. In such an embodiment, these graphs may represent x*y average values. In another embodiment, the graphs may sum the vascular density of all Ice Cubes in the Z direction and display that sum in the graph. In such an embodiment, these graphs may represent x*y summed values
While the above description assumes that the graphs display a rectangular area, other embodiments are also possible and the disclosure is not limited to graphs showing x*y Ice Cubes.
The data that is collected by using Poker Chips™ and Ice Cubes may be used in a number of ways.
First, as shown in
Secondly, the vascular density per Ice Cube may be plotted using a histogram. The general shape of the histogram may be used to make a determination whether a patient has or is developing PDR. For example, a histogram that approximates a 1/x function may be determined to represent PDR, while a histogram that is relatively constant and starts decreasing at a value of about 56,000 Poker Chips™/cubic millimeter may be indicative of NPDR. A curve that approximates a bell curve may be indicative of a healthy retina. In other embodiments, the area under the curve may be used to make this determination. For example, if the areas under lines 400, 410, 420 is calculated from 0 to about 35,000 Poker Chips™/cubic millimeter, it is clear that line 420 yields the greatest area, while line 400 yields the lowest area. Similarly, if the area under lines 400, 410, 420 is calculated from 70,000 to 170,000 Poker Chips™/cubic millimeter, it is clear that line 420 yields the lowest area, while line 400 yields the greatest area. Predetermined values for the areas under these curves may be established to distinguish between healthy retinas and those with NPDR and PDR.
Third, the mean value of vascular density per Ice Cube may be used to make a determination about the health of the retina. A first predetermined threshold may be used to distinguish between healthy retinas and other retinas. A second predetermined threshold, lower than the first threshold, may be used to distinguish between NPDR and PDR. For example, referring to
The two threshold values described above can be utilized in other ways as well.
These two threshold values 430, 440 may be used to define three different regions. Ice Cubes having a vascular density less than second threshold value 440 may be referred to as cold regions, while Ice Cubes having a vascular density greater than the first threshold 430 may be referred to as hot regions. The Ice Cubes having values between the first threshold value 430 and the second threshold value 440 may be referred to as normal regions. The percentage of Ice Cubes that fall into each region may then be calculated.
First, the absolute percentages of hot regions and/or cold regions may be used to determine the status of the retina. For example, a healthy retina may have less than 6% of the Ice Cubes in the cold region and more than 15% of the Ice Cubes in the hot region. A retina with PDR may have more than 20% in the cold region and less than 4% in the hot region. A retina with NPDR would have values between those of healthy and PDR retinas. Of course, the percentages stated above may be adjusted as needed. Further, the determination may be made using only one set of percentages; either the hot region percentage or the cold region percentage.
Second, the ratio of hot region to cold region may be used to make a determination. The ratio for a healthy retina is 16.58/5.61, or 2.95. The ratio for NPDR and PDR retinas are 0.71 and 0.17, respectively. Thus, threshold values may be used to distinguish between healthy retinas and diseased retinas based on the ratio of hot regions to cold regions.
Furthermore, the graphs of
For example, the use of rings and shells allows certain analysis that might not be otherwise possible. For example, by performing the analysis and producing a histogram for each shell or ring, an eye care professional may determine (and plot) the mean vascular density for each ring or shell. This information may reveal information about retina disease. As with all embodiments, this analysis may be made for a single layer of the retina or for multiple layers.
Further, the inner most region 0, which represents the macula, can be further analyzed to determine vascular density of vessels of all diameters, or for vessels of only a specific range of diameters. For example, the vascular densities of capillaries, having a diameter of less than 15 micrometers or less than 10 micrometers may be determined.
Further, the vascular morphology of the macula can be analyzed. First, the macula is identified, such as by isolating the innermost circle of lowest vascular density. Then, other parameters of interest can be analyzed. This includes the formation of neo-vasculature, which is curvy and tortuous and features a disorganized collection of branching points.
Further, as shown in
Furthermore, the segmentation need not be quadrants.
