METHODS OF MANUFACTURING ARTICLES UTILIZING FOAM PARTICLES
Disclosed herein are cushioning elements comprising a first layer including a depression defined by a first surface, and a first component disposed within the depression of the first layer, the first component comprising a plurality of affixed foam particles. The cushioning element can optionally include a second surface opposing the first surface, defining an interior of a chamber that can be at least partially filled with a fluid. The first component can be thermally bonded or adhesively bonded to the first surface or the second surface. Methods for manufacturing the cushioning element, and articles including the cushioning element, including articles of footwear, apparel, and sporting equipment are also provided. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
This Application claims the benefit of U.S. Provisional Application Nos. 62/776,124 and 62/776,129, each filed on Dec. 6, 2018, each of which is incorporated herein by reference in its entirety.
TECHNICAL FIELDThe present disclosure generally relates to cushioning elements or bladders and methods of manufacturing cushioning element or bladders having one or more components utilizing foam particles.
BACKGROUNDThe design of athletic equipment and apparel as well as footwear involves a variety of factors from the aesthetic aspects, to the comfort and feel, to the performance and durability. While design and fashion may be rapidly changing, the demand for increasing performance in the market is unchanging. To balance these demands, designers employ a variety of materials and designs for the various components that make up athletic equipment and apparel as well as footwear.
Further aspects of the present disclosure will be readily appreciated upon review of the detailed description, described below, when taken in conjunction with the accompanying drawings.
The present disclosure pertains to cushioning elements or bladders including one or more components formed from a plurality of affixed foam particles. The one or more components are disposed in a depression or the interior of the cushioning elements or bladders, such as to provide a spacer or structural support. The cushioning elements or bladders can be used alone or as an element in an article or structure. It has been found that using one or more components formed from a plurality of affixed foam particles work well as spacers or structural supports in cushioning elements or bladders. The use of these components in cushioning elements or bladders can provide many benefits. The polymeric material forming the foam particles can be chosen to be a material which bonds well to a surface of a layer of the cushioning element or bladder, and/or which can be recycled or reused in combination with a polymeric material forming the cushioning element or bladder. The component of affixed foam particles can be rapidly and cost-effectively manufactured with little waste generated, making these components a good alternative to cutting out textile spacers from rolled goods. It is also possible to easily create components having different properties in different zones of a single component (e.g., different hardnesses, different strengths, different colors, etc.), which is much more complicated to do in a textile. The use of additive manufacturing steps to make these components also make it possible to customize these components on a one-on-one basis not possible when using multi-yard rolled goods.
The present disclosure also pertains to methods of manufacturing the cushioning elements or bladders, and incorporating the one or more components therein. The disclosed methods can comprise affixing a plurality of foam particles to each other to form a component, as well as affixing the plurality of foam particles to a surface of the cushioning element or bladder. The disclosed methods may include methods for manufacturing the components from a plurality of foam particles, which can include aspects of additive manufacturing methods. It has been found that aspects of certain additive manufacturing methods can be used with foam particles comprising thermoplastic elastomers. The ability to use foam particles in additive manufacturing methods permits methods to manufacture articles with properties, e.g., bulk density, that are not possible using other materials such as polymeric powders. It has been found that the disclosed methods permit the manufacture of articles that combine the useful performance and material properties found with foamed polymeric materials in processes with the flexibility, customizability, and rapid throughput of an additive manufacturing method.
It has been found that the disclosed cushioning elements and bladders using foam particle components can be used as components used in the manufacture of footwear, such as midsoles, combination midsole-outsoles, and heel-cushioning pads.
The present disclosure is directed to a cushioning element or bladder comprising: a first layer including a depression defined by a first surface; and a first component disposed within the depression of the first layer, the first component comprising a plurality of affixed foam particles each including a first thermoplastic elastomeric material. The cushioning element or bladder can further include a chamber having an interior defined by a first surface and a second surface opposing the first surface; wherein the first component is disposed within the interior of the chamber. The cushioning element or bladder can include a plurality of first components. The one or more first components can be operably coupled with the first surface, the second surface, or the chamber, such as by thermal bonding or adhesive bonding. The first component can have a three-dimensional shape such as a pillar, a column, a wall, a scaffold, and/or has a cylindrical or polyhedral geometry. The chamber can be at least partially filled with a fluid such as a gas, for example, nitrogen. The first component can occupy from about 5% to about 80% of a volume of the interior of the chamber.
The present disclosure also is directed to a method of forming a cushioning element or bladder, the method comprising: disposing a first component in an interior of a chamber; wherein the interior is defined by a first surface and a second surface opposing the first surface, and wherein the first component comprises a plurality of affixed foam particles comprising a first thermoplastic elastomeric material. The method can comprise disposing a plurality of first components in the interior of the chamber. The method can further comprises forming the chamber, such as by blow-molding the chamber, or thermoforming the chamber in a mold. The method further comprises forming the first component by arranging a plurality of foam particles and affixing together at least a portion of the plurality of foam particles, wherein the arranging and affixing are carried out for two or more iterations, forming at least one first component. The method can further comprise operably coupling the at least one first component with the cushioning element or bladder, such as by thermally bonding or adhesively bonding the first component to the chamber.
In a first aspect, the present disclosure is directed to a cushioning element comprising: a first layer including a depression defined by a first surface; and a first component disposed within the depression of the first layer, the first component comprising a plurality of affixed foam particles each including a first thermoplastic elastomeric material.
In a second aspect, the present disclosure is directed to an article of footwear, comprising: an upper operably coupled with a sole structure, wherein the sole structure comprises a cushioning element comprising: a first layer including a depression defined by a first surface; and a first component disposed within the depression of the first layer, the first component comprising a plurality of affixed foam particles each including a first thermoplastic elastomeric material.
In a third aspect, the present disclosure is directed to a method of forming a cushioning element or bladder, the method comprising: disposing a first component in a depression in a first layer defined by a first surface, wherein the first component comprises a plurality of affixed foam particles comprising a first thermoplastic elastomeric material.
In a fourth aspect, the present disclosure is directed to a method of forming a cushioning element or bladder, the method comprising: disposing a first component in an interior of a chamber; wherein the interior is defined by a first surface and a second surface opposing the first surface, and wherein the first component comprises a plurality of affixed foam particles comprising a first thermoplastic elastomeric material.
In a fifth aspect, the present disclosure is directed to an article made by a disclosed method.
The present disclosure will be better understood upon reading the following numbered aspects, which should not be confused with the claims. Any of the numbered aspects below can, in some instances, be combined with aspects described elsewhere in this disclosure and such combinations are intended to form part of the disclosure.
Aspect 1. A cushioning element or bladder comprising:
-
- a first layer including a depression defined, at least in part, by a first surface; and
- a first component disposed within the depression of the first layer, the first component comprising a plurality of affixed foam particles each including a first thermoplastic elastomeric material;
- optionally, wherein the bladder comprises a chamber having an interior defined by the first surface and a second surface opposing the first surface; and wherein the first component is disposed within the interior of the chamber.
Aspect 2. The cushioning element or bladder of any one of Aspects 1 to 147, comprising a plurality of first components, each first component comprising a plurality of affixed foam particles.
Aspect 3. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component extends between the first surface and the second surface, and is operably coupled with the first surface, the second surface, or both.
Aspect 4. The cushioning element or bladder of any one of Aspects 1 to 147, wherein, prior to being affixed, each individual foam particle has a number average particle size of about 0.04 millimeters to about 10 millimeters in a longest dimension.
Aspect 5. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the plurality of foam particles comprise a first portion of first foam particles, and a second portion of second foam particles.
Aspect 6. The cushioning element or bladder of any one of Aspects 1 to 147, wherein prior to being affixed, the plurality of foam particles comprises irregularly shaped foam particles.
Aspect 7. The cushioning element or bladder of any one of Aspects 1 to 147, wherein prior to being affixed, the plurality of foam particles includes ellipsoidally-shaped foam particles or essentially spherically-shaped foam particles or both.
Aspect 8. The cushioning element or bladder of any one of Aspects 1 to 147, wherein prior to being affixed, at least 20 percent of the plurality of foam particles include spheroidally-shaped foam particles or ellipsoidally-shaped foam particles, and, in the first component, at least 20 percent of the plurality of affixed foam particles remain substantially spheroidally-shaped or ellipsoidally-shaped.
Aspect 9. The cushioning element or bladder of any one of Aspects 1 to 147, wherein, prior to being affixed, the plurality of foam particles has a number average aspect ratio of about 0.1 to about 1.0.
Aspect 10. The cushioning element or bladder of any one of Aspects 1 to 147, wherein, prior to being affixed, the plurality of foam particles has a number average circularity value of about 0.60 to about 0.99, or from about 0.89 to about 0.99, or from about 0.92 to about 0.99.
Aspect 11. The cushioning element or bladder of any one of Aspects 1 to 147, wherein, prior to being affixed, the plurality of foam particles has a number average particle size of about 0.1 millimeters to about 5 millimeters in the longest dimension, or from about 0.5 millimeters to about 3 millimeters in the longest dimension.
Aspect 12. The cushioning element or bladder of any one of Aspects 1 to 147, wherein, prior to being affixed, each individual foam particle has a density of about 0.1 grams per cubic centimeter to about 0.8 grams per cubic centimeter, or from about 0.30 grams per cubic centimeter to about 0.50 grams per cubic centimeter, or from about 0.32 grams per cubic centimeter to about 0.48 grams per cubic centimeter.
Aspect 13. The cushioning element or bladder of any one of Aspects 1 to 147, wherein prior to being affixed the plurality of foam particles has a bulk density of about 80 grams per liter to about 200 grams per liter, or from about 100 grams per liter to about 150 grams per liter, or from about 110 grams per liter to about 140 grams per liter.
Aspect 14. The cushioning element or bladder of any one of Aspects 1 to 147, wherein each individual affixed foam particle of the plurality of affixed foam particles includes one or more binding regions affixing an outer surface of the individual foam particle to an outer surface of one or more adjacent foam particles.
Aspect 15. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more binding regions include a first thermoplastic elastomeric material from the surface of the individual foam particle, a second thermoplastic elastomeric material from the surface of the one or more adjacent foam particles, or the first thermoplastic elastomeric material intermingled with the second thermoplastic elastomeric material.
Aspect 16. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more binding regions include a binding material.
Aspect 17. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more binding regions include re-flowed and re-solidified first thermoplastic elastomeric material from the individual foam particle, re-flowed and re-solidified second thermoplastic elastomeric material from the at least one of the one or more adjacent foam particles, re-flowed and re-solidified third thermoplastic elastomeric material, or any combination thereof.
Aspect 18. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more binding regions include re-flowed and re-solidified binding material from the individual foam particle, from the at least one of the one or more adjacent foam particles, or both.
Aspect 19. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more binding regions include dissolved and re-solidified first thermoplastic elastomeric material from the individual foam particle, dissolved and re-solidified second thermoplastic elastomeric material from the at least one of the one or more adjacent foam particles, or both.
Aspect 20. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more binding regions include dissolved and re-solidified binding material from the individual foam particle, from the at least one of the one or more adjacent foam particles, or both.
Aspect 21. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the binding material comprises a thermal-energy absorber.
Aspect 22. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the thermal-energy absorber comprises graphite, carbon fibers, carbon nanotubes, carbon black, or combinations thereof.
Aspect 23. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the carbon black is a nanoparticle.
Aspect 24. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the thermal-energy absorber is a microwave-energy absorber.
Aspect 25. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the microwave-energy absorber comprises a metal, a metal salt, metal oxide, a metal nitride, a metal carbide, a metal sulfide, a hydrated salt, a carbon, a clay, a silicate, a ceramic, a zeolite, a silica, an alumina, a titania gel, a vermiculate, a attapulgite, a molecular sieve, or combinations thereof.
Aspect 26. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the metal salt is CuXn where n is an integer from 1 to 6 and X is a halogen; ZnX2 or SnX2 where X is a halogen, or combinations thereof.
Aspect 27. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the hydrated salt is NiCl2.6H2O, Al2(SO4)3.18H2O, or combinations thereof.
Aspect 28. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the metal oxide is CuO, NiO, Fe3O4, Co2O3, BaTiO3, or combinations thereof.
Aspect 29. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the metal sulfide is Ag2S, CuS, MoS3, PbS, ZnS, FeS, FeS2, or combinations thereof.
Aspect 30. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the metal carbide is SiC, W2C, B4C, or combinations thereof.
Aspect 31. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the metal nitride is TiN.
Aspect 32. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the carbon is a graphite, carbon fibers, carbon nanotubes, carbon black, or combinations thereof.
Aspect 33. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the carbon black is a nanoparticle
Aspect 34. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the clay is sepiolite clay.
Aspect 35. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the microwave-energy absorber further comprises water.
Aspect 36. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the microwave-energy absorber has an average particle size of from about 0.1 nanometers to about 50 micrometer.
Aspect 37. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the microwave-energy absorber is present in the binding material at from about 0.1 weight percent to about 25 weight percent based on the total weight of the binding material.
Aspect 38. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the thermal-energy absorber is an infrared-radiation absorber.
Aspect 39. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the infrared-radiation absorber comprises a metal oxide, a metal complex compound, an infrared-absorbing dye, or combinations thereof.
Aspect 40. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the metal oxide is a tin oxide, zinc oxide, copper oxide; antimony-doped tin oxide, indium-doped tin oxide, or combinations thereof.
Aspect 41. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the metal complex compound comprises a zinc oxide comprising at least one element selected from the group consisting of In, Ga, Al, and Sb, or combinations thereof.
Aspect 42. The cushioning element or bladder of any one of Aspects 1 to 147, wherein infrared-absorbing dye is an anthraquinone dye, cyanine dye, polymethine dye, azomethine dye, azo dye, polyazo dye, diimonium dye, aminium dye, phthalocyanine dye, naphthalocyanine dye, indocyanine dye, naphthoquinone dye, indole phenol dye, triallylmethane dye, metal complex dye, dithiol nickel complex dye, azo cobalt complex dye, a squarylium dye, or combinations thereof.
Aspect 43. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the infrared-radiation absorber is present in the binding material at from about 0.001 weight percent to about 0.08 weight percent based on the total weight of the binding material, or from about 0.005 weight percent to about 0.06 weight percent based on the total weight of the binding material.
Aspect 44. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the binding material comprises one or more monomers, one or more polymers, or combinations thereof.
Aspect 45. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more monomers comprise one or more epoxy group, one or more acrylic acid group, one or more methacrylic acid, one or more methyl methacrylic acid group, or combinations thereof.
Aspect 46. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more polymers comprise a photocurable elastomeric resin, a heat activated resin, or combinations thereof.
Aspect 47. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the one or more polymers comprise: a polyacrylate; a polyepoxide; a copolymer derived from one or more monomers comprising one or more epoxy group, one or more acrylic acid group, one or more methacrylic acid, one or more methyl methacrylic acid group; or any combination thereof.
Aspect 48. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the copolymer is a block copolymer comprising at least one polyacrylate block, polymethacrylate block, polymethylmethacrylate block, or any combination thereof.
Aspect 49. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the binding material comprises an adhesive.
Aspect 50. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the binding material comprises one or more binding solvents capable of softening or partially solubilizing a portion of one of the foam particles, a coating applied to one of the foam particles, or a combination thereof.
Aspect 51. The cushioning element or bladder of any one of Aspects 1 to 147, wherein at least one of the binding solvents is an organic solvent, an aqueous solvent, or any combination thereof.
Aspect 52. The cushioning element or bladder of any one of Aspects 1 to 147, wherein at least one of the binding solvents is an alcohol, ketone, acetate, or mixture thereof
Aspect 53. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the organic solvent is tetrahydrofuran, dimethylformamide, hexafluoroisopropanol, dichloromethane, or combinations thereof.
Aspect 54. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the binding solvent is a mixed solvent system comprising a combination of at least two solvents selected from acetic acid, formic acid, trifluoroacetic acid, tetrahydrofuran, chlorophenol, dimethylformamide, hexafluoroisopropanol, and dichloromethane.
Aspect 55. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the mixed solvent system comprises formic acid and dichloromethane; formic acid and acetic acid; formic acid and chlorophenol; or formic acid and hexafluoroisopropanol.
Aspect 56. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the binding material further comprises an ultraviolet (UV) radiation light-activated free radical polymerization initiator, a thermal energy-activated polymerization initiator, or combinations thereof.
Aspect 57. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic elastomeric material and the second thermoplastic elastomeric material are substantially similar thermoplastic elastomers.
Aspect 58. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic elastomeric material and the second thermoplastic elastomeric material are substantially identical thermoplastic elastomers.
Aspect 59. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic elastomeric material or the second thermoplastic elastomeric material or both comprises a thermoplastic polyurethane elastomer, a thermoplastic polyurea elastomer, a thermoplastic polyether elastomer, a thermoplastic copolyetherester elastomer, a thermoplastic polyamide elastomer, a thermoplastic polystyrene elastomer, a thermoplastic polyolefin elastomer, a thermoplastic copolyetheramide elastomer, a thermoplastic styrene diene copolymer elastomer, a thermoplastic styrene block copolymer elastomer, a thermoplastic polyamide elastomer, a thermoplastic polyimide elastomer, any copolymer thereof, or any blend thereof.
Aspect 60. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic elastomeric material or the second thermoplastic elastomeric material or both comprises a thermoplastic polyurethane elastomer.
Aspect 61. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic elastomeric material or the second thermoplastic elastomeric material or both comprises a thermoplastic polyester elastomer.
Aspect 62. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic elastomeric material or the second thermoplastic elastomeric material or both comprises a thermoplastic polyamide elastomer.
Aspect 63. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic elastomeric material or second thermoplastic elastomeric material or both comprises a thermoplastic polyether block amide copolymer.
Aspect 64. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component comprises a plurality of layers of affixed foam particles.
Aspect 65. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component comprises from 3 to 100 layers, or from 3 to 50 layers of affixed foam particles.
Aspect 66. The cushioning element or bladder of any one of Aspects 1 to 147, wherein an average number of layers per millimeter in the first component is from about 0.1 layer per millimeter to about 2.5 layers per millimeter, or from about 0.3 layers per millimeter to 2 layers per millimeter.
Aspect 67. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component is characterized by a plurality of sub-regions comprising a first sub-region characterized by a first property and a second sub-region characterized by a second property, wherein the first property is not equal to the second property, and wherein the first property and the second property are flexural modulus, stiffness, bulk density, or resilience.
Aspect 68. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first property is at least 10 percent greater than the second property.
Aspect 69. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component is characterized by a plurality of cross-sectional sub-regions comprising a first sub-region characterized by a first flexural modulus and a second sub-region characterized by a second flexural modulus, wherein the first flexural modulus is not equal to the second flexural modulus.
Aspect 70. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component is characterized by a plurality of cross-sectional sub-regions comprising a first sub-region characterized by a first bulk density and a second sub-region characterized by a second bulk density, wherein the first bulk density is not equal to the second bulk density.
Aspect 71. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component is characterized by a plurality of cross-sectional sub-regions comprising a first sub-region characterized by a first stiffness and a second sub-region characterized by a second stiffness, wherein the first stiffness is not equal to the second stiffness.
Aspect 72. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component is characterized by a plurality of cross-sectional sub-regions comprising a first sub-region characterized by a first resilience and a second sub-region characterized by a second resilience, wherein the first resilience is not equal to the second resilience.
Aspect 73. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component has a density of about 0.1 grams per cubic centimeter to about 2.0 grams per cubic centimeter, or from about 0.3 grams per cubic centimeter to about 0.7 grams per cubic centimeter.
Aspect 74. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component is affixed to the first surface at a first attachment point.
Aspect 75. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component is affixed to the second surface at a second attachment point.
Aspect 76. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component is thermally bonded to the first surface, to the second surface, or to both.
Aspect 77. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component includes a pillar, a column, a wall, a scaffold, or any combination thereof, extending between the first interior-facing surface and the second interior-facing surface.
Aspect 78. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component has a cylindrical or polyhedral geometry.
Aspect 79. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component has one or more hollow or void regions that are substantially free of foam particles.
Aspect 80. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component has one or more regions that includes a plurality of unaffixed foam particles.
Aspect 81. The cushioning element or bladder of any one of Aspects 1 to 147, comprising a second component operably coupled with the first surface, the second surface, or both.
Aspect 82. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the second component is a textile.
Aspect 83. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the second component is substantially rigid.
Aspect 84. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component, the second component, or both occupy from about 5 percent to about 80 percent of a volume of the interior of the chamber.
Aspect 85. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first component, or at least a portion of the foam particles, comprise a printed marking, a colorant, a paint, a dye, an embossed or debossed texture, or any combination thereof.
Aspect 86. The cushioning element or bladder of any one of Aspects 1 to 147, further comprising one or more additional first components operably coupled with an externally-facing surface of the chamber.
Aspect 87. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the bladder is a blow-molded bladder.
Aspect 88. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first surface is formed of a first sheet comprising a third thermoplastic material, and the second surface is formed of a second sheet comprising a fourth thermoplastic material.
Aspect 89. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first sheet is bonded to the second sheet along a seam extending around at least a portion of a perimeter of the chamber.
Aspect 90. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the chamber includes a sidewall.
Aspect 91. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the bladder has a ground-facing side, and the first surface is oriented toward the ground-facing side.
Aspect 92. The cushioning element or bladder of any one of Aspects 1 to 147, wherein an edge of the sidewall is adjacent to the second surface.
Aspect 93. The cushioning element or bladder of any one of Aspects 1 to 147, wherein a portion of the sidewall is formed from the second sheet.
Aspect 94. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the seam extends along a center of the sidewall.
Aspect 95. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the seam extends along an edge of the sidewall.
Aspect 96. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first sheet is bonded to the second sheet along a seam extending around the sidewall thereby defining a fluid-filled inner chamber.
Aspect 97. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the ground-facing side of the bladder is substantially planar and the sidewall of the bladder comprises a curved transition from the ground-facing side to a section of the sidewall that is substantially perpendicular to the ground-facing side.
Aspect 98. The cushioning element or bladder of any one of Aspects 1 to 147, wherein a portion of the sidewall is formed from the second sheet.
Aspect 99. The cushioning element or bladder of any one of Aspects 1 to 147, wherein an opening extends through the seam into the interior of the chamber.
Aspect 100. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the opening comprises a fill valve.
Aspect 101. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the chamber is at least partially filled with a fluid.
Aspect 102. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fluid is a gas.
Aspect 103. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the gas comprises nitrogen.
Aspect 104. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fluid is pressurized.
Aspect 105. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the third thermoplastic material comprises a third thermoplastic polymer selected from the group consisting of a thermoplastic polyester, a thermoplastic polyether, a thermoplastic polyamide, a thermoplastic polyurethane, a thermoplastic polyolefin, and combinations thereof.
Aspect 106. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the third thermoplastic polymer is a thermoplastic polyurethane.
Aspect 107. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the thermoplastic polyurethane is a thermoplastic polyester polyurethane.
Aspect 108. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the third thermoplastic polyester is a polyethylene terephthalate (PET).
Aspect 109. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the thermoplastic polyamide is nylon 6,6, nylon 6, nylon 12, and combinations thereof.
Aspect 110. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the third thermoplastic material comprises a third thermoplastic copolymer.
Aspect 111. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the third thermoplastic copolymer is selected from the group consisting of a thermoplastic copolyester, a thermoplastic co-polyether, a thermoplastic co-polyamide, a thermoplastic co-polyurethane, and combinations thereof.
Aspect 112. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the third thermoplastic copolymer is a thermoplastic polyether block amide (PEBA) copolymer.
Aspect 113. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic material and the third thermoplastic material include the same thermoplastic polymer.
Aspect 114. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the second thermoplastic material and the third thermoplastic material include the same thermoplastic polymer.
Aspect 115. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic material, the second thermoplastic material, and the third thermoplastic material include the same thermoplastic polymer.
Aspect 116. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic material, the second thermoplastic material, and the third thermoplastic material each comprise a thermoplastic polyurethane.
Aspect 117. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fourth thermoplastic material comprises a fourth thermoplastic polymer selected from the group consisting of a thermoplastic polyester, a thermoplastic polyether, a thermoplastic polyamide, a thermoplastic polyurethane, a thermoplastic polyolefin, and combinations thereof.
Aspect 118. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fourth thermoplastic polymer is a thermoplastic polyurethane.
Aspect 119. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the thermoplastic polyurethane is a thermoplastic polyester polyurethane.
Aspect 120. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fourth thermoplastic polyester is a polyethylene terephthalate.
Aspect 121. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fourth thermoplastic polyamide is nylon 6,6, nylon 6, nylon 12, and combinations thereof.
Aspect 122. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fourth thermoplastic material comprises a fourth thermoplastic copolymer.
Aspect 123. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fourth thermoplastic copolymer is selected from the group consisting of a thermoplastic copolyester, a thermoplastic co-polyether, a thermoplastic co-polyamide, a thermoplastic co-polyurethane, and combinations thereof.
Aspect 124. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the fourth thermoplastic copolymer is a thermoplastic polyether block amide copolymer.
Aspect 125. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic material and the fourth thermoplastic material include the same thermoplastic polymer.
Aspect 126. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the second thermoplastic material and the fourth thermoplastic material include the same thermoplastic polymer.
Aspect 127. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the third thermoplastic material and the fourth thermoplastic material include the same thermoplastic polymer.
Aspect 128. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the second thermoplastic material, the third thermoplastic material, and the fourth thermoplastic material include the same thermoplastic polymer.
Aspect 129. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first thermoplastic material, the second thermoplastic material, the third thermoplastic material, and the fourth thermoplastic material include the same thermoplastic polymer.
Aspect 130. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first sheet has a gas transmission rate of 15 cubic centimeter per square meter·atmosphere·day or less for nitrogen for an average film thickness of 20 thousandths of an inch.
Aspect 131. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first sheet has a thickness of about 0.1 to 40 thousandths of an inch.
Aspect 132. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first sheet is a first layered film including from about 5 layers to about 200 layers; and wherein the first layered film includes at least one cap layer comprising the third thermoplastic material.
Aspect 133. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first layered film includes at least 7 layers.
Aspect 134. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first layered film includes at least 20 layers.
Aspect 135. The cushioning element or bladder of any one of Aspects 1 to 147, wherein each of the layers of the first layered film independently comprises a polymeric material that is the same as or different from the third thermoplastic material.
Aspect 136. The cushioning element or bladder of any one of Aspects 1 to 147, wherein at least one of the layers comprises a thermoplastic polyurethane.
Aspect 137. The cushioning element or bladder of any one of Aspects 1 to 147, wherein at least one of the layers comprises an ethylene-vinyl alcohol copolymer.
Aspect 138. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first layered film includes a plurality of alternating first and second layers, wherein the first layers comprise thermoplastic polyurethane, and the second layers comprise ethylene-vinyl alcohol copolymer.
Aspect 139. The cushioning element or bladder of any one of Aspects 1 to 147, wherein at least one of the layers of the first layered film comprises a polymeric material that has a gas transmission rate of 15 cubic centimeter per square meter·atmosphere·day or less for nitrogen for an average film thickness of 20 thousandths of an inch.
Aspect 140. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the second sheet has a gas transmission rate of 15 cubic centimeter per square meter·atmosphere·day or less for nitrogen for an average film thickness of 20 thousandths of an inch.
Aspect 141. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the second sheet has a thickness of about 0.1 to 40 thousandths of an inch.
Aspect 142. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the second sheet comprises a second layered film including from about 5 layers to about 200 layers, or at least 7 layers, or at least 20 layers; and wherein the second layered film includes at least one cap layer comprising the fourth thermoplastic material.
Aspect 143. The cushioning element or bladder of any one of Aspects 1 to 147, wherein each of the layers of the first layered film independently comprises a polymeric material that is the same as or different from the third thermoplastic material.
Aspect 144. The cushioning element or bladder of any one of Aspects 1 to 147, wherein at least one of the layers comprises a thermoplastic polyurethane.
Aspect 145. The cushioning element or bladder of any one of Aspects 1 to 147, wherein at least one of the layers comprises an ethylene-vinyl alcohol copolymer.
Aspect 146. The cushioning element or bladder of any one of Aspects 1 to 147, wherein the first layered film includes a plurality of alternating first and second layers, wherein the first layers comprise thermoplastic polyurethane, and the second layers comprise ethylene-vinyl alcohol copolymer.
Aspect 147. The cushioning element or bladder of any one of Aspects 1 to 147, wherein at least one of the layers of the first layered film comprises a polymeric material that has a gas transmission rate of 15 cubic centimeter per square meter·atmosphere·day or less for nitrogen for an average film thickness of 20 thousandths of an inch.
Aspect 148. An article of footwear, comprising:
-
- an upper operably coupled with a sole structure, wherein the sole structure comprises a cushioning element including the cushioning element or bladder of any one of Aspects 1 to 147.
Aspect 149. A method of forming a cushioning element or bladder, the method comprising:
-
- disposing a first component in a depression in a first layer defined by a first surface, wherein the first component comprises a plurality of affixed foam particles comprising a first thermoplastic elastomeric material.
Aspect 150. A method of forming a cushioning element or bladder, the method comprising:
-
- disposing a first component in an interior of a chamber; wherein the interior is defined by a first surface and a second surface opposing the first surface, and wherein the first component comprises a plurality of affixed foam particles comprising a first thermoplastic elastomeric material.
Aspect 151. The method of any one of Aspects 149 to 251, comprising disposing a plurality of first components in the depression or the interior of the chamber.
Aspect 152. The method of any one of Aspects 149 to 251, wherein the method further comprises forming the first component by arranging a plurality of foam particles and affixing together at least a portion of the plurality of foam particles, wherein the arranging and affixing are carried out for two or more iterations, forming at least one first component.
Aspect 153. The method of any one of Aspects 149 to 251, wherein, prior to the affixing, the plurality of foam particles has a number average particle size of about 0.04 millimeters to about 10 millimeters in the longest dimension.
Aspect 154. The method of any one of Aspects 149 to 251, wherein the arranging the plurality of foam particles comprises arranging using a roller mechanism, a wiper mechanism, or a blower mechanism.
Aspect 155. The method of any one of Aspects 149 to 251 wherein the roller mechanism has a smooth roller surface or a textured roller surface.
Aspect 156. The method of any one of Aspects 149 to 251, wherein the arranging a plurality of foam particles comprises arranging a layer of a plurality of foam particles.
Aspect 157. The method of any one of Aspects 149 to 251, wherein the arranging a plurality of foam particles comprises arranging a combination of a plurality of first foam particles comprising a first thermoplastic elastomeric material and a plurality of second foam particles comprising a second thermoplastic elastomeric material.
Aspect 158. The method of any one of Aspects 149 to 251, wherein the method comprises mixing together the plurality of first foam particles with the plurality of second foam particles prior to the arranging.
Aspect 159. The method of any one of Aspects 149 to 251, wherein the arranging and affixing are carried out for three or more iterations.
Aspect 160. The method of any one of Aspects 149 to 251, wherein the arranging and affixing are carried out for three iterations to 500 iterations.
Aspect 161. The method of any one of Aspects 149 to 251, wherein one iteration of arranging and affixing results in one layer of affixed foam particles.
Aspect 162. The method of any one of Aspects 149 to 251, wherein the number of iterations of arranging and affixing result in a component comprising from 3 to 100 layers of affixed particles, or from 3 to 50 layers of affixed particles.
Aspect 163. The method any one of Aspects 149 to 251, wherein the resulting at least one first component comprises a plurality of layers of affixed foam particles, and an average number of layers per millimeter in the first component is from about 0.1 layer per millimeter to about 2.5 layers per millimeter, or is from about 0.3 layer per millimeter to about 2 layers per millimeter.
Aspect 164. The method of any one of Aspects 149 to 251, wherein forming at least one first component comprises forming a plurality of first components.
Aspect 165. The method of any one of Aspects 149 to 251, wherein affixing together at least a portion of the plurality of foam particles comprises:
-
- increasing a temperature of at least a portion of the plurality of foam particles with actinic radiation under conditions effective to melt or soften a portion of the first thermoplastic elastomer material at a first surface of at least one of the plurality of foam particles; and
- decreasing the temperature of the melted or softened portion of the first thermoplastic elastomer material, thereby solidifying the melted or softened portion of the first thermoplastic elastomer material and forming a plurality of fused foam particles;
- wherein the increasing the temperature is carried out for at least one iteration.
Aspect 166. The method of any one of Aspects 149 to 251, wherein:
-
- arranging a plurality of foam particles comprises arranging a first foam particle having a first surface formed of a first thermoplastic elastomer material in contact with a second surface of an adjacent foam particle, the second surface of the adjacent foam particle being formed of a second thermoplastic elastomer material; and
- affixing together at least a portion of the plurality of foam particles comprises: increasing a temperature of at least a portion of the plurality of foam particles with actinic radiation under conditions effective to melt or soften a portion of the first thermoplastic elastomer material of the first surface of the first foam particle, or the second thermoplastic elastomer material of the second surface of the adjacent foam particle, or both; and decreasing the temperature of the melted or softened portion of the first thermoplastic elastomer material, of the second thermoplastic elastomer material, or of both, thereby solidifying the melted or softened portion of the first thermoplastic elastomer material, of the second thermoplastic elastomer material, or of both; and forming a plurality of fused foam particles; and wherein the increasing the temperature is carried out for at least one iteration.
Aspect 167. The method of any one of Aspects 149 to 251, wherein the increasing the temperature further comprises intermingling melted first thermoplastic elastomer material from a first region within the portion of the plurality of foam particles with melted first thermoplastic elastomer material from a second region within the portion of the plurality of foam particles; and wherein the decreasing the temperature of the melted or softened portion of the first thermoplastic elastomer material comprises decreasing the temperature of intermingled melted thermoplastic elastomer material from the first region and the second region, thereby solidifying the intermingled thermoplastic elastomer material and forming the plurality of fused foam particles.
Aspect 168. The method of any one of Aspects 149 to 251, wherein the increasing the temperature further comprises intermingling melted first thermoplastic elastomer material from the first surface of the first foam particle with melted second thermoplastic elastomer material from the second surface of the adjacent foam particle; and wherein the decreasing the temperature of the melted or softened portion of the first thermoplastic elastomer material or the melted or softened portion of the second thermoplastic elastomer comprises decreasing a temperature of the intermingled thermoplastic elastomer material, thereby solidifying the melted portion of the thermoplastic elastomer and forming the plurality of fused foam particles.
Aspect 169. The method of any one of Aspects 149 to 251, wherein the increasing the temperature of at least a portion of the plurality of foam particles comprises increasing the temperature of a target area of the plurality of foam particles.
Aspect 170. The method of any one of Aspects 149 to 251, wherein the increasing the temperature of at least a portion of the plurality of foam articles with actinic radiation comprises increasing a temperature of at least a portion of the plurality of foam particles with a directed energy beam.
Aspect 171. The method of any one of Aspects 149 to 251, wherein the increasing the temperature of at least a portion of the plurality of foam particles with a directed energy beam comprises heating at least a portion of the plurality of foam particles with a directed energy beam.
Aspect 172. The method of any one of Aspects 149 to 251, wherein the directed energy beam of actinic radiation is a laser beam.
Aspect 173. The method of any one of Aspects 149 to 251, wherein the laser beam is emitted by a gas dynamic laser, a diode laser, or a lead salt laser.
Aspect 174. The method of any one of Aspects 149 to 251, wherein the laser beam is emitted by a carbon dioxide laser.
Aspect 175. The method of any one of Aspects 149 to 251, wherein the laser beam comprises a two or more laser beams, wherein each laser beam is directed at the target area.
Aspect 176. The method of any one of Aspects 149 to 251, wherein the laser beam emits a beam within the infrared spectrum.
Aspect 177. The method of any one of Aspects 149 to 251, wherein the laser beam emits a beam within the far infrared spectrum, within the near infrared spectrum, or within the mid infrared spectrum.
Aspect 178. The method of any one of Aspects 149 to 251, wherein the laser beam emits a beam with a wavelength of about 700 nanometers to about 1 millimeter, or about 1 micrometers to about 20 micrometer, about 0.1 millimeters to about 0.7 millimeter.
Aspect 179. The method of any one of Aspects 149 to 251, wherein the laser beam has a scan pattern such that each pass of the laser beam overlaps the adjacent pass of the laser beam by a fractional amount of about 0.1 to 0.5.
Aspect 180. The method of any one of Aspects 149 to 251, wherein the laser beam is de-focused.
Aspect 181. The method of any one of Aspects 149 to 251, wherein the directed energy beam has a scan pattern such that the directed energy beam is directed in an x-y plane; and wherein the directed energy beam is configured to varying an amount of energy for an amount of time directed to each point in the x-y plane.
Aspect 182. The method of any one of Aspects 149 to 251, wherein the directed energy beam has a power output of about 25 to about 75 watts, or about 35 to about 55 watts.
Aspect 183. The method of any one of Aspects 149 to 251, wherein the processing conditions comprise directing energy at a scanning rate across a target area of about 7,500 millimeters per second to about 25,000 millimeters per second.
Aspect 184. The method of any one of Aspects 149 to 251, wherein the heating a target area of the plurality of foam particles is carried out for 1 iterations to 500 iterations, or for 1 iterations to 10 iterations, or for 1 iterations to 8 iterations, or for 1 iterations to 7 iterations, or for 2 iterations to 10 iterations, or for 2 iterations to 8 iterations, or for 2 iterations to 7 iterations, or for at least 2 iterations, or for 1 iteration, or for 2 iterations, or for 3 iterations, or for 4 iterations, or for 5 iterations, or for 6 iterations, or for 7 iterations.
Aspect 185. The method of any one of Aspects 149 to 251, wherein the heating of a target area fuses a first foam particle to a second foam particle in the target area, wherein the first foam particle is melted to a depth of about 10 micrometers about 500 micrometers measured from the surface of the first foam particle, and wherein the second foam particle is melted to a depth of about 10 micrometers about 500 micrometers measured from the surface of the second foam particle.
Aspect 186. The method of any one of Aspects 149 to 251, further comprising providing an additive to the first component.
Aspect 187. The method of any one of Aspects 149 to 251, wherein the additive is provided during arranging the plurality of foam particles.
Aspect 188. The method of any one of Aspects 149 to 251, wherein the additive is provided after arranging the layer of a plurality of foam particles and before the energy beam.
Aspect 189. The method of any one of Aspects 149 to 251, wherein the additive is provided at the same or about the same time as directing the energy beam.
Aspect 190. The method of any one of Aspects 149 to 251, wherein the additive is provided after directing the energy beam.
Aspect 191. The method of any one of Aspects 149 to 251, wherein the additive is sprayed onto the plurality of foam particles.
Aspect 192. The method any one of Aspects 149 to 251, wherein the additive is a polyurea or polyurethane coating.
Aspect 193. The method of any one of Aspects 149 to 251, wherein the additive comprises a binder, an adhesive, a lubricant, an anti-oxidant, a colorant, a filler, a laser sensitizing agent, and any combination thereof.
Aspect 119493. The method of any one of Aspects 149 to 251, wherein the affixed plurality of foam particles has a density of about 0.100 grams per cubic centimeter to about 0.700 grams per cubic centimeter after directing the energy beam at the target area.
Aspect 195. The method of any one of Aspects 149 to 251, wherein increasing the temperature of a target area of the plurality of foam particles comprises increasing the temperature of a plurality of target areas of the plurality of foam particles.
Aspect 196. The method of any one of Aspects 149 to 251, wherein the at least one first component has a border region defined by a subset of the plurality of target areas.
Aspect 197. The method of any one of Aspects 149 to 251, wherein the at least one first component has a first cross-sectional region defined at least in part by a subset of the plurality of target areas.
Aspect 198. The method of any one of Aspects 149 to 251, wherein heating the plurality of target areas comprises directing the directed energy beam to each target area using a vector scan method.
Aspect 199. The method of any one of Aspects 149 to 251, wherein directing the directed energy beam to each target area comprises using a raster scan method.
Aspect 200. The method of any one of Aspects 149 to 251, further comprising arranging a selective laser sintering powder on a surface of the at least one first component; and
-
- heating a target area of the laser sintering powder with a directed energy beam under conditions effective to fuse the laser sintering powder, wherein the heating the target area of the laser sintering powder is carried out for at least one iteration.
Aspect 201. The method of any one of Aspects 149 to 251, wherein the selective laser sintering powder has a particle size of about 0.020 millimeters to about 0.100 millimeter.
Aspect 202. The method of any one of Aspects 149 to 251, wherein the arranging the selective laser sintering powder on a surface of the article and the heating the target area of the laser sintering powder are repeated.
Aspect 203. The method of any one of Aspects 149 to 251, wherein an iteration of the arranging comprises depositing a layer comprising the selective laser sintering powder.
Aspect 204. The method of any one of Aspects 149 to 251, wherein the heating is at a temperature sufficient and a time sufficient to fuse the selective laser sintering powder.
Aspect 205. The method of any one of Aspects 149 to 251, wherein the heating is at a temperature sufficient and a time sufficient to melt the selective laser sintering powder, thereby forming a melted selective laser sintering powder; and wherein a portion of the melted selective laser sintering powder is flowable.
Aspect 206. The method of any one of Aspects 149 to 251, wherein affixing together at least a portion of the plurality of foam particles comprises:
-
- depositing a binding material in a binding material target area, wherein the binding material target area comprises at least a portion of the arranged plurality of foam particles, and wherein the depositing coats at least a portion of defining surfaces of the arranged plurality of foam particles with the binding material; and
- curing deposited binding material coating at least a portion of the defining surfaces of the arranged plurality of foam particles within at least the binding material target area, wherein curing comprises affixing at least a portion of the arranged plurality of foam particles within the target area.
Aspect 207. The method of any one of Aspects 149 to 251, wherein the depositing a binding material comprises depositing the binding material by jetting, spraying, or combinations thereof.
Aspect 208. The method of any one of Aspects 149 to 251, wherein the depositing comprises atomizing, volatizing, misting, or combinations thereof.
Aspect 209. The method of any one of Aspects 149 to 251, wherein the depositing comprises depositing using a piezeoelectric printhead.
Aspect 210. The method of any one of Aspects 149 to 251, wherein the curing comprises solidifying the deposited binding material and binding the deposited binding material to the coated at least a portion of the defining surfaces of the arranged plurality of foam particles.
Aspect 211. The method of any one of Aspects 149 to 251, wherein the curing comprises:
-
- applying energy to the deposited binding material and the arranged plurality of foam particles in an amount and for a duration sufficient to soften the first thermoplastic elastomer material of the coated at least a portion of the defining surfaces of the arranged plurality of foam particles; and
- decreasing a temperature of the region of the arranged plurality of foam particles to a temperature at or below which the softened thermoplastic elastomer material re-solidifies; thereby affixing at least a portion of the coated at least a portion of the defining surfaces of the arranged plurality of foam particles in the binding material target area.
Aspect 212. The method of any one of Aspects 149 to 251, wherein the applying energy comprises applying energy to substantially all of the arranged plurality of foam particles.
Aspect 213. The method of any one of Aspects 149 to 251, wherein the applying energy comprises applying energy using a directed energy beam.
Aspect 214. The method of any one of Aspects 149 to 251, wherein the applying energy comprises applying a thermal energy source.
Aspect 215. The method of any one of Aspects 149 to 251, wherein the thermal energy source is an infrared energy source, a microwave energy source, a radiant heat source, a steam heat source, or a combination thereof.
Aspect 216. The method of any one of Aspects 149 to 251, wherein the binding material comprises a thermal energy absorber.
Aspect 217. The method of any one of Aspects 149 to 251, wherein the binding material comprises one or more monomers, one or more polymers, or combinations thereof; and
-
- wherein curing comprises:
- forming at least one chemical bond between the one or more monomers, the one or more polymers, or the combinations thereof of the binding material; and/or
- forming at least one chemical bond between the coated at least a portion of the defining surfaces of the arranged plurality of foam particles in the binding material target area and the one or more monomers, the one or more polymers, or the combinations thereof of the binding material;
- thereby affixing the coated at least a portion of the arranged plurality of foam particles to each other or to uncoated foam particles in the binding material target area.
Aspect 218. The method of any one of Aspects 149 to 251, wherein depositing a binding material comprises depositing the binding material by jetting, spraying, or combinations thereof;
-
- wherein the binding material comprises a solvent;
- wherein the method further comprises, following the depositing, dissolving at least a portion of the defining surfaces of the arranged plurality of foam particles with the solvent, forming dissolved defining surfaces of the arranged foam particles; and
- wherein the curing comprises, following the dissolving, removing at least a portion of the solvent of the binding material and solidifying the at least a portion of the dissolved defining surfaces of the arranged foam particles;
- thereby affixing at least a portion of the arranged plurality of foam particles to each other or to uncoated foam particles in the binding material target area.
Aspect 219. The method of any one of Aspects 149 to 251, wherein the depositing comprises depositing a first binding material and a second binding material;
-
- wherein the first binding material comprises a solvent
- wherein the second binding material comprises a binding thermoplastic elastomer material which is soluble in the solvent; and
- wherein the curing comprises removing the solvent and solidifying the binding thermoplastic elastomer material on at least a portion of the defining surfaces of the arranged foam particles;
- thereby affixing at least a portion of the arranged plurality of foam particles to each other or to uncoated foam particles in the binding material target area.
Aspect 220. The method of any one of Aspects 149 to 251, wherein the first binding material and the second binding material are deposited simultaneously, or deposited sequentially, wherein the first binding material is deposited before the second binding material, or the second binding material is deposited before the first binding material.
Aspect 221. The method of any one of Aspects 149 to 251, wherein the first binding material and second binding material are combined in a suspension or solution, and the suspension or solution is deposited.
Aspect 222. The method of any one of Aspects 149 to 251, wherein the first binding material is deposited from one or more first nozzles; and wherein the second binding material is deposited from one or more second nozzles.
Aspect 223. The method of any one of Aspects 149 to 251, wherein the first binding material and the second binding material are deposited via the same nozzle or plurality of nozzles.
Aspect 224. The method of any one of Aspects 149 to 251, wherein the first binding material and the second binding material are mixed in one or more chambers prior to being conveyed to a nozzle or plurality of nozzles.
Aspect 225. The method of any one of Aspects 149 to 251, further comprising forming the depression or chamber.
Aspect 226. The method of any one of Aspects 149 to 251, wherein forming the chamber comprises blow-molding the depression or chamber from a third thermoplastic material.
Aspect 227. The method of any one of Aspects 149 to 251, wherein forming the depression or chamber comprises forming the depression or chamber from a first sheet comprising the third thermoplastic material.
Aspect 228. The method of any one of Aspects 149 to 251, wherein forming the depression or chamber comprises thermoforming the first sheet.
Aspect 229. The method of any one of Aspects 149 to 251, wherein the thermoforming is conducted in a mold.
Aspect 230. The method of any one of Aspects 149 to 251, wherein at least one of the first components is affixed to the first sheet during the thermoforming.
Aspect 231. The method of any one of Aspects 149 to 251, wherein the step of forming the chamber further comprises forming the chamber from a second sheet comprising a fourth thermoplastic material.
Aspect 232. The method of any one of Aspects 149 to 251, wherein the step of forming the chamber comprises forming the first surface from the first sheet, forming the second surface from the second sheet.
Aspect 233. The method of any one of Aspects 149 to 251, wherein the step of forming the chamber comprises bonding the first sheet to the second sheet.
Aspect 234. The method of any one of Aspects 149 to 251, wherein the first component is affixed to the first sheet, the second sheet, or both, before or during the bonding.
Aspect 235. The method of any one of Aspects 149 to 251, wherein the method further comprises filling the chamber with a gas.
Aspect 236. The method of any one of Aspects 149 to 251, wherein the method further comprises
-
- locating a first sheet comprising a third thermoplastic material in a first portion of a mold;
- locating the at least one first component over the first sheet; and
- increasing a temperature of the third thermoplastic material, forming a depression in the first sheet; and
- removing the first sheet with the depression from the mold.
Aspect 237. The method of any one of Aspects 149 to 251, wherein the method further comprises
-
- locating a first sheet in a first portion of a mold;
- locating the at least one first component over the first sheet;
- locating a second sheet over the first portion of the mold, the second sheet covering at least a portion of the first sheet and the at least one first component; and
- increasing a temperature of the third thermoplastic material or the fourth thermoplastic material or both, thereby bonding the first sheet and the second sheet together, forming a chamber at least partially enclosing the at least one first component; and
- removing the chamber from the mold.
Aspect 238. The method of any one of Aspects 149 to 251, further comprising:
-
- introducing a fluid to the chamber; and
- sealing the chamber.
Aspect 239. The method of any one of Aspects 149 to 251, wherein the step of increasing the temperature of the third thermoplastic material or the fourth thermoplastic material or both comprises increasing the temperature the third thermoplastic material and the fourth thermoplastic material to a temperature above the melting point of the third thermoplastic material and above the melting point of the fourth thermoplastic material, and melting a portion of the third thermoplastic material and a portion of the fourth thermoplastic material, and intermingling the melted portions forming a bonding region.
Aspect 240. The method of any one of Aspects 149 to 251, further comprising operably coupling the at least one first component with the depression or chamber.
Aspect 241. The method of any one of Aspects 149 to 251, wherein operably coupling the at least one first component with the depression or chamber comprises affixing at least one of the first components to the first surface, the second surface, the sidewall, or a combination thereof.
Aspect 242. The method of any one of Aspects 149 to 251, wherein the operably coupling comprises melting at least a portion of the plurality of foam particles, binding material, or a combination thereof.
Aspect 243. The method of any one of Aspects 149 to 251, wherein the operably coupling further comprises melting at least a portion of the first side, the second side, the sidewall, or a combination thereof and intermingling the melted portions, forming a thermal bonding region.
Aspect 244. The method of any one of Aspects 149 to 251, wherein melting comprises increasing a temperature of at least a portion of the component, the first side, the second side, the sidewall, or a combination thereof with actinic radiation under conditions effective to melt or soften a portion of the component, the first side, the second side, the sidewall, or a combination thereof.
Aspect 245. The method of any one of Aspects 149 to 251, wherein operably coupling further comprises decreasing the temperature of at least a portion of the component, the first side, the second side, the sidewall, or a combination thereof to at least partially resolidify the melted or softened portions.
Aspect 246. The method of any one of Aspects 149 to 251, wherein the operably coupling comprises adhering the at least one first component to the depression or chamber.
Aspect 247. The method of any one of Aspects 149 to 251, wherein the adhering comprises depositing an adhesive on the first component, the depression or chamber, or a combination thereof.
Aspect 248. The method of any one of Aspects 149 to 251, wherein the adhesive is a heat-activated adhesive, the method further comprising increasing the temperature of the adhesive to activate the adhesive and adhere the at least one first component to the depression or chamber.
Aspect 249. The method of any one of Aspects 149 to 251, wherein the operably coupling comprises dissolving and re-solidifying a portion of the first component, at least a portion of the depression or chamber, or both, and operably coupling the first component with the depression or chamber at the respective dissolved and re-solidified portions.
Aspect 250. The method of any one of Aspects 149 to 251, further comprising operably coupling at least one additional first component to an exterior surface of the depression or chamber.
Aspect 251. The method of any one of Aspects 149 to 251, wherein the depression or chamber is a cushioning element or bladder of any one of Aspects 1 to 147.
Aspect 252. An article made by the method of any one of Aspects 149 to 251.
Aspect 253. The article of any one of Aspects 148 or 252 to 263, wherein the article is a component used in manufacture of an article of footwear, apparel, or sporting equipment.
Aspect 254. The article of any one of Aspects 148 or 252 to 263, wherein the component used in manufacture of an article of footwear, apparel or sporting equipment is a cushioning element for an article of footwear or an impact absorbing element.
Aspect 255. The article of any one of Aspects 148 or 252 to 263, wherein the cushioning element for an article of footwear is a midsole, an outsole, a combination midsole-outsole unit, a sock-liner, an ankle collar, or a heal-cushioning pad.
Aspect 256. The article of any one of Aspects 148 or 252 to 263, wherein the component used in manufacture of an article of footwear, apparel or sporting equipment is a pre-form.
Aspect 257. The article of any one of Aspects 148 or 252 to 263, wherein the article is a padding component used in manufacture of a sports helmet, a backpack, apparel, sports uniform padding, or combat gear.
Aspect 258. The article of any one of Aspects 148 or 252 to 263, wherein the article is a component used in manufacture of an article of tactical equipment.
Aspect 259. The article of any one of Aspects 148 or 252 to 263, wherein the article of tactical equipment is a pack, pack frame, gear bag, chest rig, rifle sling, belt, holster, vest, or jacket
Aspect 260. The article of any one of Aspects 148 or 252 to 263, wherein the component used in manufacture of an article of tactical equipment is a padding component.
Aspect 261. The article of any one of Aspects 148 or 252 to 263, wherein the article is a component used in manufacture of an article of work safety equipment.
Aspect 262. The article of any one of Aspects 148 or 252 to 263, wherein the article of work safety equipment is a safety suit, work helmet, work boot, or work glove.
Aspect 263. The article of any one of Aspects 148 or 252 to 263, wherein the component used in manufacture of an article of work safety equipment is a padding component.
Articles Manufactured Using the Disclosed Methods.Footwear 10 is an exemplary article of athletic footwear that comprises one or more components article made using the methods of the present disclosure. While illustrated as a running shoe, footwear 10 may alternatively be configured for any suitable athletic performance, such as baseball shoes, basketball shoes, soccer/global football shoes, American football shoes, running shoes, cross-trainer shoes, cheerleading shoes, golf shoes, and the like. While an athletic shoe is exemplified in
Footwear 10 has a medial, or inner, side 16 and a lateral, or outer, side 18. For ease of discussion, footwear 10 can be divided into three portions: a forefoot portion 20, a midfoot portion 22, and a heel portion 24. Portions 20, 22, and 24 are not intended to demarcate precise areas of footwear 10. Rather, portions 20, 22, and 24 are intended to represent respective areas of footwear 10 that provide a frame of reference during the following discussion. Unless indicated otherwise, directional terms used herein, such as rearwardly, forwardly, top, bottom, inwardly, downwardly, upwardly, etc., refer to directions relative to footwear 10 itself. Footwear 10 is shown in
The sole component can include a cushioning element or bladder according to the articles and methods disclosed herein.