In yet another embodiment, the quadrants shown in
The above described methods can be applied in a variety of ways. First, the region of interest may be selected. The previous description shows methods of subdividing the retina into rings, shells, wedges and grid boxes. The analysis may be performed on any ring, combination of rings, shell, combination of shells, wedge, combination of wedges, grid box, combination of grid boxes or any combination of rings, shells, wedges and grid boxes. For example, a histogram, with a calculation of mean vascular density, may be performed for only a particular region of interest, such as a subset of the annular rings.
Further, as stated with respect to
Additionally, the graphs of
While the above disclosure describes the graphs as showing either Vascular Density or Vascular Volume Density, other parameters may also be used. For example, in one embodiment, rather than using the number of Poker Chips™ per Ice Cube, the data may be processed to provide other parameters, such as average vessel diameter, average curvature, average length, orientation, tortuosity, and branching density. In other words, any geometric and/or morphological vascular change in the retina as a whole or on specific layer or group of retina layers at certain distances from the macula or from the periphery, could be detected through changes in Ice Cube content density. The above description discloses using the density of Poker Chips™ per Ice Cube (of all diameters or specific diameters or ranges). However, these changes could also be detected by replacing Poker Chips™ with Branching Points Density or with Specific Vessel Branch Geometry Density—straight, curvy, or tortuous branches.
Furthermore, the above description discloses the comparison of a patient's data to a set of predetermined thresholds or other empirical data. Specially, the first and second thresholds 430, 440 shown in
For example, one can establish retina disease tracking and thresholds by monitoring the retina over time as described in more detail below.
In this embodiment, the health of a patient's retina may be monitored over time, and compared to earlier collected data for the same patient. For example, graphs of vascular density (
For example, the mean value of the vascular density can be monitored, so that decreases in its value can be detected. This may be used to trigger intervention when the value goes down by a predetermined amount, such as 20%. In another embodiment, the certain rings, shells, wedges and/or grid boxes may be monitored so that a gradual lowering of the vascular density in these certain regions is detected. Intervention may be triggered when the vascular density drops below a certain value/threshold. In addition, progression of the lower vascular density into other shells, rings or wedges may also be used to trigger intervention.
This intervention may include any of the following. First, the eye care professional may perform a more detailed examination to further validate the specific retina pathology. Second, the eye care professional may prescribe a treatment regimen, which may include a certain drug compound given at a certain dose, or, a combination of drug compounds, each compound in the combination prescribed at a certain dose.
Further, the eye care professional may create subsequent histograms and compare these to earlier histograms. This information may allow the eye care professional to detect and quantify the response to therapy (either single compound or compounds combination). The eye care professional may also use the comparison of histograms to optimize the response to therapy by changing the initial single compound to another therapeutic compound, changing the dose of the initial single therapeutic compound, modifying the compounds combination in terms of compounds in the combination, dosages of the compounds in the combination, or both of the above.
In summary, the shape, height, and x-axis location of the histogram curve and the mean value of the vascular density per Ice Cube, taken across the full retina or on specific layers or groups of layers, can provide the degree of retina health, including the degree of healthy aging, as well as become the leading indicator on emergence of disease. As a result, the histogram of
Interestingly, the profile of a healthy retina may change as the patient ages. For example, a young person may have a greater mean vascular density than a healthy older person.
Thus,
Thus, in one embodiment, the mean value of the vascular density per Ice Cube for a healthy retina is a function of age. As a result, one may create a reference curve, referred to as a healthy aging index, that shows the progression of mean value as a function of age. This healthy aging index may be used in determining thresholds used to determine the health of a retina, such as the thresholds used in
Bar graph 660, which represents the data for the 27 year old patient, shows that 66.9% of the Ice Cubes are within the hot region. In contrast, bar graph 670, which represents the data for the 70 year old patient, shows that only 14.4% of the Ice Cubes are within the hot region.
In comparing
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.