Referring to
Referring to
Referring to
Various sole components, such as a sole component 14 depicted in
Sole component 14, which is generally disposed between the foot of the wearer and the ground, provides attenuation of ground reaction forces (i.e., imparting cushioning), traction, and may control foot motions, such as pronation. As with conventional articles of footwear, sole component 14 can include an insole (not shown) located within upper 12. The sole component can be an insole or sockliner or can be a multi-component assembly including an insole or sockliner, can further include an insole or sockliner located within the upper, where the insole or sockliner is formed entirely or partially of a cushioning element or bladder made using the disclosed methods as described herein. Articles of footwear described herein can include an insole or sockliner formed entirely or partially of a cushioning element or bladder made using the disclosed methods as described herein.
As can be seen in
First portion 26 provides the external traction surface of sole component 14. It is to be appreciated that a separate outsole component could be secured to the lower surface of first portion 26. When a separate outsole component is secured to the lower surface of first portion 26, the first portion 26 is a midsole component. The cushioning element or bladder can be a midsole component for an article of footwear.
The cushioning element or bladder can be an insert. For example, referring to
Insert 36 has a curved rear surface 38 to mate with curved rear surface 32 of recess 28 and a transverse front surface 40 to mate with transverse front surface 34 of recess 28. An upper surface 42 of insert 36 is in contact with and secured to upper 12 with adhesive or other suitable fastening means. For example, when there is an insert 36, a recess 28 can extend from heel portion 24 to forefoot portion 20. The rear surface 32 of recess 28 can be curved to substantially follow the contour of the rear of heel portion 24 and the front surface 34 of recess 28 extends transversely across first portion 26.
As seen best in
The foam particles within these sub-regions, 121a, 121b, and 121c, may be completely non-affixed. That is, an energy beam, as it passed over the x-y coordinates within 121a, 121b, and 121c, can pause the energy beam emission within these sub-regions. Accordingly, the density of these sub-regions, 121a, 121b, and 121c, can be less than other sub-regions that are exposed to one or more iterations of an energy beam. Alternatively, the foam particles within these sub-regions, 121a, 121b, and 121c, can be subjected to only a single iteration of exposure to an energy beam. The foam particles within these sub-regions, 121a, 121b, and 121c, can be subjected to 2-7 iterations of exposure to an energy beam, but fewer iterations of exposure to the energy beam than sub-regions 122 or 123.
In contrast, sub-region 122 in
While the disclosed methods described herein can be used for making any of a variety of components, including a variety of components for an article of footwear, the components can include a pre-form midsole, an outsole, a sock-liner, a heel-cushioning pad, an insole, or an insert.
Additional articles can include a tongue padding, a collar padding, and a combination thereof. As described above and detailed more completely below, the articles made using the disclosed methods described herein can exhibit sub-regions having different properties such as, but not limited to, bulk density, resiliency, or flexural modulus. The sub-regions can be discrete regions having a property distributed more or less uniformly within the sub-region. The article manufactured by the disclosed methods may be characterized by a gradient distribution of the property along an x-axis, y-axis, and/or z-axis of the article.
The article can be a padding component in shinguards, shoulder pads, chest protectors, masks, helmets or other headgear, knee protectors, and other protective equipment; a component placed in an article of clothing between textile layers; or may be used for other known padding applications for protection or comfort, especially those for which weight of the padding is a concern.
The present disclosure relates to an article made by a disclosed method as described herein. The article can be used in the manufacture of an article of footwear. The article used in the manufacture of an article of footwear can be a midsole, an outsole, a sock-liner, or a heel-cushioning pad, or can be a pre-form which is compression molded to form a midsole, an outsole, a sock-liner, or a heel-cushioning pad. The article can be a padding component used in a sports helmet, a backpack, apparel, sports uniform padding, or combat gear.
Cushioning Elements and BladdersThe present disclosure pertains to a cushioning element or bladder having a component comprising a plurality of affixed foam particles. A cushioning element or bladder can include a first layer including a depression defined by a first surface, and a component disposed within the depression of the first layer. In some aspects, a cushioning element or bladder can include a chamber having an interior defined by a first surface and a second surface opposing the first surface; and a component disposed within the interior of the chamber. In each aspect, the component comprises a plurality of affixed foam particles, each including a first thermoplastic elastomeric material. The cushioning element or bladder can be coupled with an article, such as by attaching one or more of the first layer, the second layer, and/or the component, to another element of the article.
The cushioning element can comprise one or more bladders, or a portion thereof. The bladder can be unfilled, partially inflated, or fully inflated when the component is affixed to the bladder. The bladder is a bladder capable of including a volume of a fluid. An unfilled bladder is a fluid-fillable bladder and a filled bladder which has been at least partially inflated with a fluid at a pressure equal to or greater than atmospheric pressure. When disposed onto or incorporated into an article, the bladder is generally, at that point, a fluid-filled bladder. The fluid be a gas or a liquid. The gas can include air, nitrogen gas (N2), or other appropriate gas.
The bladder can have a gas transmission rate for nitrogen gas, for example, where a bladder wall of a given thickness has a gas transmission rate for nitrogen that is at least about ten times lower than the gas transmission rate for nitrogen of a butyl rubber layer of substantially the same thickness as the thickness of the bladder described herein. The bladder can have a first bladder wall having a first bladder wall thickness (e.g., about 0.1 to 40 thousandths of an inch [mils]). The bladder can have a first bladder wall that can have a gas transmission rate (GTR) for nitrogen gas of less than about 15 cubic centimeter per square meter·atmosphere·day (cm3/m2·atm·day), less than about 10 cubic meter per square meter·atmosphere·day (m3/m2·atm·day), less than about 5 cubic centimeter per square meter·atmosphere·day, less than about 1 cubic centimeter per square meter·atmosphere·day (e.g., from about 0.001 cubic centimeter per square meter·atmosphere·day to about 1 cubic centimeter per square meter·atmosphere·day, about 0.01 cubic centimeter per square meter·atmosphere·day to about 1 cubic centimeter per square meter·atmosphere·day or about 0.1 cubic centimeter per square meter·atmosphere·day to about 1 cubic centimeter per square meter·atmosphere·day) for an average wall thickness of 20 thousandths of an inch. The bladder can have a first bladder wall having a first bladder wall thickness, where the first bladder wall has a gas transmission rate of 15 cubic centimeter per square meter·atmosphere·day or less for than nitrogen for an average wall thickness of 20 thousandths of an inch.
An accepted method for measuring the relative permeance, permeability, and diffusion of inflated bladders is ASTM D-1434-82-V. See, e.g., U.S. Pat. No. 6,127,026, which is incorporated by reference as if fully set forth herein. According to ASTM D-1434-82-V, permeance, permeability and diffusion are measured by the following formulae:
Permeance
(quantity of gas)/[(area)×(time)×(pressure difference)]=permeance (GTR)/(pressure difference)=cm3/m2·atm·day (i.e., 24 hours)
Permeability
[(quantity of gas)×(film thickness)][(area)×(time)×(pressure difference)]=permeability [(GTR)×(film thickness)]/(pressure difference)=[(cm3)(mil)]/m2·atm·day (i.e., 24 hours)
Diffusion at One Atmosphere
(quantity of gas)/[(area)×(time)]=GTR=cm3/m2·day (i.e., 24 hours)
The first surface and/or the second surface of the cushioning element or bladder can include a thermoplastic material. The first surface can be formed of a first sheet comprising a third thermoplastic material. The second surface is formed of a second sheet comprising a fourth thermoplastic material.
The first sheet, the second sheet, or both, can include a film comprising a single polymeric layer. The first sheet, the second sheet, or both can include a layered film including at least one polymeric layer or at least two or more polymeric layers. Each of the polymeric layers can, independently be about 0.1 to 40 thousandths of an inch in thickness. In some embodiments, the first sheet, the second sheet, or both, comprise a multi-layer film comprising from about 5 layers to about 200 layers. Optionally, a multi-layer film can include at least 7 layers, or at least 20 layers. In some embodiments, the multi-layer film can include a cap layer that includes the thermoplastic material.
Each polymeric layer can be formed of the same polymeric material, or one or more of the polymeric layers layer can include a different polymeric material. Each polymeric layer can, independently, be formed of polymer material such as a thermoplastic material. The thermoplastic material can include an elastomeric material, such as a thermoplastic elastomeric material. The thermoplastic materials can include thermoplastic polyurethane (TPU), such as those described herein. The thermoplastic materials can include polyester-based TPU, polyether-based TPU, polycaprolactone-based TPU, polycarbonate-based TPU, polysiloxane-based TPU, or combinations thereof. Non-limiting examples of thermoplastic material that can be used include: “PELLETHANE” 2355-85ATP and 2355-95AE (Dow Chemical Company of Midland, Mich., USA), “ELASTOLLAN” (BASF Corporation, Wyandotte, Mich., USA) and “ESTANE” (Lubrizol, Brecksville, Ohio, USA), all of which are either ester or ether based. Additional thermoplastic material can include those described in U.S. Pat. Nos. 5,713,141; 5,952,065; 6,082,025; 6,127,026; 6,013,340; 6,203,868; and 6,321,465, which are incorporated herein by reference.
The polymeric layer can be formed of one or more of the following: ethylene-vinyl alcohol copolymers (EVOH), poly(vinyl chloride), polyvinylidene polymers and copolymers (e.g., polyvinylidene chloride), polyamides (e.g., amorphous polyamides), acrylonitrile polymers (e.g., acrylonitrile-methyl acrylate copolymers), polyurethane engineering plastics, polymethylpentene resins, ethylene-carbon monoxide copolymers, liquid crystal polymers, polyethylene terephthalate, polyether imides, polyacrylic imides, and other polymeric materials known to have relatively low gas transmission rates. Blends and alloys of these materials as well as with the TPUs described herein and optionally including combinations of polyimides and crystalline polymers, are also suitable. For instance, blends of polyimides and liquid crystal polymers, blends of polyamides and polyethylene terephthalate, and blends of polyamides with styrenics are suitable.
Specific examples of polymeric materials of the polymeric layer can include acrylonitrile copolymers such as “BAREX” resins, available from Ineos (Rolle, Switzerland); polyurethane engineering plastics such as “ISPLAST” ETPU available from Lubrizol (Brecksville, Ohio, USA); ethylene-vinyl alcohol copolymers marketed under the tradenames “EVAL” by Kuraray (Houston, Tex., USA), “SOARNOL” by Nippon Gohsei (Hull, England), and “SELAR OH” by DuPont (Wilmington, Del., USA); polyvinylidiene chloride available from S.C. Johnson (Racine, Wis., USA) under the tradename “SARAN”, and from Solvay (Brussels, Belgium) under the tradename “IXAN”; liquid crystal polymers such as “VECTRA” from Celanese (Irving, Tex., USA) and “XYDAR” from Solvay; “MDX6” nylon, and amorphous nylons such as “NOVAMID” X21 from Koninklijke DSM N.V (Heerlen, Netherlands), “SELAR PA” from DuPont; polyetherimides sold under the tradename “ULTEM” by SABIC (Riyadh, Saudi Arabia); poly(vinyl alcohol)s; and polymethylpentene resins available from Mitsui Chemicals (Tokyo, Japan) under the tradename “TPX”.
Each polymeric layer of the film can be formed of a thermoplastic material which can include a combination of thermoplastic polymers. In addition to one or more thermoplastic polymers, the thermoplastic material can optionally include a colorant, a filler, a processing aid, a free radical scavenger, an ultraviolet light absorber, and the like. Each polymeric layer of the film can be made of a different of thermoplastic material including a different type of thermoplastic polymer.
The cushioning element or bladder can be made by applying heat, pressure and/or vacuum to a film. The cushioning element or bladder (e.g., one or more polymeric layers) can be formed using one or more polymeric materials, and forming the depression or chamber of the cushioning element or bladder can include using one or more processing techniques including, for example, extrusion, blow molding, injection molding, vacuum molding, rotary molding, transfer molding, pressure forming, heat sealing, casting, low-pressure casting, spin casting, reaction injection molding, radio frequency (RF) welding, and the like. The cushioning element or bladder can be made by co-extrusion followed by heat sealing or welding to give an inflatable bladder, which can optionally include one or more valves (e.g., one way valves) that allows the bladder to be filled with the fluid (e.g., gas).
The first surface of the chamber can be formed of a first sheet, and the second surface of the chamber can be formed of a second sheet. The first sheet of the cushioning element or bladder is bonded to the second sheet along a seam extending around at least a portion of a perimeter of the cushioning element or bladder. An opening extends through the seam into the interior of the chamber, providing fluid communication to the interior of the chamber. The opening may further contain one or more fill valves.
In some embodiments, the cushioning element or bladder can further include a sidewall. The sidewall can be integral with, or separate from the first surface or the second surface of the chamber. For example, a portion of the sidewall can be formed from the first sheet, or the second sheet. The seam can extend along an edge of the sidewall near the intersection of the sidewall and the first surface or the second surface. The sidewall can extend in a direction that is generally orthogonal to the first surface and/or the second surface. The sidewall can provide a curved transition between the first surface and the second surface.
The cushioning element or bladder can be made by thermoforming, such as in a mold. A method of manufacturing a cushioning element or bladder can include locating a first sheet, comprising a third thermoplastic material, in a first portion of a mold; increasing a temperature of the third thermoplastic material, thereby creating a depression in the first sheet; and disposing the cushioning element on the first sheet within the depression. In further steps, a method can include one or more of: removing the cushioning element or bladder from the mold; adding one or more materials to at least partially enclose the depression. The step of increasing the temperature of the third thermoplastic material can comprise increasing the temperature the third thermoplastic material to a temperature above the softening point of the third thermoplastic material.
A method of manufacturing a cushioning element or bladder can include locating a first sheet comprising a third thermoplastic material, in a first portion of a mold; locating the at least one component over the first sheet; locating a second sheet comprising a fourth thermoplastic material over the first portion of the mold, the second sheet covering at least a portion of the first sheet and the at least one component; increasing a temperature of the third thermoplastic material or the fourth thermoplastic material or both, thereby bonding the first sheet and the second sheet together, forming a cushioning element or bladder that encloses the at least one component. In further steps, a method can include one or more of: introducing a fluid to the cushioning element or bladder; sealing the cushioning element or bladder; and removing the cushioning element or bladder from the mold. The step of increasing the temperature of the third thermoplastic material or the fourth thermoplastic material or both can comprise increasing the temperature the third thermoplastic material and the fourth thermoplastic material to a temperature above the melting point of the third thermoplastic material and above the melting point of the fourth thermoplastic material, and melting a portion of the third thermoplastic material and a portion of the fourth thermoplastic material, and intermingling the melted portions forming a bonding region.
The component can be separately provided, or it can be formed in-situ with the cushioning element or bladder. The at least one component can be operably coupled with the at least one component with another element of the cushioning element or bladder, such as by affixing the at least one component to the first surface, the second surface, the sidewall, or a combination thereof. Operably coupling can include forming a thermal bond between the component and another element of the cushioning element or bladder. Thermal bonding can include melting at least a portion of the component such as at least a portion of the foam particles, binding material, or both, and/or melting at least a portion of the first surface, the second surface, the sidewall, or combination thereof, and intermingling the melted portions of the component and the first surface, second surface, or both, respectively, forming a thermal bonding region. The operably coupling can comprise adhesively bonding the component and the first surface, second surface, or both. Adhesive bonding can include depositing an adhesive on the component, the first surface, the second surface, or a combination thereof. The adhesive can be a heat-activated adhesive, and bonding can further comprise increasing the temperature of the adhesive to activate the adhesive and adhere the component to the first surface, the second surface, or both. The operably coupling can comprise providing a solvent, and dissolving a portion of the component, the first surface, the second surface, or a combination thereof, and re-solidifying the dissolved portion to form a bond at the resolidified portion between the component and the first surface, the second surface or both, respectively.
Component.Having described the cushioning element and bladder, we now provide additional details about the component. The component included in the cushioning element or bladder can comprise a plurality of affixed foam particles. The plurality of affixed foam particles each include a first thermoplastic elastomeric material. The component can be operably coupled with the first surface, the second surface, or both. In some aspects, the component is disposed within a depression defined at least in part by a first surface of the cushioning element or bladder. In some aspects, the component is encapsulated by the first surface and the second surface of the cushioning element or bladder. As included in the cushioning element or bladder, the component can be a spacer element or a structural element between the first surface and the second surface.
In some embodiments, the cushioning element or bladder can include a plurality of components extending between the first surface and the second surface. In some embodiments, the cushioning element or bladder can also include a plurality of unaffixed foam particles, e.g., particles that are not affixed to each other or to the first or second surface of the cushioning element or bladder.
As disposed in the depression or inside chamber of the cushioning element or bladder, the component (or plurality of components) occupies at least a portion of the volume of the depression or chamber. In some embodiments, the component (or plurality of components) occupies from about 5 percent to about 80 percent of a volume of the depression or interior of the chamber.
In some embodiments, the plurality of foam particles are formed from substantially the same type of foam particle. In other embodiments, the plurality of foam particles can include a combination or mixture of two or more different foam particles. The plurality of foam particles can include a first portion of first foam particles, and a second portion of second foam particles.
The component has a three-dimensional structure defined by an arrangement of the affixed foam particles. For example, the component can have a shape of a pillar, a column, a wall, a scaffold, or a combination thereof. In some embodiments, the component has a cylindrical or polyhedral geometry. The component can be substantially homogeneous. The component can have one or more hollow regions or void regions, i.e., regions that are substantially free from affixed foam particles. In some embodiments, the component can have one or more regions that includes a plurality of unaffixed foam particles.
The component can comprise a plurality of layers of affixed foam particles, for example from three to 100 layers, or from 3 to 50 layers. The layers of affixed foam particles can have a thickness whereby the average number of layers per millimeter in the component is from about 0.1 layer per millimeter to 2 layers per millimeter.
The component can be affixed to the first surface, the second surface, or both, of the cushioning element or bladder. The component can be thermally bonded, or adhesively bonded to the first surface, the second surface or both. In some embodiments, an adhesive, such as a hot melt adhesive, is provided to adhere the component to a surface of the cushioning element or bladder. In some embodiments, the component can be welded to a surface of the cushioning element or bladder. In aspects in which the cushioning element or bladder is sealed, the component can be affixed to the first surface, the second surface, or both before the cushioning element or bladder is sealed and/or before the bladder is at least partially filled with fluid.
Optionally, one or more additional components can be operably coupled with one or more outer surfaces of the cushioning element or bladder. For example, the further component can provide further structural support to the cushioning element or bladder. Alternatively or additionally, a further component can provide another region or cushioning element in an article.
Methods of Manufacturing a Component Using Foam Particles.The present disclosure pertains to methods for forming a cushioning element or bladder, comprising disposing a first component in an interior of a chamber, wherein the interior is defined by a first surface and a second surface opposing the first surface. The component comprises a plurality of affixed foam particles comprising a first thermoplastic elastomeric material.
The first component can be pre-formed and disposed in the interior chamber. The method further comprises forming the first component by arranging a plurality of foam particles and affixing together at least a portion of the plurality of foam particles, wherein the arranging and affixing are carried out for two or more iterations, forming a component.
The methods described herein comprise various disclosed steps, each of which can be repeated, and as used herein, “iteration” is understood to refer to a repetition of a step or collection of steps. For example, a disclosed method can comprise steps such as arranging the plurality of foam particles, and affixing together at least a plurality of foam particles, as described above. Accordingly, it is understood that the present disclosure encompasses one or more iteration of each step independently of the other steps. For example, the arranging step can be repeated for one or more iterations, independently of other steps or iterations of steps. In a similar manner, the affixing can be repeated for one or more iterations independently of iterations of the arranging step. In other contexts, an iteration can comprise one or more repetitions of an ensemble or group of steps. For example, a method can include one or more iterations involving a combination or sequence of the arranging and the affixing steps. It will be understood that an iteration can include one or more other steps, collectively or independently, or portions a step as described herein. Accordingly, a cycle, comprising a sequence of steps, can be repeated for one or more iterations. The number of iterations can be from 1 to about 500 iterations, from 1 to about 400 iterations, from 1 to about 300 iterations, from 1 to about 250 iterations, from 1 to about 200 iterations, from 1 to about 150 iterations, from 1 to about 100 iterations, from 1 to about 90 iterations, from 1 to about 80 iterations, from 1 to about 70 iterations, from 1 to about 60 iterations, from 1 to about 50 iterations, from 1 to about 40 iterations, from 1 to about 30 iterations, from 1 to about 20 iterations, from 1 to about 10 iterations, from 1 to about 9 iterations, from 1 to about 8 iterations, from 1 to about 7 iterations, from 1 to about 6 iterations, from 1 to about 5 iterations, from 1 to about 4 iterations, from 1 to about 3 iterations, from 1 to about 2 iterations, any subrange within the foregoing ranges, or any set of values within the foregoing ranges.
The arranging a plurality of foam particles can comprise depositing a layer comprising the plurality of foam particles. The layer can be essentially planar. The component formed by the disclosed methods can be formed from a single layer. Alternatively, the component formed by the disclosed methods can be formed from at least two layers. The component can be formed from 2 to 50 layers; 2 to 40 layers; 2 to 30 layers; 2 to 25 layers; 2 to 20 layers; 2 to 15 layers; 2 to 10 layers; or 2 to 5 layers. The component can be formed layer-wise from a plurality of layers.
The arranging the plurality of foam particles step in the disclosed method comprises arranging using a roller mechanism, a wiper mechanism, a blower mechanism, or a combination thereof. An exemplary roller mechanism can comprise a smooth roller surface, or alternatively, a textured roller surface. The arranging the plurality of foam particles can comprise arranging using a wiper mechanism. It is understood that the arranging the plurality of foam particles can be arranging a layer of a plurality of foam particles.
The affixing together the portion of the plurality of foam particles can include affixing the arranged foam particles within a target area. As discussed further below, affixing can include depositing a binding material to a target area, and then curing the binding material to affix the plurality of foam particles within the target area. As discussed further below, affixing can include applying actinic radiation to a target area to fuse the plurality of foam particles within the target area. A target area is understood to comprise any region comprising a plurality of foam particles into which a binding material or actinic radiation is directed. The target area can comprise an external surface of a region or sub-region, as well as underlying portions that are contiguous or in communication with the external surface of a region or sub-region. The target area can comprise not only the exterior surfaces of the plurality of foam particles, but those portions of the plurality of foam particles accessible to the binding material. The target area can comprise not only the exterior surfaces of the plurality of foam particles, but those portions of the plurality of foam particles accessible to the actinic radiation used to soften and melt the foam particles. For example, a target area can be a portion of a layer of a plurality of foam particles. In some instances, binding material can be provided via a nozzle, such as a piezoelectric printhead, that is used to spray or coat a binding material on a subset of a plurality of foam particles in certain portions of the layer of the plurality of foam particles. Alternatively, the binding material can be provided to all or substantially all of a plurality of foam particles if the desired target area comprises all of the foam particles. In some instances, actinic radiation can be provided via a directed energy beam that is used to increase the temperature of a subset of a plurality of foam particles in certain portions of the layer of the plurality of foam particles. Alternatively, the actinic radiation can be provided to all or substantially all of a plurality of foam particles if the desired target area comprises all of the foam particles. In some embodiments, a component can include a plurality of target areas, each independently receiving a desired application of actinic radiation or binder material. For example, a method may include depositing a first binding material to a first target area, and a second binding material to a second target area. Likewise, a method could include applying actinic radiation under a first set of conditions to a first target area, and a second set of conditions to a second target area. A method could include depositing a binding material to a first target area and actinic radiation to a second target area. In this way, a component can be made having sub-regions with different properties.
Affixing Using Binding Material.The affixing together at least a portion of the plurality of foam particles can include affixing the foam particles using one or more binding materials. The binding material can include any of the binding materials described herein.
Accordingly, the affixing can include depositing a binding material in a binding material target area, wherein the binding material target area comprises at least a portion of the arranged plurality of foam particles. The binding material can be liquid or solid. The binding material can include one or more binding materials. Depositing coats at least a portion of defining surfaces of the arranged plurality of foam particles with the binding material. After depositing, the deposited binding material is solidified or cured within at least the binding material target area, wherein the solidifying or curing results in affixing at least a portion of the arranged plurality of foam particles within the target area.
The solidifying or curing the binding material can comprise decreasing the temperature of the binding material to a temperature below a creep relaxation temperature, a heat deflection temperature, a Vicat softening temperature or a melting temperature of the binding material to at least partially solidify the binding material. The affixing can comprise applying energy to the deposited binding material and the arranged plurality of foam particles in an amount and for a duration sufficient to soften the binding materials; and decreasing a temperature of the region of the arranged plurality of foam particles to a temperature at or below which the softened binding material re-solidifies; thereby affixing at least a portion of the coated at least a portion of the plurality of foam particles in the binding material target area. Applying energy can comprise applying energy in the infrared spectrum.
The binding material can comprise one or more monomers, one or more polymers, or combinations thereof; and the solidifying or curing comprises: forming at least one chemical bond between the one or more monomers, the one or more polymers, or the combinations thereof of the binding material; and/or forming at least one chemical bond between the coated at least a portion of the defining surfaces of the arranged plurality of foam particles in the binding material target area and the one or more monomers, the one or more polymers, or the combinations thereof of the binding material; thereby affixing the coated at least a portion of the arranged plurality of foam particles to each other or to uncoated foam particles in the binding material target area.
The binding material can comprise a solvent for the foam particles, and following the depositing of the binding material, at least a portion of the defining surfaces of the arranged plurality of foam particles is dissolved with the solvent, forming dissolved defining surfaces of the arranged foam particles. Following the dissolving, the solidifying and curing comprises, removing at least a portion of the solvent of the binding material and solidifying the at least a portion of the dissolved defining surfaces of the arranged foam particles, thereby affixing at least a portion of the arranged plurality of foam particles to each other or to uncoated foam particles in the binding material target area.
The method can include depositing a first binding material comprising a solvent and a second binding material that is a binding thermoplastic elastomer that is soluble in the solvent. The solidifying or curing can comprise removing the solvent and solidifying the binding thermoplastic elastomer material on at least a portion of the defining surfaces of the arranged foam particles, thereby affixing at least a portion of the arranged plurality of foam particles to each other or to uncoated foam particles in the binding material target area.
The depositing the binding material can include jetting or spraying the binding material onto a target area of an arranged portion of a plurality of foam particles. The binding material can be dispensed through one or more nozzles, e.g., piezoelectric nozzles. A device comprising multiple nozzles can be configured such that each nozzle can be individually controlled in order to vary fluid dispensing velocity, droplet size, and/or other properties that alter the area of a target area unto which binding material is deposited with each depositing iteration and/or the amount of binding material deposited unto a target area with each depositing iteration. The binding material can be deposited via one or more nozzles at a frequency of about 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 kilohertz, a range encompassed by an of the foregoing values, or a set of values within a range encompassed by an of the foregoing values. The binding material can be deposited via one or more nozzles such that the droplet dispensed from each nozzle is about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 150, 200 micrometers in the longest dimension, a range encompassed by an of the foregoing values, or a set of values within a range encompassed by an of the foregoing values. In some instances, the droplet dispensed from the one or more nozzles is spherical or ellipsoid.
Affixing Using Actinic RadiationThe affixing together the plurality of foam particles can comprise using actinic radiation to fuse a portion of the foam particles to each other.
The disclosed methods comprise heating a target area with comprising a plurality of foam particles with a directed energy beam under conditions effective to fuse a portion of the plurality of foam particles comprising one or more thermoplastic elastomers. Heating of a target area can be carried out for one or multiple iterations. Heating a target area with a directed energy beam can comprise selective laser sintering of the foam particles.
Accordingly, the affixing can comprise increasing a temperature of at least a portion of the plurality of foam particles with actinic radiation under conditions effective to melt or soften a portion of the first thermoplastic elastomer material at a first surface of at least one of the plurality of foam particles; and decreasing the temperature of the melted or softened portion of the first thermoplastic elastomer material, thereby solidifying the melted or softened portion of the first thermoplastic elastomer material and forming a plurality of fused foam particles; wherein the increasing the temperature is carried out for at least one iteration.
The increasing the temperature of at least a portion of the plurality of foam particles with actinic radiation under conditions effective to melt or soften a portion of the first thermoplastic elastomer material at a first surface of at least one of the plurality of foam particles further comprises intermingling melted first thermoplastic elastomer material from the first surface of the foam particle with a melted first thermoplastic elastomer material at a second surface of an adjacent foam particle. The decreasing the temperature of the melted or softened portion of the first thermoplastic elastomer material comprises decreasing a temperature of the intermingled thermoplastic elastomer material, thereby solidifying the melted portion of the thermoplastic elastomer and forming the plurality of fused foam particles.
It is understood that the arranging and heating steps can be repeated on a given layer in order to achieve the desired properties for the layer or for sub-regions within the layer.
The directed energy beam can be a laser beam. The laser beam can be emitted by a gas dynamic laser, a diode laser, or a lead salt laser. The laser beam can be emitted by a carbon dioxide laser. The laser beam can be within the infrared spectrum. The laser beam can broadly comprise the all or most of the infrared spectrum, or alternatively, the laser beam can comprise sub-regions of the infrared spectrum such as the far infrared spectrum, the near infrared spectrum, the mid infrared spectrum.
The laser beam can comprise two or more laser beams, wherein each laser beam is directed at the target area. Each of the two or more laser beams can comprise a different portion of the electromagnetic light spectrum. For example, the laser beam can comprise one laser emitting in the near infrared spectrum and a second laser beam emitting in the far infrared spectrum.
The laser beam can emit a beam with a wavelength of about 700 nanometers to about 1 millimeters; about 1 micrometers to about 20 micrometers; about 3 micrometers to about 15 micrometers; about 3 micrometers to about 8 micrometers; about 8 micrometers to about 15 micrometers; or about 9 micrometers to about 11 micrometers.
The laser beam can have a beam width of about 0.1 millimeters to about 0.7 millimeters; about 0.2 millimeters to about 0.6 millimeters; about 0.3 millimeters to about 0.5 millimeters; or about 0.3 millimeters to about 0.4 millimeters. The laser beam can be de-focused.
The laser beam can have a scan pattern such that each pass of the laser beam overlaps the adjacent pass of the laser beam by a fractional amount of about 0.1 to 0.5. The laser beam can have a scan pattern such that each pass of the laser beam overlaps the adjacent pass of the laser beam by a fractional amount of about 0.3.
The directed energy beam can have a power output of about 25 to about 75 watts; about 35 to about 55 watts; about 45 to about 65 watts; or about 50 to about 60 watts. The directed energy beam can have a power output of about 55 watts.
The processing conditions can include directing a directed energy beam at a scanning rate across a target area of about 7,500 millimeters per second to about 25,000 millimeters per second, or alternatively, at a scanning rate across a target area of about 10,000 millimeters per second to about 15,000 millimeters per second. The processing conditions can include directing a directed energy beam at a scanning rate across a target area of about 12,500 millimeters per second.
The heating of a given target area comprising a plurality of foam particles can be carried out for a varied number of iterations, e.g., 1 iterations to 500 iterations; 1 iterations to 10 iterations; 1 iterations to 8 iterations; 1 iterations to 7 iterations; 2 iterations to 10 iterations; 2 iterations to 8 iterations; or 2 iterations to 7 iterations. The heating a target area of the plurality of foam particles can be carried out for at least 2 iterations. Heating the target area can be carried out for 1 iteration, 2 iterations, 3 iterations, 4 iterations, 5 iterations, 6 iterations, or 7 iterations.
The heating of a target area can fuse a first foam particle to a second foam particle in the target area, wherein the first foam particle is melted to a depth of about 10 micrometers about 500 micrometers measured from the surface of the first foam particle, and wherein the second foam particle is melted to a depth of about 10 micrometers about 500 micrometers measured from the surface of the second foam particle. The heating of a target area can fuse a first foam particle to a second foam particle in the target area, wherein the first foam particle is melted to a depth of about 25 micrometers about 200 micrometers measured from the surface of the first foam particle, and wherein the second foam particle is melted to a depth of about 25 micrometers about 200 micrometers measured from the surface of the second foam particle.
The target area of the plurality of foam particles can have a density of about 0.100 grams per cubic centimeter to about 0.700 grams per cubic centimeter, or alternatively, about 0.300 grams per cubic centimeter to about 0.500 grams per cubic centimeter, after directing the energy beam at the target area.
The disclosed methods of forming an article can further comprise heating a plurality of target areas on the plurality of particles. The article can have a border region defined by a subset of the plurality of target areas. The article can include a first cross-sectional region comprising a subset of the plurality of target areas, and wherein the first cross-section region is heated. Alternatively, the article can include a first cross-sectional region comprising a subset of the plurality of target areas, and wherein the first cross-sectional region is not heated. The heating of the plurality of target areas can be carried out by directing the directed energy beam to each target area using a vector scan method. Alternatively, the heating of the plurality of target areas can be carried out by directing the directed energy beam to each target area using a raster scan method. The plurality of target areas can comprise a first plurality of target areas and a second plurality of target areas.
The disclosed method can further comprise arranging a selective laser sintering powder on a surface of the article, such that the selective laser sintering powder comprises a second thermoplastic elastomer; and heating a target area of the laser sintering powder with a directed energy beam under conditions effective to fuse the laser sintering powder, wherein the heating the target area of the laser sintering powder is carried out for at least one iteration.
The selective laser sintering powder can be a conventional selective laser sintering powder comprising a thermoplastic elastomer. The thermoplastic elastomer, referred to herein immediately above, as the second thermoplastic elastomer, can independently comprise any thermoplastic elastomer, or combinations of thermoplastic elastomers, as disclosed herein, including, but not limited to, a thermoplastic polyurea elastomer, a thermoplastic polyether elastomer, a thermoplastic copolyetherester elastomer, a thermoplastic polyamide elastomer, a thermoplastic polystyrene elastomer, a thermoplastic polyolefin elastomer, a thermoplastic copolyetheramide elastomer, a thermoplastic styrene diene copolymer elastomer, a thermoplastic styrene block copolymer elastomer, a thermoplastic polyamide elastomer, a thermoplastic polyimide elastomer, any copolymer thereof, and any blend thereof. The selective laser sintering powder used can have a particle size of about 0.020 millimeters to about 0.100 millimeters. The selective laser sintering powder used can be a substantially unfoamed material.
The arranging the selective laser sintering powder on a surface of the article and the heating the target area of the laser sintering powder can be repeated for multiple iterations. In some cases, an iteration of the arranging comprises depositing a layer comprising the selective laser sintering powder. Multiple iterations of arranging and heating the selective laser sintering powder can be used to form a skin on an article manufactured using the disclosed methods using foam particles. Accordingly, the thickness of the skin can be modulated by the number of iterations of arranging and heating the selective laser sintering powdering that is placed on the surface of the foam article. The heating can be carried out for a period of time at a temperature such that the selective laser sintering powder fuses. In some instances, the heating can be carried out for a period of time at a temperature such that the selective laser sintering powder melts, such that the selective laser sintering powder flows in the melted state. That is, the heating can be at a temperature sufficient and a time sufficient to melt the selective laser sintering powder, thereby forming a melted selective laser sintering powder; and such that a portion of the melted selective laser sintering powder is flowable. A selective laser sintering powder can be selected based on the viscosity it will have in the melted state. For example, a more viscous melted selective laser sintering powder may be chosen if it is desired that it not penetrate significantly into the article (i.e., the foamed article prepared using the disclosed methods using foam particles). Alternatively, a selective laser sintering powdering have a low viscosity in the melted state may be desired when that it be capable of flowing more deeply into the foam article.
The arranging the selective laser sintering powder can include depositing the selective laser sintering powder on the surface of the article. Alternatively, the arranging the selective laser sintering powder can include spraying a suspension of the selective laser sintering powder in a solvent on the surface of the article. The solvent can either be water or an aqueous solution, or alternatively, an organic solvent.
The disclosed methods of forming an article can further comprise providing an additive to a layer. The additive can be provided during forming the layer of a plurality of foam particles. Alternatively, the additive can be provided after forming the layer of a plurality of foam particles and before directing the energy beam. The additive can be provided at the same or about the same time as directing the energy beam. The additive can be provided after directing the energy beam. It is understood that providing an additive can comprise spraying, sublimating, brushing, soaking, or other means suitable for bringing an additive in contact with at least one surface of the article.
The additive can be a polyurea or polyurethane coating. The polyurea or polyurethane coating can be sprayed onto the plurality of foam particles. The additive can comprise a binder, an adhesive, a lubricant, an anti-oxidant, a colorant, a filler, a laser sensitizing agent, and any combination thereof. The additive can be an adhesive. The adhesive can comprise a photocurable elastomeric resin, a heat activated resin, and combinations thereof.
The additive can comprise a laser sensitizing agent, such as an infrared absorber. An infrared absorber can be an infrared-absorbing dye or infrared-absorbing pigment. The infrared-absorbing pigment can be carbon black.
The disclosed method can further comprise spraying or coating one or more layers of polyurea, polyurethane, or combinations thereof onto an article manufactured using the disclosed methods described herein. For example, an article, e.g., an outsole made using the disclosed methods or shoe comprising same, can be spray coated with one or more layers of a polyurea, a polyurethane, or combinations thereof. Suitable sprayable polyureas or polyurethanes are commercially available, e.g., STS 300 polyurethane, HIGHLINE 200 polyurethane, SUREGRIP polyurea, HIGHLINE 310 polyurea, or HIGHLINE 510 polyurea manufactured by ArmorThane USA, Inc. (Springfield, Mo., USA). At least the ground-facing surface of an outsole can be coated with a polyurea, a polyurethane, or combinations thereof. At least the ground-facing and side-surfaces of an outsole can be coated with a polyurea, a polyurethane, or combinations thereof.
Foam Particles.Having described various methods for arranging and affixing foam particles, we further describe the foam particles. The foam particles used in the disclosed methods and articles can be prepared via a suspension or an extrusion process. The term “foam particle” is used herein to refer to foamed polymers in particulate form, i.e., a foamed polymer in a particulate form such that the particulate has gas-filled cells, including an open cell structure, closed cell structure, or combinations thereof, within at least a portion of the interior volume of the foam particle. In some instances, greater than about 50 percent, about 60 percent, about 70 percent, about 80 percent, about 90 percent, or more of the interior volume of the foam particle can be formed from gas-filled cells. In some cases it is desirable that substantially all of the interior volume is formed from gas-filled cells. The foam particle can optionally have a skin covering greater than about 50 percent, about 60 percent, about 70 percent, about 80 percent, about 90 percent, or more of the exterior surface area of the foam particle. In some instances, the optional skin can cover substantially all of the exterior surface area of the foam particle. The foam particles can have a variety of shapes, or comprise a mixture of shapes, such as regularly shaped particles, such as rods, spheroid, ellipsoid, or ovoid shape; or such as irregularly shaped particles. The foam particles can optionally comprise a non-foam skin.
In a suspension process, the thermoplastic elastomer in the form of pellets can be heated with water, with a suspending agent, and with the blowing agent in a closed reactor to above the softening point of the pellets. The pellets are thereby impregnated by the blowing agent. It is then possible to cool the hot suspension, whereupon the particles solidify with inclusion of the blowing agent, and to depressurize the reactor. The pellets comprising blowing agent and obtained in this way are foamed via heating to give the foam particles. As an alternative, it is possible to depressurize the hot suspension suddenly, without cooling (explosion-expansion process), whereupon the softened beads comprising blowing agent immediately foam to give the foam particles.
In the extrusion process, the thermoplastic elastomer can be mixed, with melting, in an extruder with a blowing agent which is introduced into the extruder. The mixture comprising a blowing agent can be extruded and pelletized under conditions of pressure and temperature such that the thermoplastic elastomer does not foam. For example, a method being used for this purpose being underwater pelletization, which is operated with a water pressure of more than 2 bar to provide expandable beads comprising blowing agent, which are then foamed via subsequent heating to give the foam particles. Alternatively, the mixture can also be extruded and pelletized at atmospheric pressure. In this process, the melt extrudate foams and the product obtained via pelletization comprises the foam particles.
The thermoplastic elastomer can be used in the form of commercially available pellets, powder, granules, or in any other form. It is advantageous to use pellets. An example of a suitable form is what are known as minipellets whose preferred average diameter is from 0.2 to 10 millimeters, in particular from 0.5 to 5 millimeters. These mostly cylindrical or round minipellets are produced via extrusion of the thermoplastic elastomer and, if appropriate, of other additives, discharged from the extruder, and if appropriate cooling, and pelletization. In the case of cylindrical minipellets, the length can be 0.2 to 10 millimeters, or alternatively can be from 0.5 to 5 millimeters. The pellets can also have a lamellar shape. The average diameter of the thermoplastic elastomer comprising blowing agent is preferably from 0.2 to 10 millimeters.
The blowing agent can be selected at least in part depending upon the particular process used. In the case of the suspension process, the blowing agent used can comprise organic liquids or inorganic gases, or a mixture thereof. Liquids that can be used comprise halogenated hydrocarbons, but preference is given to saturated, aliphatic hydrocarbons, in particular those having from 3 to 8 carbon atoms. Suitable inorganic gases are nitrogen, air, ammonia, or carbon dioxide.
The blowing agent can be a supercritical fluid. Non-limiting examples of suitable supercritical fluids include carbon dioxide (critical temperature 31.1 degrees Celsius, critical pressure 7.38 megapascals), nitrous oxide (critical temperature 36.5 degrees Celsius, critical pressure 7.24 megapascals), ethane (critical temperature 32.3 degrees Celsius, critical pressure 4.88 megapascals), ethylene (critical temperature 9.3 degrees Celsius, critical pressure 5.12 megapascals), nitrogen (critical temperature −147 degrees Celsius, critical pressure 3.39 megapascals), and oxygen (critical temperature −118.6 degrees Celsius, critical pressure 5.08 megapascals). The blowing agent can be a supercritical fluid selected from supercritical nitrogen, supercritical carbon dioxide, or mixtures thereof. The blowing agent can comprise or consist essentially of supercritical carbon dioxide.
Supercritical carbon dioxide fluid can be made more compatible with the polar thermoplastic elastomers (particularly thermoplastic polyurethane, polyurea, and polyamide elastomers) by mixing it with a polar fluid such as methanol, ethanol, propanol, or isopropanol. The polar fluid that is used should have a Hildebrand solubility parameter equal to or greater than 9 megapascals−1/2. Increasing the weight fraction of the polar fluid increases the amount of carbon dioxide uptake, but the polar fluid is also taken up, and at some point there is a shift from a maximum amount of uptake of the supercritical carbon dioxide to an increasing amount of the non-foaming agent polar fluid being taken up by the thermoplastic elastomer article. The supercritical fluid can comprise from about 0.1 mole percent to about 7 mole percent of the polar fluid, based on total fluid, when used to infuse a polyurethane elastomer, polyurea elastomer, or a polyamide elastomer.
Supercritical fluids can be used in combination. For example, in some cases, supercritical nitrogen may be used as a nucleating agent in a small weight percentage along with supercritical carbon dioxide or another supercritical fluid that acts as the blowing agent. Nano-sized particles such as nano clays, carbon black, crystalline, immiscible polymers, and inorganic crystals such as salts can be included as nucleating agents.
In production of foam particles via an extrusion process, the blowing agent can comprise volatile organic compounds whose boiling point at atmospheric pressure of about 1013 millibar is from −25 degrees Celsius to 150 degrees Celsius. The organic compounds can have a boiling point at atmospheric pressure of about 1013 millibar from −10 degrees Celsius to 125 degrees Celsius. Hydrocarbons, which may be halogen-free, have good suitability, in particular alkanes having from 4 to 10 carbon atoms, for example the isomers of butane, of pentane, of hexane, of heptane, and of octane, including sec-pentane. Other suitable blowing agents are bulkier compounds, examples being alcohols, ketones, esters, ethers, and organic carbonates.
It is also possible to use halogenated hydrocarbons, but the blowing agent can be halogen-free. Very small proportions of halogen-containing blowing agents in the blowing agent mixture are however not to be excluded. It is, of course, also possible to use mixtures of the blowing agents mentioned.
The amount of blowing agent is preferably from 0.1 to 40 parts by weight, in particular from 0.5 to 35 parts by weight, and particularly preferably from 1 to 30 parts by weight, based on 100 parts by weight of thermoplastic elastomer used.
In the suspension process, operations are generally carried out batchwise in an impregnator, e.g. in a stirred-tank reactor. The thermoplastic elastomer is fed, e.g., in the form of minipellets, into the reactor, as are water or another suspension medium, and the blowing agent and, optionally, a suspending agent. Exemplary suspending agents include water-insoluble inorganic stabilizers are suitable as suspending agent, examples being tricalcium phosphate, magnesium pyrophosphate, and metal carbonates; and also polyvinyl alcohol and surfactants, such as sodium dodecylarylsulfonate. The amounts usually used of these are from 0.05 to 10 weight percent, based on the thermoplastic elastomer.
The reactor is then sealed, and the reactor contents are heated to an impregnation temperature which is usually at least 100 degrees Celsius. The blowing agent can be added prior to, during, or after heating of the reactor contents. The impregnation temperature should be in the vicinity of the softening point of the thermoplastic elastomer. For example, impregnation temperatures of from about 100 degrees Celsius to about 150 degrees Celsius, or alternatively from about 110 degrees Celsius to about 145 degrees Celsius can be used.
After the reactor is sealed, the pressure inside the reactor may be adjusted to a target pressure (e.g., an impregnation pressure). The target pressure of the reactor may be selected, for example, as a function of the amount and nature of the blowing agent, and also of the temperature. The target pressure (i.e., an impregnation pressure) is generally from 2 to 100 bar (absolute). The pressure can, if necessary, be regulated via a pressure-control valve or via introduction of further blowing agent under pressure. At the elevated temperature and superatmospheric pressure provided by the impregnation conditions, blowing agent diffuses into the polymer pellets. The impregnation time can be generally from 0.5 to 10 hours.
In one example of the suspension process, cooling of the heated suspension takes place after the impregnation process. The suspension is usually cooled to below a suitable temperature, e.g., about 100 degrees Celsius, the result being re-solidification of the thermoplastic and inclusion of the blowing agent. The material is then depressurized. The product is foam particles which are conventionally isolated from the suspension. Adherent water is generally removed via drying, e.g., in a pneumatic dryer. Subsequently or previously, if necessary, adherent suspending agent can be removed by treating the beads with a suitable solvent or reagent. By way of example, treatment with an acid, such as nitric acid, hydrochloric acid, or sulfuric acid, can be used in order to remove acid-soluble suspending agents, e.g. metal carbonates or tricalcium phosphate.
In the extrusion process, it may be desirable to introduce the thermoplastic elastomer, the blowing agent and optional additives together (e.g., in the form of a mixture) or separately from one another at one or various locations of the extruder. It is possible, but not required, to prepare a mixture in advance from the solid components. By way of example, it is possible to begin by mixing the thermoplastic elastomer and, if appropriate, additives, and to introduce the mixture into the extruder, and then introduce the blowing agent into the extruder, so that the extruder mixes the blowing agent into to polymer melt. It is also possible to introduce a mixture of blowing agent and additives into the extruder, i.e. to premix the additives with the blowing agent.
In the extruder, the mentioned starting materials are mixed, at least partially concurrently with melting of the thermoplastic elastomer. Any of the conventional screw-based machines can be used as extruder, in particular single-screw and twin-screw extruders (e.g. Werner & Pfleiderer ZSK machines), co-kneaders, Kombiplast machines, MPC kneading mixers, FCM mixers, KEX kneading screw extruders, and shear-roll extruders, as known to one skilled in the art. The extruder can be operated at a temperature at which the thermoplastic elastomer is present in the form of a melt, e.g., from about 150 to about 250 degrees Celsius or from about 180 to about 210 degrees Celsius. However, the desired temperature will depend upon the melting temperature characteristics of the given thermoplastic elastomer.
The rotation, length, diameter, and design of the extruder screw(s), amounts introduced, and extruder throughput, are selected in a known manner in such a way as to give uniform distribution of the additives in the extruded thermoplastic elastomer.
In one example of the extrusion process, foam particles are produced. To prevent premature foaming of the melt comprising blowing agent on discharge from the extruder, the melt extrudate can be discharged from the extruder and pelletized under conditions of temperature and pressure such that essentially no foaming occurs. These conditions can be determined as a function of the type and amount of the polymers, of the additives, and in particular of the blowing agent. The ideal conditions can easily be determined via preliminary experiments.
A method of preparing the foam particles used in the disclosed methods and articles described herein is underwater pelletization in a waterbath whose temperature is below 100 degrees Celsius and which is subject to a pressure of at least 2 bar (absolute). Excessively low temperature should be avoided, because otherwise the melt hardens on the die plate, and excessively high temperature should also be avoided since otherwise the melt expands. As the boiling point of the blowing agent increases and the amount of the blowing agent becomes smaller, the permissible water temperature becomes higher and the permissible water pressure becomes lower. In the case of the particularly preferred blowing agent sec-pentane, the ideal waterbath temperature is from about 30 degrees Celsius to about 60 degrees Celsius and the ideal water pressure is from 8 to 12 bar (absolute). It is also possible to use other suitable coolants instead of water. It is also possible to use water-cooled die-face pelletization. In this process, encapsulation of the cutting chamber is such as to permit operation of the pelletizing apparatus under pressure. The foam particles can then isolated from the water and, if appropriate, dried.
The foam particles used in the disclosed methods and articles can be prepared using a continuous process in which a thermoplastic elastomer is melted in a first stage in a twin-screw extruder, and then the polymer melt is conveyed in a second stage through one or more static and/or dynamic mixing elements, and is impregnated with a blowing agent. The melt loaded impregnated with the blowing agent can then be extruded through an appropriate die and cut to give foam particle material, e.g., using an underwater pelletization system (UWPS). A UWPS can also be used to cut the melt emerging from the die directly to give foam particle material or to give foam particle material with a controlled degree of incipient foaming. It is possible to control production of foam bead material by controlling the counter-pressure or temperature, or both, in the water bath of the UWPS.
Underwater pelletization is generally carried out at pressures in the range from 1.5 to 10 bar to produce the expandable polymer bead material. The die plate typically has a plurality of cavity systems with a plurality of holes. Generally, a hole diameter in the range from 0.2 to 1 millimeters can provide expandable polymer bead material with the preferred average bead diameter in the range from 0.5 to 1.5 millimeters. Expandable polymer bead material with a narrow particle size distribution and with an average particle diameter in the range from 0.6 to 0.8 millimeters leads to better filling of the automatic molding system, where the design of the molding has relatively fine structure. This also gives a better surface on the molding, with smaller volume of interstices.
The foam particles used in the disclosed methods and articles can have a broad range of shapes, including generally spherical, cylindrical ellipsoidal, cubic, rectangular, and other generally polyhedral shapes as well as irregular or other shapes, including those having circular, elliptical, square, rectangular or other polygonal cross-sectional outer perimeter shapes or irregular cross-sectional shapes with or without uniform widths or diameters along an axis. As used herein, “generally” as used to describe a shape is intended to indicate an overall shape that may have imperfections and irregularities, such as bumps, dents, imperfectly aligned edges, corners, or sides, and so on.
The foam particles used in the disclosed methods and articles can be generally spherical or ellipsoidal. At least a portion of the foam particles can be ellipsoid shaped or generally ellipsoid shaped. For example, at least about 20 percent, or at least about 25 percent or at least about 30 percent of the foam particles are ellipsoid-shaped foam particles. At least a portion of the foam particles used can be spheroid shaped or generally spheroid shaped. For example, at least about 20 percent, or at least about 25 percent or at least about 30 percent of the foam particles are spheroid-shaped foam particles.
At least a portion of the foam particles can be irregularly shaped. Alternatively, at least a portion of the foam particles can be regularly shaped or polyhedral shaped. In the case of non-spherical particles, the foam particles can have an aspect ratio, which is a ratio of the largest major diameter of a cross-section taken perpendicular to the major (longest) axis of the particle. The non-spherical foam particles can have an aspect ratio of about 0.1 to about 1.0; about 0.60 to about 0.99; of about 0.89 to about 0.99; or of about 0.92 to about 0.99. The foam particles can have a number average circularity value of about 0.60 to about 0.99, or from about 0.89 to about 0.99 or from about 0.92 to about 0.99.
The foam particles used in the disclosed methods and articles can have a number average particle size of about 0.04 millimeters to about 10 millimeters in the longest dimension. The foam particles can have a number average particle size of from about 0.04 millimeters to about 7 millimeters in the longest dimension; about 0.04 millimeters to about 5 millimeters in the longest dimension; about 0.04 millimeters to about 4 millimeters in the longest dimension; about 0.04 millimeters to about 3 millimeters in the longest dimension; about 0.04 millimeters to about 2 millimeters in the longest dimension; about 0.04 millimeters to about 1.5 millimeters in the longest dimension; about 0.04 millimeters to about 1 millimeters in the longest dimension; about 0.04 millimeters to about 0.9 millimeters in the longest dimension; about 0.04 millimeters to about 0.8 millimeters in the longest dimension; about 0.04 millimeters to about 0.7 millimeters in the longest dimension; about 0.04 millimeters to about 0.6 millimeters in the longest dimension; about 0.04 millimeters to about 0.5 millimeters in the longest dimension; about 0.04 millimeters to about 0.4 millimeters in the longest dimension; about 0.04 millimeters to about 0.3 millimeters in the longest dimension; about 0.04 millimeters to about 0.2 millimeters in the longest dimension; or about 0.04 millimeters to about 0.1 millimeters in the longest dimension. The foam particles can have a number average particle size of about 0.04 millimeters; about 0.05 millimeters; about 0.06 millimeters; about 0.07 millimeters; about 0.08 millimeters; about 0.09 millimeters; about 0.10 millimeters; about 0.15 millimeters; about 0.20 millimeters; about 0.25 millimeters; about 0.30 millimeters; about 0.35 millimeters; about 0.40 millimeters; about 0.45 millimeters; about 0.50 millimeters; about 0.55 millimeters; about 0.60 millimeters; about 0.65 millimeters; about 0.70 millimeters; about 0.75 millimeters; about 0.80 millimeters; about 0.85 millimeters; about 0.90 millimeters; about 0.95 millimeters; about 1.0 millimeters; about 1.1 millimeters; about 1.2 millimeters; about 1.3 millimeters; about 1.4 millimeters; about 1.5 millimeters; about 1.6 millimeters; about 1.7 millimeters; about 1.8 millimeters; about 1.9 millimeters; about 2.0 millimeters; about 2.1 millimeters; about 220 millimeters; about 2.3 millimeters; about 2.4 millimeters; about 2.5 millimeters; about 2.6 millimeters; about 2.7 millimeters; about 2.8 millimeters; about 2.9 millimeters; about 3.0 millimeters; about 3.5 millimeters; about 4.0 millimeters; about 4.5 millimeters; about 5.0 millimeters; about 5.5 millimeters; about 6.0 millimeters; about 6.5 millimeters; about 7.0 millimeters; about 7.5 millimeters; about 8.0 millimeters; about 8.5 millimeters; about 9.0 millimeters; about 9.5 millimeters; about 10 millimeters; or any range or any combination of the foregoing values.