Claims
1. A method of diagnosing disease in a retina, comprising:
- collecting a plurality of images of the retina;
- processing the plurality of images to create a 3D computer model, where blood vessels are modelled as a series of stacked disks;
- dividing the 3D model into a plurality of equally sized volumes;
- determining a vascular density in each equally sized volume based on a number of disks in each equally sized volume; and
- analyzing the vascular density in at least a portion of the equally sized volumes to determine the presence of a disease.
2. The method of claim 1, wherein the analyzing comprises determining a mean vascular density and comparing the mean vascular density to a predetermined threshold.
3. The method of claim 1, wherein the analyzing comprises creating a histogram of vascular density vs. percentage of equally sized volumes.
4. The method of claim 3, wherein the analyzing further comprises comparing a shape of the histogram to a predetermined curve.
5. The method of claim 3, wherein the analyzing further comprises establishing a first threshold value and identifying the equally sized volumes that have a vascular density greater than the first threshold value as hot regions.
6. The method of claim 5, wherein the analyzing further comprises determining a percentage of equally sized volumes that are in the hot region and comparing the percentage to a predetermined threshold.
7-13. (canceled)
14. A method of detecting progression of a disease in a retina of a patient, comprising:
- collecting a first plurality of images of the retina of the patient at a first point in time;
- processing the first plurality of images to create a first 3D computer model, where blood vessels are modelled as a series of stacked disks;
- dividing the first 3D model into a plurality of equally sized volumes;
- determining a first vascular density in each equally sized volume based on a number of disks in each equally sized volume;
- collecting a second plurality of images of the retina of the patient at a second point in time;
- processing the second plurality of images to create a second 3D computer model, where blood vessels are modelled as a series of stacked disks;
- dividing the second 3D model into the plurality of equally sized volumes;
- determining a second vascular density in each equally sized volume based on a number of disks in each equally sized volume;
- analyzing the first vascular density and the second vascular density to determine progression of a disease.
15. The method of claim 14, wherein the analyzing comprises determining a first mean vascular density for the first 3D model and a second mean vascular density for the second 3D model, and comparing the first mean vascular density to the second mean vascular density.
16. The method of claim 15, wherein the second mean vascular density is adjusted to account for the change in an age of the patient.
17. The method of claim 14, further comprising creating a first histogram of vascular density vs. percentage of equally sized volumes for the first 3D model and a second histogram of vascular density vs. percentage of equally sized volumes for the second 3D model.
18. The method of claim 17, wherein the analyzing further comprises:
- establishing a first threshold value;
- identifying the equally sized volumes in the first histogram and the second histogram that had a vascular density greater than the first threshold value as hot regions;
- determining a first percentage of equally sized volumes that are in the hot region for each histogram; and comparing the first percentage in the first histogram to the first percentage in the second histogram.
19. The method of claim 18, wherein the analyzing further comprises:
- establishing a second threshold value;
- identifying the equally sized volumes in the first histogram and the second histogram that had a vascular density less than the second threshold value as cold regions;
- determining a second percentage of equally sized volumes that are in the cold region for each histogram; and
- comparing the second percentage in the first histogram to the second percentage in the second histogram.
20. The method of claim 18, wherein the first threshold value is different for the first 3D model and the second 3D model to account for a change in an age of the patient.
21. The method of claim 14, wherein the portion of equally sized volumes comprises all equally sized volumes that are disposed in one plane.
22. The method of claim 14, wherein the retina is divided into a plurality of annular rings, and the portion of equally sized volumes comprises all equally sized volumes that are disposed in at least one of the annular rings.
23. The method of claim 14, wherein the retina is divided into a plurality of wedges, and the portion of equally sized volumes comprises all equally sized volumes that are disposed in at least one of the wedges.
24. The method of claim 22, wherein the retina is also divided into a plurality of wedges, and the portion of equally sized volumes comprises all equally sized volumes that are disposed in at least one of the annular rings and disposed in at least one of the wedges.
Type: Application
Filed: Jun 26, 2019
Publication Date: Apr 16, 2020
Inventors: Raul A. Brauner (Framingham, MA), Kongbin Kang (Providence, RI), Yanchun Wu (Sharon, MA)
Application Number: 16/452,963