The foam particles used in the disclosed methods and articles can have a number average particle size of about 0.1 millimeters to about 10 millimeters in the longest dimension. The foam particles can have a number average particle size from about 0.3 millimeters to about 7 millimeters in the longest dimension; about 0.5 millimeters to about 5 millimeters in the longest dimension; about 1 millimeters to about 5 millimeters in the longest dimension; about 1 millimeters to about 4 millimeters in the longest dimension; about 1 millimeters to about 3 millimeters in the longest dimension; about 1 millimeters to about 2 millimeters in the longest dimension; about 1.5 millimeters to about 5 millimeters in the longest dimension; about 1.5 millimeters to about 4 millimeters in the longest dimension; about 1.5 millimeters to about 3 millimeters in the longest dimension; or about 1.5 millimeters to about 2.5 millimeters in the longest dimension. The foam particles can have a number average particle size of about 0.10 millimeters; about 0.15 millimeters; about 0.20 millimeters; about 0.25 millimeters; about 0.30 millimeters; about 0.35 millimeters; about 0.40 millimeters; about 0.45 millimeters; about 0.50 millimeters; about 0.55 millimeters; about 0.60 millimeters; about 0.65 millimeters; about 0.70 millimeters; about 0.75 millimeters; about 0.80 millimeters; about 0.85 millimeters; about 0.90 millimeters; about 0.95 millimeters; about 1.0 millimeters; about 1.1 millimeters; about 1.2 millimeters; about 1.3 millimeters; about 1.4 millimeters; about 1.5 millimeters; about 1.6 millimeters; about 1.7 millimeters; about 1.8 millimeters; about 1.9 millimeters; about 2.0 millimeters; about 2.1 millimeters; about 220 millimeters; about 2.3 millimeters; about 2.4 millimeters; about 2.5 millimeters; about 2.6 millimeters; about 2.7 millimeters; about 2.8 millimeters; about 2.9 millimeters; about 3.0 millimeters; about 3.5 millimeters; about 4.0 millimeters; about 4.5 millimeters; about 5.0 millimeters; about 5.5 millimeters; about 6.0 millimeters; about 6.5 millimeters; about 7.0 millimeters; about 7.5 millimeters; about 8.0 millimeters; about 8.5 millimeters; about 9.0 millimeters; about 9.5 millimeters; about 10 millimeters; or any range or any combination of the foregoing values.
The foam particles can have a density of about 0.1 grams per cubic centimeter to about 0.8 grams per cubic centimeter. The foam particles can have a density of about 0.30 grams per cubic centimeter to about 0.50 grams per cubic centimeter; or about 0.32 grams per cubic centimeter to about 0.48 grams per cubic centimeter. Alternatively or additionally, the foam particles can be characterized by their bulk density. Accordingly, the foam particles can have a bulk density of about 80 grams per liter to about 200 grams per liter. The foam particles can have a bulk density of about 90 grams per liter to about 200 grams per liter; about 90 grams per liter to about 190 grams per liter; about 90 grams per liter to about 180 grams per liter; about 90 grams per liter to about 170 grams per liter; about 90 grams per liter to about 160 grams per liter; about 90 grams per liter to about 150 grams per liter; about 90 grams per liter to about 140 grams per liter; about 90 grams per liter to about 130 grams per liter; about 100 grams per liter to about 200 grams per liter; about 100 grams per liter to about 190 grams per liter; about 100 grams per liter to about 180 grams per liter; about 100 grams per liter to about 170 grams per liter; about 100 grams per liter to about 160 grams per liter; about 100 grams per liter to about 150 grams per liter; about 100 grams per liter to about 140 grams per liter; about 100 grams per liter to about 130 grams per liter; about 110 grams per liter to about 200 grams per liter; about 110 grams per liter to about 190 grams per liter; about 110 grams per liter to about 180 grams per liter; about 110 grams per liter to about 170 grams per liter; about 110 grams per liter to about 160 grams per liter; about 110 grams per liter to about 150 grams per liter; about 110 grams per liter to about 140 grams per liter; or about 110 grams per liter to about 130 grams per liter. The foam particles can have a bulk density of about 80 grams per liter; about 85 grams per liter; about 90 grams per liter; about 95 grams per liter; about 100 grams per liter; about 105 grams per liter; about 110 grams per liter; about 115 grams per liter; about 120 grams per liter; about 125 grams per liter; about 130 grams per liter; about 135 grams per liter; about 140 grams per liter; about 145 grams per liter; about 150 grams per liter; about 155 grams per liter; about 160 grams per liter; about 165 grams per liter; about 170 grams per liter; about 175 grams per liter; about 180 grams per liter; about 185 grams per liter; about 190 grams per liter; about 195 grams per liter; about 200 grams per liter; or any range or any combination of the foregoing values.
Each individual foam particle can have a weight of from about 2.5 milligrams to about 50 milligrams.
The foam particles can have a compact outer skin. As used herein, a “compact skin” means that the foam cells in the outer region of the foamed particles are smaller than those in the interior. Optionally, the outer region of the foamed particles can have no pores.
The foam particles can be closed-cell foam particles.
The foam particles can further comprise one or more colorants, including any colorant disclosed herein in order to provide a desirable appearance.
Binding Materials.According to some of the disclosed methods, a binding material can be used to affix a plurality of foam particles. The binding material can be a thermal energy absorber, e.g., a microwave or infrared thermal energy absorber; an adhesive material, e.g., an adhesive comprising one or more monomers, one or more polymers, or combinations thereof; one or more solvents capable of softening or partially solubilizing a portion of a foam particle or capable of softening or partially solubilizing a coating applied to a foam particle; or combinations thereof.
The binding material can comprise a thermal energy absorber. The binding material comprising a thermal energy absorber can be a liquid or a flowable gel. The thermal energy absorber can be present in the binding material as a dispersion. Alternatively or additionally, the thermal energy absorber can be present in the binding material as an emulsion. The binding material comprising a thermal energy absorber can be provided through a printing head, such as an ink-jet print head. Thus, the binding material comprising the thermal energy absorber can have a viscosity that allows for dispersion through a print head. The thermal energy absorber can be present in the binding material which is provided via spraying using a spray head have one or more orifices of suitable diameter. In such instances, the binding material comprising the thermal energy absorber has a viscosity that allows for application via a spray head. The thermal energy absorber can comprise a form of carbon such as graphite, carbon fibers, carbon nanotubes, carbon black, or combinations thereof. The carbon black can be in the form of a nanoparticle.
The thermal energy absorber can be a microwave energy absorber. The microwave energy absorber can comprise a metal, a metal salt, metal oxide, a metal nitride, a metal carbide, a metal sulfide, a hydrated salt, a carbon, a clay, a silicate, a ceramic, a zeolite, a silica, an alumina, a titania gel, a vermiculate, an attapulgite, a molecular sieve, or combinations thereof. The microwave energy absorber can be a metal salt such as CuXn where n is an integer from 1 to 6 and X is a halogen; ZnX2 or SnX2 where X is a halogen, or combinations thereof. The microwave energy absorber can be hydrated salt such as NiCl2.6H2O, Al2(SO4)3.18H2O, or combinations thereof. The microwave energy absorber can be a metal oxide such as CuO, NiO, Fe3O4, Co2O3, BaTiO3, or combinations thereof. The microwave energy absorber can be a metal sulfide such as Ag2S, CuS, MoS3, PbS, ZnS, FeS, FeS2, or combinations thereof. The microwave energy absorber can be a metal carbide such as SiC, W2C, B4C, or combinations thereof. A variety of different metal nitrides are suitable for use as a microwave energy absorber, including, but not limited to TiN. The microwave energy absorber can be carbon, such as carbon in the form of graphite, carbon fibers, carbon nanotubes, carbon black, or combinations thereof. A carbon black can be present in any suitable form for use as a microwave energy absorber such a nanoparticle or a microparticle. A variety of different clays are suitable for use as a microwave energy absorber, including, but not limited to a sepiolite clay. The microwave energy absorber can be water or further comprise water. An exemplary microwave energy absorber has an average particle size of from about 0.1 nanometers to about 50 micrometers. A microwave energy absorber can be present in the binding material at from about 0.1 weight percent to about 25 weight percent based on the total weight of the binding material.
Alternatively, the thermal energy absorber can be an infrared energy absorber. There a variety of suitable infrared energy absorbers that can be used in the disclosed binding material. The infrared energy absorber can comprise a metal oxide, a metal complex compound, an infrared absorbing dye, or combinations thereof. The infrared energy absorber can be a metal oxide such as tin oxide, zinc oxide, copper oxide; antimony-doped tin oxide, indium-doped tin oxide, or combinations thereof. The infrared energy absorber can be a metal complex such as a zinc oxide comprising at least one element selected from the group consisting of In, Ga, Al, and Sb, or combinations thereof. The infrared energy absorber can be an infrared absorbing dye such as an anthraquinone dye, cyanine dye, polymethine dye, azomethine dye, azo dye, polyazo dye, diimonium dye, aminium dye, phthalocyanine dye, naphthalocyanine dye, indocyanine dye, naphthoquinone dye, indole phenol dye, triallylmethane dye, metal complex dye, dithiol nickel complex dye, azo cobalt complex dye, a squarylium dye, or combinations thereof. The binding material can comprise from about 0.001 weight percent to about 0.08 weight percent infrared energy absorber, based on the total weight of the binding material. The binding material can comprise from about 0.005 weight percent to about 0.06 weight percent infrared energy absorber based on the total weight of the binding material.
The binding material can comprise an adhesive material. An adhesive material in the binding material can comprise one or more monomers, one or more polymers, or combinations thereof. The binding material comprising an adhesive material can be a liquid or a flowable gel. The adhesive material can be present in the binding material as a dispersion. Alternatively, the adhesive material can be present in the binding material as an emulsion. The binding material comprising an adhesive material can be deposited through a printing head, such as an ink-jet print head. Thus, the binding material comprising an adhesive material has a viscosity that allows for dispersion through a print head. The adhesive material can be provided via spraying using a spray head having one or more orifices of suitable diameter. In such instances, the binding material comprising an adhesive material has a viscosity that allows for application via a spray head.
The binding material can include one or more monomers, one or more polymers, or combinations thereof. The one or more monomers can comprise one or more epoxy group, one or more acrylic acid group, one or more methacrylic acid, one or more methyl methacrylic acid group, or combinations thereof. The one or more polymers can comprise a photocurable elastomeric resin, a heat activated resin, and combinations thereof. The one or more polymers can comprise: a polyacrylate; a polyepoxide; a copolymer derived from one or more monomers comprising one or more epoxy group, one or more acrylic acid group, one or more methacrylic acid, one or more methyl methacrylic acid group; or combinations thereof. Useful copolymers include block copolymers comprising at least one polyacrylate block, polymethacrylate block, polymethylmethacrylate block, or combinations thereof. The binding material can further comprise an ultraviolet (UV) light-activated free radical polymerization initiator, a thermal energy-activated polymerization initiator, or combinations thereof.
The binding material can comprise one or more solvents capable of softening or partially solubilizing a portion of a foam particle or capable of softening or partially solubilizing a coating applied to a foam particle. The one or more solvents capable of softening or partially solubilizing a portion of a foam particle or capable of softening or partially solubilizing a coating applied to a foam particle is referred to herein as a “binding solvent.” In some instances, the binding solvent can be applied to a plurality of foam particles, e.g., applying a pattern of binding solvent droplets, such that the solvent solubilizes and softens a portion of an outer layer of the foam particles, where at least some of the beads include outer layers which are in direct contact with the outer layers of other beads. The binding solvent can be applied to a plurality of foam particles comprising a coating, e.g., applying a pattern of binding solvent droplets, such that the solvent solubilizes and softens a portion of the coating, where at least some of the beads include coating on outer layers which are in direct contact with the coating on outer layers of other beads.
The binding material can have a viscosity suitable to application to depositing the binding material in a binding target area. For example, the viscosity can be between about 1 centipoise and about 50 centipoise, about 1 centipoise and about 40 centipoise, about 1 centipoise and about 30 centipoise, about 1 centipoise and about 20 centipoise, about 1 centipoise and about 10 centipoise, about 1 centipoise and about 5 centipoise, about 5 centipoise and about 50 centipoise, about 5 centipoise and about 40 centipoise, about 5 centipoise and about 30 centipoise, about 5 centipoise and about 20 centipoise, about 5 centipoise and about 10 centipoise, about 10 centipoise and about 50 centipoise, about 20 centipoise and about 50 centipoise, about 30 centipoise and about 50 centipoise, about 40 centipoise and about 50 centipoise, a subrange of any of the foregoing ranges, or a set of values within any of the foregoing ranges.
The binding material can have a surface tension suitable to application to depositing the binding material in a binding target area. For example, the surface tension can be between about 1 to about 50 millinewtons per meter, about 1 to about 40 millinewtons per meter, about 1 to about 30 millinewtons per meter, about 1 to about 20 millinewtons per meter, about 1 to about 10 millinewtons per meter, about 5 to about 50 millinewtons per meter, about 5 to about 40 millinewtons per meter, about 5 to about 30 millinewtons per meter, about 5 to about 20 millinewtons per meter, about 5 to about 10 millinewtons per meter, about 10 to about 50 millinewtons per meter, about 10 to about 40 millinewtons per meter, about 10 to about 30 millinewtons per meter, about 10 to about 20 millinewtons per meter, about 20 to about 50 millinewtons per meter, about 30 to about 50 millinewtons per meter, about 40 to about 50 millinewtons per meter, a subrange of any of the foregoing ranges, or a set of values within any of the foregoing ranges.
The binding material can have a vapor pressure suitable to application to depositing the binding material in a binding target area. For example, the vapor pressure can less than about 60 hectopascals, about 55 hectopascals, about 50 hectopascals, about 45 hectopascals, about 40 hectopascals, about 35 hectopascals, or about 30 hectopascals.
The binding material can comprise additives such as initiators, catalysts and delayers can be added to the particulate material which, for example, to enhance the bonding reaction. For example, the binding material can comprise monomeric binder systems based on urethanes, acrylates, methacrylates, styrenes, cross-linked or not cross-linked, polymerization triggered by UV light, radiation, heat, reactive activators. For example, the binding material can comprise monomers to form polyurethanes and one or more isocyanates. Such a binding material can be cured by depositing water or a water mist on the binding material to initiate the reaction.
The binding material can comprise multi-component glue systems such as polyurethane resins or epoxy resins for which cross-linking occurs through the reaction of two components. It is understood that a binding material comprising a multi-component system, such as a glue system mentioned above, that each component of the multi-component system can be dispensed via a separate nozzle and mixed during depositing, e.g., in a spray such that the streams dispensed from each nozzle mixes prior to depositing on a surface of a plurality of foam particles. Alternatively, each component of a multi-component system can be conveyed from a separate feed supply, and mixed in a mixing chamber immediately before dispensing from a nozzle.
The binding material can comprise a substance, such as an organic solvent or aqueous solution, which will dissolve all or part of the foam particles and bond them in this way.
The binding material can further comprise mixtures of different solvents and/or monomers, chemicals that cause cross-linking and/or reaction assisting chemicals such as delayers, catalysts and fillers as disclosed herein or as known to one skilled in the art. For example, in order to improve characteristics for depositing the binding material, the binder material can comprise yet further additives, e.g., for changing viscosity. That is, the binding material can comprise additives to increase or reduce viscosity, surface tension and/or other characteristics that change way the binding material is deposited on the foam particles, e.g. flows, sprays, dispenses from a nozzle, or combinations thereof. In this way, the depositing of the binding material can be improved.
The bonding of the foam particles can be achieved by a binding material comprising one or more solvents, a mixed solvent system, including a mixed solvent system comprising one or more organic solvents and optionally water or an aqueous solution. Non-limiting examples of solvents include alcohols, ketones, acetates, or mixtures thereof. It can also be a mixture of different solvents. The bonding function of the solvent is based on the foam particles being dissolved, at least in part, in the areas in which the binding material comprising the solvent is deposited. When the solvent escapes, the contact surfaces of the foam particles are bonded and a solid region is established. In some cases, a reduction in material can be seen.
The choice of one or more solvents to be included in the binding material is based, at least in part, upon the foam particles formulation and composition, e.g., the types and amounts of thermoplastic elastomer(s), additives, and fillers present, and the performance parameters for the curing and affixing steps of the disclosed methods, e.g., desired rate of dissolving the thermoplastic elastomers in the foam particles, whether all or only certain components of the foam particle formulation and composition should dissolve, cost, and compatibility with the additive manufacturing equipment being used. It is understood that the binding material composition, e.g., the specific solvent or solvents used and the relative amounts used, can be adjusted to fine tune or tailor the binding material to the solubility index of the foam particle formulation and composition, e.g., type and relative amounts of thermoplastic elastomers present therein.
That is, different solvents will be more effective at dissolving different polymers, and accordingly, the skilled artisan using the disclosed methods will assess the foam particle formulation and composition, e.g., type and relative amounts of thermoplastic elastomers present therein, and modify or tailor the binding material composition in a manner that matches a solvent that is effective at dissolving that particular chemistry or formulation. For example, a binding material comprising tetrahydrofuran and dimethylformamide can be used for foam particles comprising polyesters and/or low melt thermoplastic elastomers; or alternatively, a binding material comprising hexafluoroisopropanol and formic acid can be used for foam particles comprising aliphatic polyethers and various copolymers. In instances where the foam particles comprise a polyamide (nylon), a binding material comprising hexafluoroisopropanol can be used. The process of determining a solvent for use in the binding material can utilize experimental determination, various polymer solubility databases, and predictive methods (including software) making use of Hildebrand solubility parameters and/or Hansen solubility parameters.
The binding material can comprise a solvent that is water or an aqueous solution. For example, the aqueous solution can comprise, but is not limited to, acetic acid, formic acid, trifluoroacetic acid, or combinations thereof.
The binding material can comprise a solvent that is an organic solvent. For example, the organic solvent can comprise, but is not limited to, tetrahydrofuran, dimethylformamide, hexafluoroisopropanol, dichloromethane, or combinations thereof.
The binding material can comprise a solvent that is a mixed solvent system comprising a combination of at least two solvents. For example, the mixed solvent system can comprise, but is not limited to, mixed solvent systems comprising combinations of two or more of the following: acetic acid, formic acid, trifluoroacetic acid, tetrahydrofuran, chlorophenol, dimethylformamide, hexafluoroisopropanol, and dichloromethane. In a particular non-limiting example, the mixed solvent system can comprise formic acid and dichloromethane; formic acid and acetic acid; formic acid and chlorophenol; or formic acid and hexafluoroisopropanol.
The binding material comprising a solvent can further comprise compounds or materials that slow down the evaporation rate, thereby reducing deformation. For example, the rate of volatilization of an alcohol can be slowed through the addition of a moisture-containing material such as monoethylene glycol to the binding material. Alternatively, or in addition to the foregoing, the evaporation rate can be controlled by appropriate selection of the temperature used during the curing step.
The solvent or mixture of solvents can be altered to optimize the evaporation rate. For example, higher alcohols (n-butanol, pentanol, hexanol, etc.), which have higher boiling points and lower steam pressure, can provide a simple and effective way to reduce evaporation rate.
The binding material can comprise one or more polymers dissolved or partially solubilized in water, an aqueous solution, or an organic solvent. The binding material can comprise water-soluble materials such as starches or proteins or salts.
The binding material can be deposited and cured in a manner that provides relatively weak or temporary affixing of at least a portion of the arranged plurality of foam particles within the target area. For example, the article may be used as a pre-form which is subsequently compression molded. Accordingly, the level of adhesion needed between the beads may only need to be sufficient that the preform can be handled, including robotically handled, for transfer to a compression mold. In contrast, affixing at least a portion of the arranged plurality of foam particles within the target area may need to be relatively strong and/or permanent if the articles, and the foam beads therein, are used without a compression molding step.
The disclosed binding material can further comprise one or more colorants, such as any colorant disclosed herein, in order to provide a desirable appearance. A component can comprise two or more binding materials, each having a different colorant.
Additives.In accordance with the present disclosure, the foam particles or binding material or both can optionally further comprise an additive. The additive can be incorporated directly into the disclosed foam particles or binding materials, or alternatively, applied thereto. Additives that can be used in the disclosed foam particles or binding materials include, but are not limited to, dyes, pigments, colorants, ultraviolet light absorbers, hindered amine light stabilizers, antioxidants, processing aids or agents, plasticizers, lubricants, emulsifiers, optical brighteners, rheology additives, catalysts, flow-control agents, slip agents, crosslinking agents, crosslinking boosters, halogen scavengers, smoke inhibitors, flameproofing agents, antistatic agents, fillers, or mixtures of two or more of the foregoing. When used, an additive can be present in an amount of from about 0.01 weight percent to about 10 weight percent, about 0.025 weight percent to about 5 weight percent, or about 0.1 weight percent to 3 weight percent, where the weight percent is based upon the sum of the material components in the thermoplastic composition, fiber, filament, yarn, or fabric.
Individual components can be mixed together with the other components of the thermoplastic composition in a continuous mixer or a batch mixer, e.g., in an intermeshing rotor mixer, such as an Intermix mixer, a twin screw extruder, in a tangential rotor mixer such as a Banbury mixer, using a two-roll mill, or some combinations of these to make a composition comprising a thermoplastic polymer and an additive. The mixer can blend the components together via a single step or multiple steps, and can mix the components via dispersive mixing or distributive mixing to form the resulting thermoplastic composition. This step is often referred to as “compounding.”
The optional additive can be an antioxidant such as ascorbic acid, an alkylated monophenol, an alkylthiomethylphenol, a hydroquinone or alkylated hydroquinone, a tocopherol, a hydroxylated thiodiphenyl ether, an alkylidenebisphenol, a benzyl compound, a hydroxylated malonate, an aromatic hydroxybenzyl compound, a triazine compound, a benzylphosphonate, an acylaminophenol, an ester of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, an ester of β-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols, an ester of β-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, an ester of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols, an amide of β-(3,5-di-tert-butyl-4-hydromhenyl)propionic acid, an aminic antioxidant, or mixtures of two or more of the foregoing.
Exemplary alkylated monophenols include, but are not limited to, 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-(α-ethylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1-methylundec-1-yl)phenol, 2,4-dimethyl-6-(1-methylheptadec-1-yl)phenol, 2,4-dimethyl-6-(1-methyltridec-1-yl)phenol, and mixtures of two or more of the foregoing.
Exemplary alkylthiomethylphenols include, but are not limited to, 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4-nonylphenol, and mixtures of two or more of the foregoing.
Exemplary hydroquinones and alkylated hydroquinones include, but are not limited to, 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis-(3,5-di-tert-butyl-4-hydroxyphenyl)adipate, and mixtures of two or more of the foregoing.
Exemplary tocopherols include, but are not limited to, α-tocopherol, p-tocopherol, 7-tocopherol, 6-tocopherol, and mixtures of two or more of the foregoing.
Exemplary hydroxylated thiodiphenyl ethers include, but are not limited to, 2,2′-thiobis(6-tert-butyl-4-methylphenol), 2,2′-thiobis(4-octylphenol), 4,4′-thiobis(6-tert-butyl-3-methylphenol), 4,4′-thiobis(6-tert-butyl-2-methylphenol), 4,4′-thiobis-(3,6-di-sec-amylphenol), 4,4′-bis(2,6-dimethyl-4-hydroxyphenyl)disulfide, and mixtures of two or more of the foregoing.
Exemplary alkylidenebisphenols include, but are not limited to, 2,2′-methylenebis(6-tert-butyl-4-methylphenol), 2,2′-methylenebis(6-tert-butyl-4-ethylphenol), 2,2′-methylenebis[4-methyl-6-(α-methylcyclohexyl)phenol], 2,2′-methylenebis(4-methyl-6-cyclohexylphenol), 2,2′-methylenebis(6-nonyl-4-methylphenol), 2,2′-methylenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2′-methylenebis[6-(α-methylbenzyl)-4-nonylphenol], 2.2′-methylenebis[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4′-methylenebis(2,6-di-tert-butylphenol), 4,4′-methylenebis(6-tert-butyl-2-methylphenol), 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl) butane, 2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-tris(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 1,1-bis(5-tert-butyl-4-hydroxy-2-methyl-phenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3-tert-butyl-4-hydroxyphenyl)butyrate], bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)dicyclopentadiene, bis[2-(3tert-butyl-2-hydroxy-5-methylbenzyl)-6-tert-butyl-4-methylphenyl]terephthalate, 1,1-bis-(3,5-dimethyl-2-hydroxyphenyl)butane, 2,2-bis-(3,5-di-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis-(5-tert-butyl-4-hydroxy2-methylphenyl)-4-n-dodecylmercaptobutane, 1,1,5,5-tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane, and mixtures of two or more of the foregoing.
Exemplary benzyl compounds include, but are not limited to, 3,5,3′,5′-tetra-tert-butyl-4,4′-di hydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzyl mercaptoacetate, tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, 1,3,5-tri-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, di-(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, 3,5-di-tert-butyl-4-hydroxybenzyl-mercapto-acetic acid isooctyl ester, bis-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithiol terephthalate, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 3,5-di-tert-butyl-4-hydroxybenzyl-phosphoric acid dioctadecyl ester and 3,5-di-tert-butyl-4-hydroxybenzyl-phosphoric acid monoethyl ester, and mixtures of two or more of the foregoing.
Exemplary hydroxybenzylated malonates include, but are not limited to, dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)-malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-ethylbenzyl)-malonate,di-dodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, and mixtures of two or more of the foregoing.
Exemplary aromatic hydroxybenzl compounds include, but are not limited to, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol, and mixtures of two or more of the foregoing.
Exemplary triazine compounds include, but are not limited to, 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazine, 2,4,6-tris-(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxy-benzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1,3,5-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxy-phenylpropionyl)-hexahydro-1.3,5-triazine, 1,3,5-tris(3,5-dicyclohexyl-4-hydroxybenzyl)isocyanurate, and mixtures of two or more of the foregoing.
Exemplary benzylphosphonates include, but are not limited to, dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid, and mixtures of two or more of the foregoing.
Exemplary acylaminophenols include, but are not limited to, 4-hydroxy-lauric acid anilide, 4-hydroxy-stearic acid anilide, 2,4-bis-octylmercapto-6-(3,5-tert-butyl-4-hydroxyanilino)-s-triazine and octyl-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbamate, and mixtures of two or more of the foregoing.
Exemplary esters of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid, include, but are not limited to esters with a mono- or polyhydric alcohol such as methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N, N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane, and mixtures of esters derived from two or more of the foregoing mono- or polyhydric alcohols.
Exemplary esters of β-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid, include, but are not limited to esters with a mono- or polyhydric alcohol such as methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N, N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane, and mixtures of esters derived from two or more of the foregoing mono- or polyhydric alcohols.
Exemplary esters of β-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid, include, but are not limited to esters with a mono- or polyhydric alcohol such as methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N, N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane, and mixtures of esters derived from two or more of the foregoing mono- or polyhydric alcohols.
Exemplary esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid, include, but are not limited to esters with a mono- or polyhydric alcohol such as methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N, N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane, and mixtures of esters derived from two or more of the foregoing mono- or polyhydric alcohols.
Exemplary amides of β-(3,5-di-tert-butyl-4-hydromhenyl)propionic acid, include, but are not limited to, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)trimethylenediamide, N, N′-bis(3,5-di-tert-butyl-4-hydroxyphenyl propionyl) hydrazide, N, N′-bis[2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl]oxamide, and mixtures of two or more of the foregoing.
Exemplary aminic antioxidants include, but are not limited to, N,N′-di-isopropyl-p-phenylenediamine, N,N′-di-sec-butyl-p-phenylenediamine, N,N′-bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N′-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N′-bis(1-methylheptyl)-p-phenylenediamine, N,N′-dicyclohexyl-p-phenylenediamine, N,N′-diphenyl-p-phenylenediamine, N, N′-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N′-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine, N-(1-methylheptyl)-N′-phenyl-p-phenylenediamine, N-cyclohexyl-N′-phenyl-p-phenlenediamine, 4-(p-toluenesulfamoyl)diphenylamine, N,N′-dimethyl-N,N′-di-sec-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine, 4-isopropoxydiphenylamine, N-phenyl-1-naphthylamine, N-(4-tert-octylphenyl)-1-naphthylamine, N-phenyl-2-naphthylamine, octylated diphenylamine, for example p,p′-di-tert-octyldiphenylamine, 4-n-butylaminophenol, 4-butyrylaminophenol, 4-nonanoylaminophenol, 4-dodecanoylaminophenol, 4-octadecanoylaminophenol, bis(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylaminomethylphenol, 2,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, N, N, N′,N′-tetramethyl-4,4′-diaminodiphenylmethane, 1,2-bis[(2-methylphenyl)amino]ethane, 1,2-bis(phenylamino)propane, (o-tolyl)biguanide, bis[4-(1′,3′-dimethylbutyl)phenyl]amine, tert-octylated N-phenyl-1-naphthylamine, a mixture of mono- and dialkylated tert-butyl/tert-octyl-diphenylamines, a mixture of mono- and dialkylated nonyldiphenylamines, a mixture of mono- and dialkylated dodecyldiphenylamines, a mixture of mono- and dialkylated isopropyl/isohexyldiphenylamines, a mixture of mono- and dialkylated tert-butyldiphenylamines, 2,3-dihydro-3,3-dimethyl-4H-1,4-benzothiazine. phenothiazine, a mixture of mono- and dialkylated tert-butyl/tert-octylphenothiazines, a mixture of mono- and dialkylated tert-octyl-phenothiazines, N-allylphenothiazin, N, N, N′,N′-tetraphenyl-1,4-diaminobut-2-ene, N, N-bis-(2,2,6,6-tetramethyl-piperid-4-yl-hexamethylenediamine, bis(2,2,6,6-tetramethylpiperid-4-yl)-sebacate, 2,2,6,6-tetramethylpiperidin-4-one, 2,2,6,6-tetramethylpiperidin-4-ol, and mixtures of two or more of the foregoing.
The optional additive can be a UV absorber and/or light stabilizer, including, but limited to, a 2-(2-hydroxyphenyl)-2H-benzotriazole compound, a 2-hydroxybenzophenone compound, an ester of a substituted and unsubstituted benzoic acid, an acrylate or malonate compound, a sterically hindered amine stabilizer compound, an oxamide compound, a tris-aryl-o-hydroxyphenyl-s-triazine compound, or mixtures of two or more of the foregoing.
Exemplary 2-(2-hydroxyphenyl)-2H-benzotriazole compounds include, but are not limited to, 2-(2-hydroxy-5-methylphenyl)-2H-benzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(2-hydroxy-5-t-butylphenyl)-2H-benzotriazole, 2-(2-hydroxy-5-t-octylphenyl)-2H-benzotriazole, 5-chloro-2-(3,5-di-t-butyl-2-hydroxyphenyl)-2H-benzotriazole, 5-chloro-2-(3-t-butyl-2-hydroxy-5-methylphenyl)-2H-benzotriazole, 2-(3-sec-butyl-5-t-butyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(2-hydroxy-4-octyloxyphenyl)-2H-benzotriazole, 2-(3,5-di-t-amyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(3,5-bis-a-cumyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(3-t-butyl-2-hydroxy-5-(2-(ω)-hydroxy-octa-(ethyleneoxy)carbonyl-ethyl)-, phenyl)-2H-benzotriazole, 2-(3-dodecyl-2-hydroxy-5-methylphenyl)-2H-benzotriazole, 2-(3-t-butyl-2-hydroxy-5-(2-octyloxycarbonyl)ethylphenyl)-2H-benzotriazole, dodecylated 2-(2-hydroxy-5-methylphenyl)-2H-benzotriazole, 2-(3-t-butyl-2-hydroxy-5-(2-octyloxycarbonylethyl)phenyl)-5-chloro-2H-benzotriazole, 2-(3-tert-butyl-5-(2-(2-ethylhexyloxy)-carbonylethyl)-2-hydroxyphenyl)-5-chloro-2H-benzotriazole, 2-(3-t-butyl-2-hydroxy-5-(2-methoxycarbonylethyl)phenyl)-5-chloro-2H-benzotriazole, 2-(3-t-butyl-2-hydroxy-5-(2-methoxycarbonylethyl)phenyl)-2H-benzotriazole, 2-(3-t-butyl-5-(2-(2-ethylhexyloxy)carbonylethyl)-2-hydroxyphenyl)-2H-benzotriazole, 2-(3-t-butyl-2-hydroxy-5-(2-isooctyloxycarbonylethyl)phenyl-2H-benzotriazole, 2,2′-methylene-bis(4-t-octyl-(6-2H-benzotriazol-2-yl)phenol), 2-(2-hydroxy-3-α-cumyl-5-t-octylphenyl)-2H-benzotriazole, 2-(2-hydroxy-3-t-octyl-5-α-cumylphenyl)-2H-benzotriazole, 5-fluoro-2-(2-hydroxy-3,5-di-α-cumyl-phenyl)-2H-benzotriazole. 5-chloro-2-(2-hydroxy-3,5-di-α-cumylphenyl)-2H-benzotriazole, 5-chloro-2-(2-hydroxy-3-α-cumyl-5-t-octylphenyl)-2H-benzotriazole, 2-(3-t-butyl-2-hydroxy-5-(2-isooctyloxycarbonylethyl)phenyl)-5-chloro-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3-α-cumyl-5-t-octylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-5-t-octylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3,5-di-t-octylphenyl)-2H-benzotriazole, methyl 3-(5-trifluoromethyl-2H-benzotriazol-2-yl)-5-t-butyl-4-hydroxyhydrocinnamate, 5-butylsulfonyl-2-(2-hydroxy-3-α-cumyl-5-t-octylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3-α-cumyl-5-t-butylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3,5-di-t-butylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3,5-di-α-cumylphenyl)-2H-benzotriazole, 5-butylsulfonyl-2-(2-hydroxy-3,5-di-t-butylphenyl)-2H-benzotriazole, 5-phenylsulfonyl-2-(2-hydroxy-3,5-di-t-butylphenyl)-2H-benzotriazole, and mixtures of two or more of the foregoing.
Exemplary 2-hydroxybenzophenone compounds include, but are not limited to, 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, 4,2′,4′-trihydroxy and 2′-hydroxy-4,4′-dimethoxy derivatives of 2-hydroxybenzophenone, and mixtures of two or more such derivatives.
Exemplary esters of a substituted and unsubstituted benzoic acid include, but are not limited to, 4-tertbutyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, and mixtures of two or more of the foregoing.
Exemplary an acrylate or malonate compounds include, but are not limited to, α-cyano-β,β-diphenylacrylic acid ethyl ester or isooctyl ester, α-carbomethoxy-cinnamic acid methyl ester, α-cyano-β-methyl-p-methoxy-cinnamic acid methyl ester or butyl ester, α-carbomethoxy-p-methoxy-cinnamic acid methyl ester, N-(β-carbomethoxy-β-cyanovinyl)-2-methyl-indoline, dimethyl p-methoxybenzylidenemalonate, di-(1,2,2,6,6-pentamethylpiperidin-4-yl)p-methoxybenzylidenemalonate, and mixtures of two or more of the foregoing.
Exemplary sterically hindered amine stabilizer compounds include, but are not limited to, 4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-allyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, tris(2,2,6,6-tetramethyl-4-piperidyl)nitrilotriacetate, tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butane-tetracarboxylate, 1,1′-(1,2-ethanediyl)-bis(3,3,5,5-tetramethylpiperazinone), 4-benzoyl-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, bis(1,2,2,6,6-pentamethyl piperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate, 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione, bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethyl-piperidyl)succinate, linear or cyclic condensates of N,N′-bis-(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine, 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione, 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidin-2,5-dione, 3-dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)pyrrolidine-2,5-dione, N-(2,2,6,6-tetramethyl-4-piperidyl)-n-dodecylsuccinimid, N-(1,2,2,6,6-pentamethyl-4-piperidyl)-n-dodecylsuccinimid, 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4,5]decane, 1,1-bis(1,2,2,6,6-pentamethyl-4-piperidyloxycarbonyl)-2-(4-methoxyphenyl)ethene, N,N′-bis-formyl-N, N′-bis(2.2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine, poly[methyl propyl-3-oxy-4-(2,2,6,6-tetramethyl-4-piperidyl)]siloxane, 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine, 1-(2-hydroxy-2-methylpropoxy)-4-hexadecanoyloxy-2,2,6,6-tetramethylpiperidine, 1-(2-hydroxy-2-methylpropoxy)-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-(2-hydroxy-2-methylpropoxy)-4-oxo-2,2,6,6-tetramethyl piperidine, bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)sebacate, bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)adipate, bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)succinate, bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)glutarate, 2,4-bis{N-[1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl]-N-butylamino}-6-(2-hydroxyethyl-amino)-s-triazine, and mixtures of two or more of the foregoing.
Exemplary oxamide compounds include, but are not limited to, 4,4′-dioctyloxyoxanilide, 2,2′-diethoxyoxanilide, 2,2′-dioctyloxy-5,5′-di-tert-butoxanilide, 2,2′-didodecyloxy-5,5′-di-tert-butoxanilide, 2-ethoxy-2′-ethyloxanilide, N,N′-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2′-ethoxanilide and its mixture with 2-ethoxy-2′-ethyl-5,4′-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubstituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides, and mixtures of two or more of the foregoing.
Exemplary tris-aryl-o-hydroxyphenyl-s-triazine compounds include, but are not limited to, 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine, 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine, 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-acetoxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine, 2,4-bis(2,4-dihydroxyphenyl)-6-(2,4-dimethylphenyl)-s-triazine, 2,4-bis(4-biphenylyl)-6-(2-hydroxy-4-octyloxycarbonylethylideneoxyphenyl)-s-triazine, 2-phenyl-4-[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)phenylJ-642-hydroxy-4-(3-sec-amyloxy-2-hydroxypropyloxy)-phenyl]-s-triazine, 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-benzyloxy-2-hydroxy-propyloxy)phenyl]-s-triazine, 2,4-bis(2-hydroxy-4-n-butyloxyphenyl)-6-(2,4-di-n-butyloxyphenyl)-s-triazine, methylenebis-{2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)-phenyl]-s-triazine}, 2,4,6-tris(2-hydroxy-4-isooctyloxycarbonylisopropylideneoxyphenyl)-s-triazine, 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-hexyloxy-5-α-cumylphenyl)-s-triazine, 2-(2,4,6-trimethylphenyl)-4,6-bis[2-hydroxy-4-(3-butyloxy-2-hydroxypropyloxy)phenyl]-s-triazine, 2,4,6-tris[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)phenylq-s-triazine, 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-(2-ethylhexyloxy)-2-hydroxypropoxy)-phenyl)-s-triazine, 4,6-diphenyl-2-(4-hexyloxy-2-hydroxyphenyl)-s-triazine, and mixtures of two or more of the foregoing.
The optional additive can be a peroxide scavenger such as an ester of β-thiodipropionic acid, e.g., the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole, and the zinc salt of 2-mercapto-benzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(β-dodecylmercapto)propionate, or mixtures of any of the foregoing.
The optional additive can be a polyamide stabilizer such as a copper salt of a halogen, e.g., iodide, and/or phosphorus compounds and salts of divalent manganese.
The optional additive can be a basic co-stabilizer such as melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate.
The optional additive can be a nucleating agent such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals, or mixtures thereof. Alternatively, the nucleating agent can be a mono- or polycarboxylic acids, and the salts thereof, e.g., 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate, sodium benzoate, or mixtures thereof. The additive can be a nucleating agent comprising both an inorganic and an organic material as disclosed herein above.
The optional additive can be a rheology modifier. The rheology modifier can be a nanoparticle having comparatively high aspect ratios, nano-clays, nano-carbon, graphite, nano-silica, and the like.
The optional additive can be a filler or reinforcing agent such as clay, kaolin, talc, asbestos, graphite, glass (such as glass fibers, glass particulates, and glass bulbs, spheres, or spheroids), mica, calcium metasilicate, barium sulfate, zinc sulfide, aluminum hydroxide, silicates, diatomaceous earth, carbonates (such as calcium carbonate, magnesium carbonate and the like), metals (such as titanium, tungsten, zinc, aluminum, bismuth, nickel, molybdenum, iron, copper, brass, boron, bronze, cobalt, beryllium, and alloys of these), metal oxides (such as zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide and the like), metal hydroxides, particulate synthetic plastics (such as high molecular weight polyethylene, polypropylene, polystyrene, polyethylene ionomeric resins, polyamide, polyester, polyurethane, polyimide, and the like), synthetic fibers (such as fibers comprising high molecular weight polyethylene, polypropylene, polystyrene, polyethylene ionomeric resins, polyamide, polyester, polyurethane, polyimide, and the like), particulate carbonaceous materials (such as carbon black and the like), wood flour and flours or fibers of other natural products, as well as cotton flock, cellulose flock, cellulose pulp, leather fiber, and combinations of any of the above. Non-limiting examples of heavy-weight filler components that can be used to increase the specific gravity of the cured elastomer composition can include titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, steel, lead, copper, brass, boron, boron carbide whiskers, bronze, cobalt, beryllium, zinc, tin, metal oxides (such as zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, and zirconium oxide), metal sulfates (such as barium sulfate), metal carbonates (such as calcium carbonate), and combinations of these. Non-limiting examples of light-weight filler components that can be used to decrease the specific gravity of the elastomer compound can include particulate plastics, hollow glass spheres, ceramics, and hollow spheres, regrinds, and foams, which can be used in combinations.
The optional additive can be a cross-linking agent. There are a variety of cross-linking agents that can be used in the disclosed thermoplastic compositions. For example, a cross-linking agent can be a free-radical initiator. The free radical initiator can generate free radicals through thermo cleavage or UV radiation. The free-radical initiator can be present in an amount from about 0.001 weight percent to about 1.0 weight percent. A variety of radical initiators can be used as the radical sources to make thermoplastic compositions have a crosslinked structure. Suitable radical initiators applied include peroxides, sulfurs, and sulfides. Exemplary peroxides include, but are not limited to, aliphatic peroxides and aromatic peroxides, such as diacetylperoxide, di-tert-butylperoxide, dicumyl peroxide, dibenzoylperoxide, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, 2,5-dimethyl-2,5-di(butylperoxy)-3-hexyne, 2,5-bis-(t-butylperoxy)-2,5-dimethyl hexane, n-butyl-4,4-bis(t-butylperoxyl)valerate, 1,4-bis-(t-butylperoxyisopropyl)-benzene, t-butyl peroxybenzoate, 1,1-bis-(t-butylperoxy)-3,3,5 tri-methylcyclohexane, and di(2,4-dichloro-benzoyl), or combinations of two or more of the foregoing.
The optional additive can be a colorant. The term “colorant,” as used herein, means a compound providing color to a substrate, e.g., a disclosed thermoplastic composition. The colorant can be an organic or inorganic pigment, a dye, or mixtures or combinations thereof. The pigment or dye can be an inorganic material such as a metal oxide, e.g., iron oxide or titanium dioxide. Alternatively, the inorganic pigment or dye can be a metal compound, e.g., strontium chromate or barium sulfate, or a metallic pigment, e.g., aluminum flakes or particles. Other exemplary inorganic pigments include carbon black, talc, and the like. In some cases, the metal compound is not one comprising cadmium. In can be desirable in some instances that the inorganic pigment or dye is not one that contains a lead, cadmium and chromium (VI) compound.
The pigment or dye is an organic compound such as a perylene, phthalocyanine derivative (e.g., copper phthalocyanine), a indanthrone, a benzimidazolone, a quinacridone, a perinone, and an azomethine derivative. In some instances, the composition according to any method known to a person skilled in the art. For example, the colorant can be added to the thermoplastic composition in a mixing device such as an extruder, directly or else by means of a masterbatch. The disclosed thermoplastic composition can comprise between about 0.005 weight percent and about 5 weight percent relative to the weight of the composition. The disclosed thermoplastic composition can comprise between about 0.01 weight percent and about 3 weight percent relative to the weight of the composition.
The foam particles and/or binding material can comprise one or more colorants. For example, the foam particles can comprise a first colorant, and the binding material can comprise a second colorant. In this instance, it is understood that the first colorant can comprise one or more dyes or pigments. Similarly, it is understood that the second colorant can comprise one or more dyes or pigments.
There are at least two types of metal complex dyes that can be used as colorants. Acid metal complex dyes are soluble in water and therefore dissolved in a water solvent system prior to use. Solvent metal complex dyes are insoluble in water and therefore dissolved in a water/organic solvent system prior to use.
The solvent system used for metal complex dyes should both dissolve the dyes and promote diffusion of dye molecules into the elastomeric substrates under mild conditions. Thus, it was discovered that certain organic solvents not only dissolve dyes that are insoluble in water such as solvent metal complex dyes, but also promote or facilitate dye diffusion into the polymer matrix of both acid metal complex dyes and solvent metal complex dyes.
Suitable organic solvents include ethylene glycol phenyl ether (EGPE) and isopropanol. Generally a relatively smaller amount of organic solvent is needed.
A suitable solvent system for acid metal complex dyes contains, for example, 90 to 100 volume percent water and 0 to 10 volume percent organic solvent. Typical amounts of organic solvents are 0.5 to 7 volume percent or 1 to 5 volume percent.
A suitable solvent system for solvent metal complex dyes contains, besides water and ethylene glycol phenyl ether, a third component, usually an organic solvent, to increase the solubility of dyes. For example, the solvent system may contain 40 to 80 volume percent water and 60 to 20 volume percent organic solvent. Suitable organic solvents include, but are not limited to, alcohols, ethers, esters and ketones. Suitable solvent metal complex dyes include Orasol Yellow 2RLN, Orasol Yellow 2GLN-M, Pylam Solvent Red, Pylam Brilliant Yellow, and Resofast Orange M2Y.
Alternatively, a two phase solvent system may be used wherein the dye is soluble in the organic solvent, but not in the water and the organic solvent is only partially miscible in water or insoluble or nearly insoluble in water. Suitable organic solvents to form a two-phase system include those that are polar and insoluble in water such as suitable hydrocarbons, alcohols, aldehydes, ketones, ethers, esters, amides, acids, and halogenated compounds. Examples include, but are not limited to, n-butanol, cyclohexanol, butyl acetate, and ethylene glycol phenyl ether.
In a two-phase solvent system, a solution is prepared containing a major amount of water and a minor amount of an organic solvent. The organic solvent is either partially miscible with water or nearly insoluble in water such that the water and organic solvent form a two phase system. The two-phase solvent composition allows fast and uniform dyeing, e.g., of foam particles.
The dye may be first dissolved in the organic solvent to form a uniform solution and then the solution may be dispersed in the water as droplets under agitation or stirring. Alternatively, the organic solvent may be combined with the water to form a two-phase solvent. The dye is then added to the two-phase solvent under agitation or stirring to form droplets.
A two-phase solvent composition can contain 1 to 30 volume percent, for example, 1 to 25 volume percent, organic solvent, and 70 to 99 volume percent, for example, 75 to 99 volume percent, water. These two-phase solvent compositions are particularly suitable for solvent dyes that have high solubility in organic solvents. Generally, dyes suitable for use in this embodiment include those that are highly soluble in organic solvent, but nearly insoluble in water.
When suitable substrates are immersed in the two-phase solvent dye system, droplets of organic solvent and dye are preferentially adsorbed onto the surface of the substrate. This creates a thin layer of organic solvent with a high concentration of dye on the surface of the substrate. In addition, the organic solvent causes the substrate to swell providing an open polymeric structure. The combination of such open structure in the substrate and high concentration of dye facilitates fast diffusion of dye molecules into the substrate.
Thus, the two-phase solvent composition both dissolves dyes and promotes diffusion of dye molecules into flexible substrates under mild conditions. Compared with conventional dyeing systems, the two-phase solvent dye system provides fast dyeing, uses less organic solvent, uses mild dyeing conditions, and provides potential for effective dye recovery/removal from solvent.
An exemplary dye can be a metal complex dye such as, but not limited to, Bezanyl Black, Bezanyl Red, Bezanyl Yellow, Orasol Black, Orasol Blue GN, Orasol Red G, Orasol Yellow 2GLN, Isolan Blue, SP-R, Isolan Grey SP-G, Isolan Red SP-G, Isolan Yellow SP-2RL, Pylam Solvent Blue, Pylam Solvent Red, Pylam Solvent Yellow, Resofast Blue, Resofast Orange, and Resofast Yellow.
The foam particles can be dyed with a nonionic or anionic (“acid”) dye by one of: (1) before being infused with the supercritical fluid, (2) during being infused with the supercritical fluid by a nonionic or anionic dye dissolved or dispersed in the supercritical fluid, which optionally comprises a polar liquid, (3) during immersion in the heated fluid, where the heated fluid contains the dye, or (4) after being foamed.
The colorant can be an acid dye, such as a water-soluble anionic dye. Acid dyes are commercially available in a wide variety, from dull tones to brilliant shades. Chemically, acid dyes include azo, anthraquinone and triarylmethane compounds.
The “Color Index” (C.I.), published jointly by the Society of Dyers and Colourists (UK) and by the American Association of Textile Chemists and Colorists (USA), is the most extensive compendium of dyes and pigments for large scale coloration purposes, including 12000 products under 2000 C.I. generic names. In the C.I. each compound is presented with two numbers referring to the coloristic and chemical classification. The “generic name” refers to the field of application and/or method of coloration, while the other number is the “constitution number.” Nonlimiting examples of acid dyes include Acid Yellow 1, 17, 23, 25, 34, 42, 44, 49, 61, 79, 99, 110, 116, 127, 151, 158:1, 159, 166, 169, 194, 199, 204, 220, 232, 241, 246, and 250; Acid Red, 1, 14, 17, 18, 42, 57, 88, 97, 118, 119, 151, 183, 184, 186, 194, 195, 198, 211, 225, 226, 249, 251, 257, 260, 266, 278, 283, 315, 336, 337, 357, 359, 361, 362, 374, 405, 407, 414, 418, 419, and 447; Acid Violet 3, 5, 7, 17, 54, 90, and 92; Acid Brown 4, 14, 15, 45, 50, 58, 75, 97, 98, 147, 160:1, 161, 165, 191, 235, 239, 248, 282, 283, 289, 298, 322, 343, 349, 354, 355, 357, 365, 384, 392, 402, 414, 420, 422, 425, 432, and 434; Acid Orange 3, 7, 10, 19, 33, 56, 60, 61, 67, 74, 80, 86, 94, 139, 142, 144, 154, and 162; Acid Blue 1, 7, 9, 15, 92, 133, 158, 185, 193, 277, 277:1, 314, 324, 335, and 342; Acid Green 1, 12, 68:1, 73, 80, 104, 114, and 119; Acid Black 1, 26, 52, 58, 60, 64, 65, 71, 82, 84, 107, 164, 172, 187, 194, 207, 210, 234, 235, and combinations of these. The acid dyes may be used singly or in any combination in the dye solution.
Acid dyes and nonionic disperse dyes are commercially available from many sources, including: Dystar L.P., Charlotte, N.C. under the tradename TELON; Huntsman Corporation, Woodlands, Tex. under the tradenames ERIONYL and TECTILON; BASF SE, Ludwigshafen, Germany under the tradename BASACID; Clariant International Ltd., Muttenz, Switzerland, under the tradenames of SOLVAPERM, HOSTASOL, POLYSYNTHREN, and SAVINYL; and Bezema AG, Montlingen, Switzerland under the tradename BEMACID.
Nonionic disperse dyes are also commercially available in many colors and include fluorescent dyes.
The foam particles can be dyed before being foamed. The acid or nonionic disperse dye solution in which the pellets or other articles are dyed may include, for example, from about 0.001 to about 5.0 grams per liter, preferably from about 0.01 to about 2 grams per liter of the acid or nonionic disperse dye compound or combination of acid or nonionic disperse dye compounds. The amount of acid or nonionic disperse dye compound use will determine how strong the color is and how quickly the substrates (e.g., foam particles, binding material) or other articles are dyed, and may be optimized in a straightforward manner; generally, a more concentrated dye solution can provide a stronger (deeper, darker, more intense) dyed color and can more quickly dye the pellets or other articles containing the thermoplastic elastomer.
The dye solution may include a water-soluble organic solvent. Water solubility of a particular organic solvent used in a particular amount in the dye solution is determined at 20 degrees Celsius and 1 atmosphere pressure at the concentration at which the alcohol is to be used in the dye solution; the organic solvent is water soluble if it fully dissolves or is fully miscible in water at 20 degrees Celsius and 1 atmosphere pressure at the concentration at which the alcohol is to be used in the dye solution and does not form any separate phase or layer. Suitable, nonlimiting examples of water-soluble organic solvents that may be used include alcohols, such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycols, and glycerol; ketones, such as acetone and methyl ethyl ketone; esters, such as butyl acetate, which is soluble in limited amounts in water; and glycol ethers and glycol ether esters (particularly acetates), such as ethylene glycol monobutyl ether, ethylene glycol phenyl ether (EGPE), propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate. The water-soluble organic solvent may be included in concentrations of up to about 50 percent by volume, or up to about 25 percent by volume, or from about 1 percent to about 50 percent by volume, or from about 5 percent to about 40 percent by volume, or from about 10 percent to about 30 percent by volume, or from about 15 percent to about 25 percent by volume of the aqueous medium used to make the dye solution. Whether an organic solvent is used and how much organic solvent is used may be varied according to which dye is used and to the application method for contacting the dye solution with the substrates or other articles.
When the foam particles or binding materials contain thermoplastic polyurethane elastomers or thermoplastic polyurea elastomers, the anionic dye solution also advantageously includes a quaternary (tetraalkyl) ammonium salt selected from soluble tetrabutylammonium compounds and tetrahexylammonium compounds. Such articles are advantageously dyed in an acid dye solution including an anionic dye compound, a quaternary ammonium salt selected from soluble tetrabutylammonium compounds and tetrahexylammonium compounds, and, optionally, a water-soluble organic solvent.
The counterion of the quaternary ammonium salt should be selected so that the quaternary ammonium salt forms a stable solution with the anionic dye. The quaternary ammonium compound may be, for example, a halide (such as chloride, bromide or iodide), hydroxide, sulfate, sulfite, carbonate, perchlorate, chlorate, bromate, iodate, nitrate, nitrite, phosphate, phosphite, hexfluorophosphite, borate, tetrafluoroborate, cyanide, isocyanide, azide, thiosulfate, thiocyanate, or carboxylate (such as acetate or oxalate). In certain embodiments, an anion that is a weaker Lewis base may be selected for the tetraalkylammonium compound to produce a darker color for the dyed cover or coating layer. In various embodiments, the tetraalkylammonium compound is or includes a tetrabutylammonium halide or tetrahexylammonium halide, particularly a tetrabutylammonium bromide or chloride or a tetrahexylammonium bromide or chloride.
The acid dye solution used to dye the foam particles or binding materials when they contain thermoplastic polyurethane elastomers or thermoplastic polyurea elastomers may include from about 0.1 to about 5 equivalents of the soluble tetraalkylammonium compound per equivalent of dye compound. In various embodiments, the acid dye solution may include from about 0.5 to about 4, preferably from about 1 to about 4 equivalents of the tetraalkylammonium compound per equivalent of dye compound. The amount of tetraalkylammonium compound used with a particular acid dye compound depends upon the desired rate of diffusion of the dye into and in the substrate and may be optimized in a straightforward manner. The process of dyeing the foam particles or binding materials containing thermoplastic polyurethane elastomers or thermoplastic polyurea elastomers with this dye solution containing the soluble tetraalkylammonium compound can produce strong color intensity in the dyed foam particles.
The foam particles may be dyed with a nonionic or anionic dye one of: (1) before being infused with the supercritical fluid. The foam particles may also be dyed while being infused with the supercritical fluid by a nonionic or anionic dye dissolved or dispersed in the supercritical fluid, which optionally comprises a polar liquid. The foam particles may also be dyed while being immersed in the heated fluid, where the heated fluid contains the dye. In particular, the heated fluid may be a heated aqueous dye solution, which may contain the quaternary ammonium salt and organic solvents as described. Finally, the foam particles can be dyed after being foamed using the dyeing process as already described.
Elastomeric Thermoplastic Polymers.Having described the various methods of forming a cushioning element or bladder and a component comprising a plurality of foam particles, we now describe in more detail the elastomeric thermoplastic polymers referenced herein. The foam particles of the present disclosure can be prepared from a suitable thermoplastic elastomer. For example, thermoplastic elastomer can be selected from a thermoplastic polyurethane elastomer, a thermoplastic polyurea elastomer, a thermoplastic polyether elastomer, a thermoplastic copolyetherester elastomer, a thermoplastic polyamide elastomer, a thermoplastic polystyrene elastomer, a thermoplastic polyolefin elastomer, a thermoplastic copolyetheramide elastomer, a thermoplastic styrene diene copolymer elastomer, a thermoplastic styrene block copolymer elastomer, a thermoplastic polyamide elastomer, a thermoplastic polyimide elastomer, any copolymer thereof, and any blend thereof.
The thermoplastic elastomer used to prepare the foam particles can comprise a thermoplastic copolyetherester elastomer. It is understood that as used herein, “thermoplastic copolyetherester elastomer” can be used interchangeably with “thermoplastic polyether-polyester block copolymers,” “thermoplastic polyester/polyether block copolymers,” “copolyester elastomer,” “poly-ether-ester block copolymer,” “block poly-ether-ester,” “polyester elastomer,” “thermoplastic poly-ether-ester,” “copoly(ether ester),” and “copolyester thermoplastic elastomer.” The thermoplastic copolyetherester elastomer can comprise hard (or crystalline) polyester segments dispersed within soft (or amorphous) polyether segments. The thermoplastic copolyetherester elastomer can be a block copolymer. The thermoplastic copolyetherester elastomer can be a segmented block copolymer. The thermoplastic copolyetherester elastomer can be a block copolymer comprising segments or blocks of polyester and segments or blocks of polyether.
The thermoplastic copolyetherester elastomer used to prepare the foam particles can comprise polyesters segments, produced by the reaction of dicarboxylic derivative (such as terephthalate) and diols (such as butanediol) and polyether segments (such as polyalkylene (ether) glycol or polyol).
The polyester segments can comprise polybutylene terephthalate (PBT). The polyester segments can comprise polyethylene terephthalate (PET). The polyester segments can have a segment molecular weight of about 3000 Daltons to about 9000 Daltons. The polyester segments can have a segment molecular weight of about 5000 Daltons to about 7000 Daltons.
The polyether segments can comprise long-chain polyols. The polyether segments can be polyethylene glycol (PEG), polypropylene glycol (PPG) or polypropylene ether glycol (PPEG), polytetramethylene glycol (PTMG or PTHF) polytetramethylene ether glycol, and combinations thereof. The polyether segments can have a segment molecular of about 200 Daltons to about 4000 Daltons. The polyether segments can have a segment molecular of about 1000 Daltons to about 3000 Daltons.
The thermoplastic copolyetherester elastomer can comprise a polytetramethylene ether terephthalate soft segment and a polybutylene terephthalate hard segment. Thermoplastic copolyetherester elastomers are commercially available, and non-limiting examples are available under the tradenames HYTREL (DuPont Company, Wilmington, Del.), ARNITEL (DSM Engineering Plastics, Evansville, Ind.), and PELPRENE (Toyobo Co., Ltd., Osaka, Japan).
The thermoplastic copolyetherester elastomer polymers can comprise a polyether segment obtained by polymerization of tetrahydrofuran (i.e. poly(tetramethylene ether)) and a polyester segment obtained by polymerization of tetramethylene glycol and phthalic acid (i.e. 1,4-butylene terephthalate). Generally, the more polyether units incorporated into the copolyetherester, the softer the polymer. The poly(tetramethylene ether) glycol used to make the copolyetherester can have a molecular weight of from about 500 Daltons to about 3500 Daltons, or about 800 Daltons to about 2500 Daltons.
The thermoplastic copolyetherester elastomer polymers can comprise repeat units derived from 30 to 70 weight percent of 1,4-butylene terephthalate and from 10 to 70 weight percent of poly(tetramethylene ether) terephthalate. The thermoplastic copolyetherester elastomer polymers can comprise repeat units derived from 55 to 60 weight percent of 1,4-butylene terephthalate, from 23 to 27 weight percent of 1,4-butylene isophthalate, from 10 to 15 weight percent of poly(tetramethylene ether) terephthalate, and from 3 to 7 weight percent of poly(tetramethylene ether) isophthalate. The poly(tetramethylene ether) glycol used to make the copolyetherester can have a molecular weight of from about 800 to about 1200.
The thermoplastic copolyetherester elastomer polymers can comprise repeat units derived from 30 to 40 weight percent 1,4-butylene terephthalate, and from 60 to 70 weight percent poly(tetramethylene ether) terephthalate. The poly(tetramethylene ether) glycol used to make the copolyetherester preferably has a molecular weight of from 1500 to about 2500.
The thermoplastic copolyetherester elastomer can be a block copolymer of short-chain diol terephthalate and long-chain polyether diol terephthalate, comprising about 60 weight percent of hard segments of polybutylene terephthalate and about 40 weight percent of soft segments of polytetramethylene ether terephthalate, has a Durometer hardness (ASTM D-2240) of Shore 55D, a melting point (ASTM D-2117) of 211° C.; a Vicat Softening Point (ASTM D1525) of 180° C. and flexural modulus (ASTM D790) of 207 megapascals (MPa). A suitable material with the foregoing characteristics is commercially available under the tradename HYTRELO 5556 (DuPont Company, Wilmington, Del.).
The thermoplastic copolyetherester elastomer can be a block copolymer of short-chain diol terephthalate and long-chain polyether diol terephthalate, comprising about 42 weight percent of hard segments of polybutylene terephthalate and about 58 weight percent of soft segments of polytetramethylene ether terephthalate, has a Durometer hardness of 92 A/40 D; a melting point of 168 degrees Celsius; a Vicat Softening Point of 112 degrees Celsius and flexural modulus of 48.3 megapascals. A suitable material with the foregoing characteristics is commercially available under the tradename HYTREL 4056 (DuPont Company, Wilmington, Del.).
The thermoplastic copolyetherester elastomer can be a block copolymer of short-chain diol terephthalate and long-chain polyether diol terephthalate, comprising about 80 weight percent of hard segments of polybutylene terephthalate and about 20 weight percent of soft segments of polytetramethylene ether terephthalate, has a Durometer hardness of about 72 D; a melting point of 219 degrees Celsius; a Vicat Softening Point of 207 degrees Celsius and a flexural modulus of 585 megapascals. A suitable material with the foregoing characteristics is commercially available under the tradename HYTRELO 7246 (DuPont Company, Wilmington, Del.).
The thermoplastic copolyetherester elastomer can comprise long-chain ester units of formula I:
and short-chain ester units of formula II:
wherein R1 comprises a divalent radical remaining after removal of terminal hydroxyl groups from poly(alkylene ether) having a carbon-to-oxygen ratio from about 2.0 to about 4.3 and a number average molecular weight from about 400 Daltons to about 6000 Daltons; wherein R2 comprises a divalent radical remaining after removal of carboxyl groups from a dicarboxylic acid having a molecular weight less than about 300 Daltons; wherein R3 comprises a divalent radical remaining after removal of hydroxyl groups from a low molecular weight diol having a molecular weight less than about 250 Daltons; wherein R4 comprises a divalent radical remaining after removal of carboxyl groups from a dicarboxylic acid having a molecular weight less than about 300 Daltons; wherein the long-chain ester units represented by formula I comprise about 5 weight percent to about 95 weight percent of the thermoplastic copolyetherester elastomer; and wherein the short-chain ester units represented by formula II comprise about 95 weight percent to about 5 weight percent of the thermoplastic copolyetherester elastomer.
R1 can comprise a divalent radical remaining after removal of terminal hydroxyl groups from poly(tetramethylene ether). R1 can have a number average molecular weight from about 500 Daltons to about 3500 Daltons; about 600 Daltons to about 3000 Daltons; about 800 Daltons to about 1200 Daltons; about 800 Daltons to about 2000 Daltons; about 800 Daltons to about 2500 Daltons; about 800 Daltons to about 3000 Daltons; about 800 Daltons to about 3500 Daltons; about 800 Daltons to about 4000 Daltons; about 1000 Daltons to about 3000 Daltons; or about 1500 Daltons to about 2500 Daltons.
R2 can comprise a divalent radical remaining after removal of carboxyl groups from an aromatic dicarboxylic acid. Still further, R2 can comprise a divalent radical remaining after removal of carboxyl groups from 1,4-benzendicarboxylic acid.
R3 can comprise a divalent radical remaining after removal of hydroxyl groups from a C2-C6 alkyl diol. Still further, R3 can comprise a divalent radical remaining after removal of hydroxyl groups from 1,4-butanediol.
R4 can be a divalent radical remaining after removal of carboxyl groups from an aromatic dicarboxylic acid. Still further, R4 can be a divalent radical remaining after removal of carboxyl groups from 1,4-benzendicarboxylic acid.
The long-chain ester units represented by formula I can comprise about 10 weight percent to about 60 weight percent of the thermoplastic copolyetherester elastomer; about 20 weight percent to about 60 weight percent of the thermoplastic copolyetherester elastomer; about 30 weight percent to about 60 weight percent of the thermoplastic copolyetherester elastomer; about 10 weight percent to about 70 weight percent of the thermoplastic copolyetherester elastomer; about 20 weight percent to about 70 weight percent of the thermoplastic copolyetherester elastomer; about 30 weight percent to about 70 weight percent of the thermoplastic copolyetherester elastomer; about 10 weight percent to about 80 weight percent of the thermoplastic copolyetherester elastomer; about 20 weight percent to about 80 weight percent of the thermoplastic copolyetherester elastomer; or about 30 weight percent to about 80 weight percent of the thermoplastic copolyetherester elastomer.
The short-chain ester units represented by formula II can comprise about 20 weight percent to about 90 weight percent of the thermoplastic copolyetherester elastomer; about 40 weight percent to about 90 weight percent of the thermoplastic copolyetherester elastomer; about 20 weight percent to about 80 weight percent of the thermoplastic copolyetherester elastomer; about 40 weight percent to about 80 weight percent of the thermoplastic copolyetherester elastomer; about 20 weight percent to about 70 weight percent of the thermoplastic copolyetherester elastomer; about 40 weight percent to about 70 weight percent of the thermoplastic copolyetherester elastomer; about 40 weight percent to about 60 weight percent of the thermoplastic copolyetherester elastomer; or about 20 weight percent to about 60 weight percent of the thermoplastic copolyetherester elastomer.
Optionally, at least about 50 weight percent of the short-chain ester units represented by formula II can be identical.
The thermoplastic copolyetherester elastomer can comprise polybutylene terephthalate blocks and poly(tetramethylene ether) terephthalate blocks, wherein the thermoplastic copolyetherester elastomer comprises from about 95 weight percent to about 5 weight percent of the polybutylene terephthalate blocks, and from about 5 weight percent to about 95 weight percent of the poly(tetramethylene ether) terephthalate blocks, and wherein the poly(tetramethylene ether) terephthalate blocks have a number average molecular weight from about 200 Daltons to about 6000 Daltons.
The thermoplastic copolyetherester elastomer can comprise polybutylene terephthalate blocks and poly(tetramethylene ether) terephthalate blocks, wherein the thermoplastic copolyetherester elastomer comprises from about 70 weight percent to about 20 weight percent of the polybutylene terephthalate blocks, and from about 5 weight percent to about 95 weight percent of the poly(tetramethylene ether) terephthalate blocks, and wherein the poly(tetramethylene ether) terephthalate blocks have a number average molecular weight from about 200 Daltons to about 6000 Daltons.
The thermoplastic copolyetherester elastomer can comprise polybutylene terephthalate blocks and poly(tetramethylene ether) terephthalate blocks, wherein the thermoplastic copolyetherester elastomer comprises from about 80 weight percent to about 30 weight percent of the polybutylene terephthalate blocks, and from about 5 weight percent to about 95 weight percent of the poly(tetramethylene ether) terephthalate blocks, and wherein the poly(tetramethylene ether) terephthalate blocks have a number average molecular weight from about 200 Daltons to about 6000 Daltons.
The thermoplastic copolyetherester elastomer can comprise polybutylene terephthalate blocks and poly(tetramethylene ether) terephthalate blocks, wherein the thermoplastic copolyetherester elastomer comprises from about 70 weight percent to about 20 weight percent of the polybutylene terephthalate blocks, and from about 30 weight percent to about 80 weight percent of the poly(tetramethylene ether) terephthalate blocks, and wherein the poly(tetramethylene ether) terephthalate blocks have a number average molecular weight from about 200 Daltons to about 6000 Daltons.
The poly(tetramethylene ether) terephthalate blocks can have a number average molecular weight from about 800 Daltons to about 1200 Daltons; about 1500 Daltons to about 2500 Daltons; or about 1000 Daltons to about 3000 Daltons.
The thermoplastic elastomer used to prepare the foam particles can comprise a thermoplastic polyurethane elastomer. The thermoplastic polyurethane elastomer can be selected from a thermoplastic polyester-polyurethane elastomer, a thermoplastic polyether-polyurethane elastomer, a thermoplastic polycarbonate-polyurethane elastomer, a thermoplastic polyolefin-polyurethane elastomer, any copolymer thereof, and any blend thereof. The thermoplastic polyurethane elastomer can be a thermoplastic polyester-polyurethane elastomer. The thermoplastic polyurethane elastomer can be a thermoplastic polyether-polyurethane elastomer. The thermoplastic polyurethane elastomer can be a thermoplastic polycarbonate-polyurethane elastomer.
Thermoplastic polyurethane from which the foam particles are prepared may have a melt index (also called a melt flow index or melt flow rate) of at least about 160 grams/10 minutes (at 190 degrees Celsius, 21.6 kilograms) as measured according to ASTM D1238. The melt index can be from about 160 to about 250 grams/10 minutes (at 190 degrees Celsius, 21.6 kilograms) or from about 160 to about 220 grams/10 minutes (at 190 degrees Celsius, 21.6 kilograms), in each case as measured according to ASTM D1238.
Thermoplastic polyurethanes can be produced via reaction of (a) diisocyanates with difunctional compounds reactive toward isocyanates. In general, the difunctional compounds have two hydroxyl groups (diols) and may have a molar mass of from 62 Daltons (the molar mass of ethylene glycol) to about 10,000 Daltons, although difunctional compounds having other isocyanate-groups (e.g., secondary amine) may be used, generally in minor amounts, and a limited molar fraction of tri-functional and mono-functional isocyanate-reactive compounds may be used. Preferably, the polyurethane is linear. Including difunctional compounds with molar masses of about 400 or greater introduces soft segments into the polyurethane. An increased ratio of soft segments to hard segments in the polyurethane causes the polyurethane to become increasingly more flexible and eventually elastomeric. In certain examples, such as when the molded article is an outsole for an article of footwear, the particles may advantageously be prepared using a rigid thermoplastic polyurethane or combination of thermoplastic polyurethanes. When the molded article is a midsole for footwear, the particles may advantageously be prepared using an elastomeric thermoplastic polyurethane or a combination of elastomeric thermoplastic polyurethanes.
Suitable thermoplastic polyurethanes include thermoplastic polyester-polyurethanes, polyether-polyurethanes, and polycarbonate-polyurethanes. Non-limiting, suitable examples of these include, without limitation, polyurethanes polymerized using as diol reactants polyesters diols prepared from diols and dicarboxylic acids or anhydrides, polylactone polyesters diols (for example polycaprolactone diols), polyester diols prepared from hydroxy acids that are monocarboxylic acids containing one hydroxyl group, polytetrahydrofuran diols, polyether diols prepared from ethylene oxide, propylene oxide, or combinations of ethylene oxide and propylene oxide, and polycarbonate diols such as polyhexamethylene carbonate diol and poly(hexamethylene-co-pentamethylene)carbonate diols. The elastomeric thermoplastic polyurethane may be prepared by reaction of one of these polymeric diols (polyester diol, polyether diol, polylactone diol, polytetrahydrofuran diol, or polycarbonate diol), one or more polyisocyanates, and, optionally, one or more monomeric chain extension compounds. Chain extension compounds are compounds having two or more functional groups, preferably two functional groups, reactive with isocyanate groups. Preferably the elastomeric thermoplastic polyurethane is substantially linear (i.e., substantially all of the reactants are di-functional).
Non-limiting examples of polyester diols used in forming the elastomeric thermoplastic polyurethane include those prepared by the condensation polymerization of dicarboxylic compounds, their anhydrides, and their polymerizable esters (e.g. methyl esters) and diol compounds. Preferably, all of the reactants are di-functional, although small amounts of mono-functional, tri-functional, and higher functionality materials (perhaps up to a few mole percent) can be included. Suitable dicarboxylic acids include, without limitation, glutaric acid, succinic acid, malonic acid, oxalic acid, phthalic acid, hexahydrophthalic acid, adipic acid, maleic acid, anhydrides of these, and mixtures thereof. Suitable polyols include, without limitation, wherein the extender is selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, cyclohexanedimethanol, 2-ethyl-1,6-hexanediol, 1,4-butanediol, 1,5-pentanediol, 1,3-propanediol, butylene glycol, neopentyl glycol, and combinations thereof. Small amounts of triols or higher functionality polyols, such as trimethylolpropane or pentaerythritol, are sometimes included. The carboxylic acid can include adipic acid and the diol can include 1,4-butanediol. Typical catalysts for the esterification polymerization are protonic acids, Lewis acids, titanium alkoxides, and dialkyl tin oxides.
Hydroxy carboxylic acid compounds such as 12-hydroxy stearic acid may also be polymerized to produce a polyester diol. Such a reaction may be carried out with or without an initiating diol such as one of the diols already mentioned.
Polylactone diol reactants may also be used in preparing the elastomeric thermoplastic polyurethanes. The polylactone diols may be prepared by reacting a diol initiator, e.g., a diol such as ethylene or propylene glycol or another of the diols already mentioned, with a lactone. Lactones that can be ring opened by an active hydrogen such as, without limitation, ε-caprolactone, γ-caprolactone, β-butyrolactone, β-propriolactone, γ-butyrolactone, α-methyl-γ-butyrolactone, β-methyl-γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-decanolactone, δ-decanolactone, γ-nonanoic lactone, γ-octanoic lactone, and combinations of these can be polymerized. The lactone ring can be substituted with alkyl groups of 1-7 carbon atoms. The lactone can be E-caprolactone. Useful catalysts include those mentioned above for polyester synthesis. Alternatively, the reaction can be initiated by forming a sodium salt of the hydroxyl group on the molecules that will react with the lactone ring.
Tetrahydrofuran may be polymerized by a cationic ring-opening reaction using such counterions as SbF6−, AsF6−, PF6−, SbCl6−, BF4−, CF3SO3−, FSO3−, and ClO4−. Initiation is by formation of a tertiary oxonium ion. The polytetrahydrofuran segment can be prepared as a “living polymer” and terminated by reaction with the hydroxyl group of a diol such as any of those mentioned above.
Aliphatic polycarbonates may be prepared by polycondensation of aliphatic diols with dialkyl carbonates, (such as diethyl carbonate), cyclic glycol carbonates (such as cyclic carbonates having five- and six-member rings), or diphenyl carbonate, in the presence of catalysts like alkali metal, tin catalysts, or titanium compounds. or diphenyl carbonate. Another way to make aliphatic polycarbonates is by ring-opening polymerization of cyclic aliphatic carbonates catalyzed by organometallic catalysts. The polycarbonate diols can also be made by copolymerization of epoxides with carbon dioxide. Aliphatic polycarbonate diols are prepared by the reaction of diols with dialkyl carbonates (such as diethyl carbonate), diphenyl carbonate, or dioxolanones (such as cyclic carbonates having five- and six-member rings) in the presence of catalysts like alkali metal, tin catalysts, or titanium compounds. Useful diols include, without limitation, any of those already mentioned. Aromatic polycarbonates are usually prepared from reaction of bisphenols, e.g., bisphenol A, with phosgene or diphenyl carbonate.
The polymeric diol, such as the polymeric polyester diols and polyether diols described above, that are used in making an elastomeric thermoplastic polyurethanes synthesis preferably have a number average molecular weight (determined for example by the ASTM D-4274 method) of from about 300 Daltons to about 8,000 Daltons, or from about 300 Daltons to about 5000 Daltons, or from about 300 Daltons to about 3000 Daltons.
The synthesis of a thermoplastic polyurethanes may be carried out by reacting one or more of the polymeric diols, one or more compounds having at least two (preferably two) isocyanate groups, and, optionally, one or more chain extension agents. The elastomeric thermoplastic polyurethanes are preferably linear and thus the polyisocyanate component preferably is substantially di-functional. Useful diisocyanate compounds used to prepare the elastomeric thermoplastic polyurethanes, include, without limitation, methylene bis-4-cyclohexyl isocyanate, cyclohexylene diisocyanate (CHDI), isophorone diisocyanate (IPDI), m-tetramethyl xylylene diisocyanate (m-TMXDI), p-tetramethyl xylylene diisocyanate (p-TMXDI), ethylene diisocyanate, 1,2-diisocyanatopropane, 1,3-diisocyanatopropane, 1,6-diisocyanatohexane (hexamethylene diisocyanate or HDI), 1,4-butylene diisocyanate, lysine diisocyanate, 1,4-methylene bis-(cyclohexyl isocyanate), 2,4-tolylene (“toluene”) diisocyanate and 2,6-tolylene diisocyanate (TDI), 2,4′-methylene diphenyl diisocyanate (MDI), 4,4′-methylene diphenyl diisocyanate (MDI), o-, m-, and p-xylylene diisocyanate (XDI), 4-chloro-1,3-phenylene diisocyanate, naphthylene diisocyanates including 1,2-naphthylene diisocyanate, 1,3-naphthylene diisocyanate, 1,4-naphthylene diisocyanate, 1,5-naphthylene diisocyanate, and 2,6-naphthylene diisocyanate, 4,4′-dibenzyl diisocyanate, 4,5′-diphenyldiisocyanate, 4,4′-diisocyanatodibenzyl, 3,3′-dimethoxy-4,4′-biphenylene diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, 1,3-diisocyanatobenzene, 1,4-diisocyanatobenzene, and combinations thereof. Particularly useful is diphenylmethane diisocyanate (MDI).
Useful active hydrogen-containing chain extension agents generally contain at least two active hydrogen groups, for example, diols, dithiols, diamines, or compounds having a mixture of hydroxyl, thiol, and amine groups, such as alkanolamines, aminoalkyl mercaptans, and hydroxyalkyl mercaptans, among others. The molecular weight of the chain extenders may range from about 60 to about 400 g/mol. The chain extension agents can include alcohols and amines. Typical examples of useful diols that are used as polyurethane chain extenders include, without limitation, 1,6-hexanediol, cyclohexanedimethanol (sold as CHDM by Eastman Chemical Co.), 2-ethyl-1,6-hexanediol, 1,4-butanediol, ethylene glycol and lower oligomers of ethylene glycol including diethylene glycol, triethylene glycol and tetraethylene glycol; propylene glycol and lower oligomers of propylene glycol including dipropylene glycol, tripropylene glycol and tetrapropylene glycol; 1,3-propanediol, neopentyl glycol, dihydroxyalkylated aromatic compounds such as the bis(2-hydroxyethyl)ethers of hydroquinone and resorcinol; p-xylene-α,α′-diol; the bis(2-hydroxyethyl)ether of p-xylene-α,α′-diol; m-xylene-α,α′-diol and the bis(2-hydroxyethyl)ether; 3-hydroxy-2,2-dimethylpropyl 3-hydroxy-2,2-dimethylpropanoate; and mixtures thereof. Suitable diamine extenders include, without limitation, p-phenylenediamine, m-phenylenediamine, benzidine, 4,4′-methylenedianiline, 4,4′-methylenibis (2-chloroaniline), ethylene diamine, and combinations of these. Other typical chain extenders are amino alcohols such as ethanolamine, propanolamine, butanolamine, and combinations of these. Preferred extenders include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, and combinations of these.
In addition to the above-described di-functional extenders, a small amount of tri-functional extenders such as trimethylolpropane, 1,2,6-hexanetriol and glycerol, and/or mono-functional active hydrogen compounds such as butanol or dimethyl amine, may also be present. The amount of tri-functional extenders and/or mono-functional compounds employed would preferably be a few equivalent percent or less based on the total weight of the reaction product and active hydrogen containing groups employed.
The reaction of the polyisocyanate(s), polymeric diol(s), and, optionally, chain extension agent(s) is typically conducted by heating the components, generally in the presence of a catalyst. Typical catalysts for this reaction include organotin catalysts such as stannous octoate or dibutyl tin dilaurate. Generally, the ratio of polymeric diol, such as polyester diol, to extender can be varied within a relatively wide range depending largely on the desired hardness of the elastomeric thermoplastic polyurethanes. For example, the equivalent proportion of polyester diol to extender may be within the range of 1:0 to 1:12 and, more preferably, from 1:1 to 1:8. Preferably, the diisocyanate(s) employed are proportioned such that the overall ratio of equivalents of isocyanate to equivalents of active hydrogen containing materials is within the range of 0.95:1 to 1.10:1, and more preferably, 0.98:1 to 1.04:1. The polymeric diol segments typically are from about 25 weight percent to about 65 weight percent of the elastomeric thermoplastic polyurethanes, and preferably from about 25 weight percent to about 50 weight percent of the elastomeric thermoplastic polyurethanes.
The thermoplastic polyurethane elastomer used to prepare the foam particles can comprise a long-chain polyol. The long-chain polyol can be selected from a polyether polyol, a polyester polyol, a polycarbonate polyol, a polyolefin polyol, a polyacryl polyol, and any copolymer thereof. The long-chain polyol can be a polyether polyol, a polyester polyol, and any copolymer thereof. The long-chain polyol can be a polyether polyol. The long-chain polyol can be a polyester polyol. The long-chain polyol can have a number-average molecular weight of not less than about 500 Daltons. The long-chain polyol can have a number-average molecular weight of about 500 Daltons to about 10,000 Daltons; about 600 Daltons to about 6,000 Daltons; or about 800 Daltons to about 4,000 Daltons.
One non-limiting example of commercially available elastomeric thermoplastic polyurethanes having a melt flow index of from about 160 to about 220 grams/10 minutes (at 190 degrees Celsius, 21.6 kilograms) suitable for making thermoplastic polyurethanes foam particles is ELASTOLLAN SP9213 (melt flow index of 200 grams/10 minutes (at 190 degrees Celsius, 21.6 kilograms)), which is available from BASF Polyurethanes GmbH.
A thermoplastic polyurethane that is more rigid may be synthesized in the same way but with a lower content of the polymeric diol segments. A rigid thermoplastic polyurethane may, for example, include from about 0 to about 25 weight percent of the polyester, polyether, or polycarbonate diol segments. Synthesis of rigid polyurethanes is well-known in the art and described in many references. Rigid thermoplastic polyurethane having a melt index of at least about 160 grams/10 minutes (at 190 degrees Celsius, 21.6 kilograms) as measured according to ASTM D 1238 are commercially available and include those sold under the trademark Isoplast® ETPU by Lubrizol Corp., Wickliffe, Ohio.
Suitable thermoplastic polyurea elastomers may be prepared by reaction of one or more polymeric diamines or polyols with one or more of the polyisocyanates already mentioned and one or more diamine extenders. Nonlimiting examples of suitable diamine extenders include ethylene diamine, 1,3-propylene diamine, 2-methyl-pentamethylene diamine, hexamethylene diamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexane diamine, imino-bis(propylamine), imido-bis(propylamine), N-(3-aminopropyl)-N-methyl-1,3-propanediamine), 1,4-bis(3-aminopropoxy)butane, diethyleneglycol-di(aminopropyl)ether), 1-methyl-2,6-diamino-cyclohexane, 1,4-diamino-cyclohexane, 1,3- or 1,4-bis(methylamino)-cyclohexane, isophorone diamine, 1,2- or 1,4-bis(sec-butylamino)-cyclohexane, N,N′-diisopropyl-isophorone diamine, 4,4′-diamino-dicyclohexylmethane, 3,3′-dimethyl-4,4′-diamino-dicyclohexylmethane, N,N′-dialkylamino-dicyclohexylmethane, and 3,3′-diethyl-5,5′-dimethyl-4,4′-diamino-dicyclohexylmethane. Polymeric diamines include polyoxyethylene diamines, polyoxypropylene diamines, poly(oxyethylene-oxypropylene)diamines, and poly(tetramethylene ether)diamines. The amine- and hydroxyl-functional extenders already mentioned may be used as well. Generally, as before, trifunctional reactants are limited and may be used in conjunction with monofunctional reactants to prevent crosslinking.
The thermoplastic elastomer can comprise a thermoplastic polyamide elastomer. Optionally, the thermoplastic polyamide elastomer can comprise nylon 6, nylon 12, or combinations thereof.
Suitable thermoplastic polyamide elastomers may be obtained by: (1) polycondensation of (a) a dicarboxylic acid, such as oxalic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, or any of the other dicarboxylic acids already mentioned with (b) a diamine, such as ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, or decamethylenediamine, 1,4-cyclohexanediamine, m-xylylenediamine, or any of the other diamines already mentioned; (2) a ring-opening polymerization of a cyclic lactam, such as ε-caprolactam or ω-laurolactam; (3) polycondensation of an aminocarboxylic acid, such as 6-aminocaproic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, or 12-aminododecanoic acid; or (4) copolymerization of a cyclic lactam with a dicarboxylic acid and a diamine to prepare a carboxylic acid-functional polyamide block, followed by reaction with a polymeric ether diol (polyoxyalkylene glycol) such as any of those already mentioned. Polymerization may be carried out, for example, at temperatures of from about 180 degrees Celsius to about 300 degrees Celsius Specific examples of suitable polyamide blocks include NYLON 6, NYLON 66, NYLON 610, NYLON 11, NYLON 12, copolymerized NYLON, NYLON MXD6, and NYLON 46.
The thermoplastic elastomer can comprise at least one thermoplastic polystyrene elastomer. The thermoplastic polystyrene elastomer can be a styrene block copolymer elastomer. The thermoplastic styrene block copolymer elastomer can be a styrene ethylene butylene styrene block copolymer. The styrene block copolymer elastomer can be a poly(styrene-butadiene-styrene), a poly(styrene-ethylene-co-butylene-styrene), a poly(styrene-isoprene-styrene), any copolymer thereof, and any blend thereof.
The thermoplastic elastomer used to prepare the foam particles can be characterized by a broad peak indicating a range of melting temperatures (Tm) when determined using differential scanning calorimetry. The melting temperature can be characterized by a melting range of about 15 degrees Celsius to about 200 degrees Celsius or about 50 degrees Celsius to about 90 degrees Celsius. The melting temperature of the thermoplastic elastomer can be characterized by a melting range of about 30 degrees Celsius to about 150 degrees Celsius from initial onset to a melting temperature peak. The melting temperature can be characterized by a melting range of at least about 30 degrees Celsius or by a melting range of at least about 50 degrees Celsius.
Methods of Characterizing the Disclosed Articles.Several methods of measuring resiliency and/or energy return of foams exist in the art.
One method of measuring resiliency of foams is based on ASTM D 2632-92, which is a test for solid rubber materials. For use with foams, the test sample is prepared as described in ASTM D2632-92, but uses a sample of foam in place of the sample of solid rubber. This test uses a plunger which is dropped from a height onto a test sample while being guided by a vertical rod. The drop height is divided into 100 equal parts, and the height to which the plunger rebounds is measured using this 100 part scale, to determine the resiliency of the sample. Alternative methods which use a ball of standard weight dropped onto a sample, and which measure the rebound height of the ball to determine the resiliency of the sample can also be used. The resiliency and/or energy return can be determined using force/displacement behavior determined using methods known to one skilled in the art.
The force/displacement behavior for the disclosed articles can be measured using an Instron Electropuls E10000 (Instron, Norwood, Mass., USA) with a stainless steel 4 5 millimeters circular cross section impact geometry. The test foam slabs can be approximately 10 millimeters, although thinner or thicker foam slabs can also be used. Each sample can be evaluated by two different compression cycles: “running” and “walking”. A “running” compression cycle consists of samples being compressed under displacement control from 0 Newtons to 300 Newtons and back to 0 Newtons in 180 milliseconds, followed by a pause of 400 milliseconds for a total of ˜1.7 Hertz. The “walking” compression cycle consist of samples compressed from 0 Newtons to 144 Newtons and back to 0 Newtons in 600 milliseconds followed by a pause of 400 milliseconds for a total of ˜1 Hertz.
Compression can be measured by preparing a sample of a standard thickness (e.g., 10 millimeters) of a foam. Samples having a thickness less than the standard can be stacked to make a sample having the standard thickness. The sample is loaded into a metal compression plate and compressed to a height of 50 percent of the original thickness (e.g., 5 millimeters). The sample is placed in a 50 degrees Celsius oven on its side for 6 hours. At the end of the 6 hours, the sample is removed from the oven and from the metal compression plate, and allowed to cool for 30 minutes. Once cooled, the thickness of the sample is measured. The percent compression set (C.S.) is calculated by (a) subtracting the final sample thickness from the original sample thickness, and (b) subtracting the 50 percent compressed thickness from the original sample thickness, (c) dividing (a) by (b), and (d) multiplying the result by 100 to obtain the percent compression set (where all thicknesses are measured in millimeters).
Energy input can be taken as the integral of the force-displacement curve during compression force loading. Hysteresis is taken as the ratio: (energy output)/(energy input), which can also be viewed as the energy efficiency of the foam. Fatigue behavior is judged by changes in the foam displacement at the max load of a cycle. All measured properties: stiffness, hysteresis, and fatigue are measured for multiple cycles for both running and walking compression cycles. Typical characterization using the compression sequence above can be run for 5000 cycles, which simulates approximately ˜5-10 miles of walking/running and takes about 45 minutes of testing time on the Instron Electropuls E10000 instrument. Longer runs up to 100,000 compression cycles can be done to simulate accelerated materials response to ˜100-200 miles of use.
The tensile strength can be measured on a die cut sample of the article in the shape of a dumbbell of a standard size such as a 2.5 centimeters in width by 11.5 centimeters in length, with a minimum thickness of 3 to 4 millimeters. The dumbbell follows the shape described in ASTM D412, die C. The sample is loaded symmetrically into and tested using a long travel extensometer such as the Instron 2603-080 which allows for a minimum of 1000 percent strain with a gauge length of 25 millimeters and a resolution of at least 0.1 millimeters. The tensile value at the failure point of the sample (the point during testing when the load value initially drops) is recorded.
The melt flow index is determined according to the test method detailed in ASTM D1238-13 Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer, using Procedure A described therein. Briefly, the melt flow index measures the rate of extrusion of thermoplastics through an orifice at a prescribed temperature and load. In the test method, approximately 7 grams of the material is loaded into the barrel of the melt flow apparatus, which has been heated to a temperature specified for the material. A weight specified for the material is applied to a plunger and the molten material is forced through the die. A timed extrudate is collected and weighed. Melt flow index values are calculated in cm3/10 min, or g/10 min.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that an order be inferred, in any respect. This holds for any possible non-express basis for interpretation, including: matters of logic with respect to arrangement of steps or operational flow; plain meaning derived from grammatical organization or punctuation; and the number or type of aspects described in the specification.
DefinitionsAll technical and scientific terms used herein, unless defined otherwise, have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and relevant art and should not be interpreted in an idealized or overly formal sense unless expressly defined herein.
All units expressed herein throughout in United States Customary system (USCS or USC), which are referred to in the United States Code as “traditional systems of weights and measures,” are inclusive of their metric equivalents.
As used herein, “comprising” is inclusive and is to be interpreted as specifying the presence of the stated features, integers, steps, or components as referred to, but does not preclude the presence or addition of one or more features, integers, steps, or components, or groups thereof. Moreover, each of the terms “by”, “comprising,” “comprises”, “comprised of,” “including,” “includes,” “included,” “involving,” “involves,” “involved,” and “such as” are used in their open, non-limiting sense and may be used interchangeably. Further, the term “comprising” is intended to include examples and aspects encompassed by the terms “consisting essentially of” and “consisting of.” Similarly, the term “consisting essentially of” is intended to include examples encompassed by the term “consisting of.
As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a foam particle,” “a midsole,” or “an adhesive,” including, but not limited to, two or more such foam particles, midsoles, or adhesives, and the like.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
As used herein, in substance or substantially means at least 50 percent, 60 percent, 75 percent, 90 percent, 95 percent, or more, as determined based on weight or volume.
The terms first, second, third, etc. can be used herein to describe various elements, components, regions, layers and/or sections. These elements, components, regions, layers and/or sections should not be limited by these terms. These terms can be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example configurations.
As used herein, the modifiers “upper,” “lower,” “top,” “bottom,” “upward,” “downward,” “vertical,” “horizontal,” “longitudinal,” “transverse,” “front,” “back” etc., unless otherwise defined or made clear from the disclosure, are relative terms meant to place the various structures or orientations of the structures of the article of footwear in the context of an article of footwear worn by a user standing on a flat, horizontal surface.
It should be noted that ratios, concentrations, amounts, and other numerical data can be expressed herein in a range format. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure, e.g. the phrase “x to y” includes the range from ‘x’ to ‘y’ as well as the range greater than ‘x’ and less than ‘y’. The range can also be expressed as an upper limit, e.g. ‘about x, y, z, or less’ and should be interpreted to include the specific ranges of ‘about x’, ‘about y’, and ‘about z’ as well as the ranges of ‘less than x’, less than y’, and ‘less than z’. Likewise, the phrase ‘about x, y, z, or greater’ should be interpreted to include the specific ranges of ‘about x’, ‘about y’, and ‘about z’ as well as the ranges of ‘greater than x’, greater than y’, and ‘greater than z’. In addition, the phrase “about ‘x’ to ‘y’”, where ‘x’ and ‘y’ are numerical values, includes “about ‘x’ to about ‘y’”. It is to be understood that such a range format is used for convenience and brevity, and thus, should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. To illustrate, a numerical range of “about 0.1 percent to 5 percent” should be interpreted to include not only the explicitly recited values of about 0.1 percent to about 5 percent, but also include individual values (e.g., 1 percent, 2 percent, 3 percent, and 4 percent) and the sub-ranges (e.g., 0.5 percent, 1.1 percent, 2.4 percent, 3.2 percent, and 4.4 percent) within the indicated range.
As used herein, the terms “about,” “approximate,” “at or about,” and “substantially” mean that the amount or value in question can be the exact value or a value that provides equivalent results or effects as recited in the claims or taught herein. That is, it is understood that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art such that equivalent results or effects are obtained. In some circumstances, the value that provides equivalent results or effects cannot be reasonably determined. In such cases, it is generally understood, as used herein, that “about” and “at or about” mean the nominal value indicated plus or minus 10 percent variation unless otherwise indicated or inferred. In general, an amount, size, formulation, parameter or other quantity or characteristic is “about,” “approximate,” or “at or about” whether or not expressly stated to be such. It is understood that where “about,” “approximate,” or “at or about” is used before a quantitative value, the parameter also includes the specific quantitative value itself, unless specifically stated otherwise.
Reference to “a” chemical compound refers one or more molecules of the chemical compound, rather than being limited to a single molecule of the chemical compound. Furthermore, the one or more molecules may or may not be identical, so long as they fall under the category of the chemical compound. Thus, for example, “a” polyamide is interpreted to include one or more polymer molecules of the polyamide, where the polymer molecules may or may not be identical (e.g., different molecular weights and/or isomers).
The terms “at least one” and “one or more of” an element are used interchangeably, and have the same meaning that includes a single element and a plurality of the elements, and can also be represented by the suffix “(s)” at the end of the element. For example, “at least one polyamide”, “one or more polyamides”, and “polyamide(s)” can be used interchangeably and have the same meaning. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
The term “receiving”, such as for “receiving an upper for an article of footwear”, when recited in the claims, is not intended to require any particular delivery or receipt of the received item. Rather, the term “receiving” is merely used to recite items that will be referred to in subsequent elements of the claim(s), for purposes of clarity and ease of readability.
As used herein the terms “percent by weight”, “weight percent,” “wt %,” and “wt %,” which can be used interchangeably, indicate the weight percent of a given component based on the total weight of the composition or article, unless otherwise specified. That is, unless otherwise specified, all weight percent values are based on the total weight of the composition. It should be understood that the sum of weight percent values for all components in a disclosed composition or formulation or article are equal to 100. Similarly, the terms “percent by volume”, “volume percent,” “vol %,” and “vol. %,” which can be used interchangeably, indicate the percent by volume of a given component based on the total volume of the composition or article, unless otherwise specified. That is, unless otherwise specified, all volume percent values are based on the total volume of the composition or article. It should be understood that the sum of volume percent values for all components in a disclosed composition or formulation or article are equal to 100.
Compounds are described using standard nomenclature. For example, any position not substituted by any indicated group is understood to have its valence filled by a bond as indicated, or a hydrogen atom. A dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —CHO is attached through carbon of the carbonyl group. Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.
As used herein, the term “effective amount” refers to an amount that is sufficient to achieve the desired modification of a physical property of the composition or material. For example, an “effective amount” of a filler refers to an amount that is sufficient to achieve the desired improvement in the property modulated by the formulation component, e.g. achieving the desired level of modulus. The specific level in terms of weight percent in a composition required as an effective amount will depend upon a variety of factors including the amount and type of the component, amount and type of composition, and end use of the article made using the composition.
As used herein, the terms “optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
As used herein, the term “units” can be used to refer to individual (co)monomer units such that, for example, styrenic repeat units refers to individual styrene (co)monomer units in the polymer. In addition, the term “units” can be used to refer to polymeric block units such that, for example, “styrene repeating units” can also refer to polystyrene blocks; “units of polyethylene” refers to block units of polyethylene; “units of polypropylene” refers to block units of polypropylene; “units of polybutylene” refers to block units of polybutylene, and so on. Such use will be clear from the context.
The term “copolymer” refers to a polymer having two or more monomer species, and includes terpolymers (i.e., copolymers having three monomer species).
Unless otherwise specified, temperatures referred to herein are determined at a standard atmospheric pressure (i.e. 1 atmosphere).
Disclosed are the components to be used to prepare the compositions of the invention as well as the compositions themselves to be used within the methods disclosed herein. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds cannot be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary. Thus, if a class of molecules A, B, and C are disclosed as well as a class of molecules D, E, and F and an example of a combination molecule, A-D is disclosed, then even if each is not individually recited each is individually and collectively contemplated meaning combinations, A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the compositions of the invention. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific aspect or combination of aspects of the methods of the invention.
References in the specification and concluding claims to parts by weight of a particular element or component in a composition or article, denotes the weight relationship between the element or component and any other elements or components in the composition or article for which a part by weight is expressed. Thus, in a compound containing 2 parts by weight of component X and 5 parts by weight component Y, X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound.
The term “alkyl group” as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n propyl, isopropyl, n butyl, isobutyl, t butyl, pentyl, hexyl, heptyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl, tetracosyl and the like. A “lower alkyl” group is an alkyl group containing from one to six carbon atoms.
The term “aryl group” as used herein is any carbon-based aromatic group including, but not limited to, benzene, naphthalene, etc. The term “aromatic” also includes “heteroaryl group,” which is defined as an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus. The aryl group can be substituted or unsubstituted. The aryl group can be substituted with one or more groups including, but not limited to, alkyl, alkynyl, alkenyl, aryl, halide, nitro, amino, ester, ketone, aldehyde, hydroxy, carboxylic acid, or alkoxy.
The term “aralkyl” as used herein is an aryl group having an alkyl, alkynyl, or alkenyl group as defined above attached to the aromatic group. An example of an aralkyl group is a benzyl group.
The term “organic residue” defines a carbon containing residue, i.e., a residue comprising at least one carbon atom, and includes but is not limited to the carbon-containing groups, residues, or radicals defined hereinabove. Organic residues can contain various heteroatoms, or be bonded to another molecule through a heteroatom, including oxygen, nitrogen, sulfur, phosphorus, or the like. Examples of organic residues include but are not limited alkyl or substituted alkyls, alkoxy or substituted alkoxy, mono or di-substituted amino, amide groups, etc. Organic residues can preferably comprise 1 to 18 carbon atoms, 1 to 15, carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms. An organic residue can comprise 2 to 18 carbon atoms, 2 to 15, carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, 2 to 4 carbon atoms, or 2 to 4 carbon atoms.
A very close synonym of the term “residue” is the term “radical,” which as used in the specification and concluding claims, refers to a fragment, group, or substructure of a molecule described herein, regardless of how the molecule is prepared. For example, a 2,4-dihydroxyphenyl radical in a particular compound has the structure:
regardless of whether 2,4-dihydroxyphenyl is used to prepare the compound. The radical (for example an alkyl) can be further modified (i.e., substituted alkyl) by having bonded thereto one or more “substituent radicals.” The number of atoms in a given radical is not critical to the present invention unless it is indicated to the contrary elsewhere herein.
As used herein, the terms “number average molecular weight” or “Mn” can be used interchangeably, and refer to the statistical average molecular weight of all the polymer chains in the sample and is defined by the formula:
where Mi is the molecular weight of a chain and N1 is the number of chains of that molecular weight. Mn can be determined for polymers, e.g., polycarbonate polymers, by methods well known to a person having ordinary skill in the art using molecular weight standards, e.g. polycarbonate standards or polystyrene standards, preferably certified or traceable molecular weight standards.
From the foregoing, it will be seen that aspects herein are well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.
Since many possible aspects may be made without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
It will be understood that certain features and sub-combinations are of utility and may be employed without reference to other features and sub-combinations. This is contemplated by and is within the scope of the claims.
Since many possible aspects may be made without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings and detailed description is to be interpreted as illustrative and not in a limiting sense.
While specific elements and steps are discussed in connection to one another, it is understood that any element and/or steps provided herein is contemplated as being combinable with any other elements and/or steps regardless of explicit provision of the same while still being within the scope provided herein. Since many possible aspects may be made of the disclosure without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
EXAMPLESNow having described the aspects of the present disclosure, in general, the following Examples describe some additional aspects of the present disclosure. While aspects of the present disclosure are described in connection with the following examples and the corresponding text and figures, there is no intent to limit aspects of the present disclosure to this description. On the contrary, the intent is to cover all alternatives, modifications, and equivalents included within the spirit and scope of the present disclosure.
Exemplary components were made using the methods and materials disclosed herein above (see
It should be emphasized that the above-described aspects of the present disclosure are merely possible examples of implementations, and are set forth only for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described aspects of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
Claims
1. A cushioning element comprising:
- a first layer including a depression defined by a first surface; and
- a first component disposed within the depression of the first layer, the first component comprising a plurality of affixed foam particles each including a first thermoplastic elastomeric material.
2. A cushioning element of claim 1, further comprising:
- a chamber having an interior defined by the first surface and a second surface opposing the first surface; wherein
- the first component is disposed within the interior of the chamber.
3. The cushioning element of claim 2, comprising a plurality of first components disposed within the interior of the chamber, each first component comprising a plurality of affixed foam particles.
4. The cushioning element of claim 2, wherein the first component extends between the first surface and the second surface, and is operably coupled with the first surface, the second surface, or both.
5. The cushioning element of claim 1, wherein, prior to being affixed, each individual foam particle has a number average particle size of about 0.04 millimeters to about 10 millimeters in a longest dimension.
6. The cushioning element of claim 1, wherein, prior to being affixed, each individual foam particle has a density of about 0.1 grams per cubic centimeter to about 0.8 grams per cubic centimeter.
7. The cushioning element of claim 1, wherein each individual affixed foam particle of the plurality of affixed foam particles includes one or more binding regions affixing an outer surface of the individual foam particle to an outer surface of one or more adjacent foam particles.
8. The cushioning element of claim 7, wherein the one or more binding regions include a first thermoplastic elastomeric material from the surface of the individual foam particle, a second thermoplastic elastomeric material from the surface of the one or more adjacent foam particles, or the first thermoplastic elastomeric material intermingled with the second thermoplastic elastomeric material.
9. The cushioning element of claim 7, wherein the one or more binding regions include a binding material.
10. The cushioning element of claim 7, wherein the one or more binding regions include re-flowed and re-solidified first thermoplastic elastomeric material from the individual foam particle, re-flowed and re-solidified second thermoplastic elastomeric material from the at least one of the one or more adjacent foam particles, re-flowed and re-solidified third thermoplastic elastomeric material, or any combination thereof.
11. The cushioning element of claim 9, wherein the binding material comprises a thermal-energy absorber.
12. The cushioning element of claim 11, wherein the thermal-energy absorber is an infrared-radiation absorber.
13. The cushioning element of claim 9, wherein the binding material comprises one or more monomers, one or more polymers, or combinations thereof.
14. The cushioning element of claim 9, wherein the binding material comprises an adhesive.
15. The cushioning element of claim 10, wherein the first thermoplastic elastomeric material or the second thermoplastic elastomeric material or both comprises a thermoplastic polyurethane elastomer, a thermoplastic polyurea elastomer, a thermoplastic polyether elastomer, a thermoplastic copolyetherester elastomer, a thermoplastic polyamide elastomer, a thermoplastic polystyrene elastomer, a thermoplastic polyolefin elastomer, a thermoplastic copolyetheramide elastomer, a thermoplastic styrene diene copolymer elastomer, a thermoplastic styrene block copolymer elastomer, a thermoplastic polyamide elastomer, a thermoplastic polyimide elastomer, any copolymer thereof, or any blend thereof.
16. The cushioning element of claim 15, wherein the first thermoplastic elastomeric material or the second thermoplastic elastomeric material or both comprises a thermoplastic polyurethane elastomer.
17. The cushioning element of claim 1, wherein the first component comprises a plurality of layers of affixed foam particles.
18. The cushioning element of claim 1, wherein the first component is characterized by a plurality of sub-regions comprising a first sub-region characterized by a first property and a second sub-region characterized by a second property, wherein the first property is not equal to the second property, and wherein the first property and the second property are flexural modulus, stiffness, bulk density, or resilience.
19. The cushioning element of claim 1, wherein the first component is thermally bonded to the first surface, to the second surface, or to both.
20. An article of footwear, comprising:
- an upper operably coupled with a sole structure, wherein the sole structure comprises a cushioning element comprising: a first layer including a depression defined by a first surface; and a first component disposed within the depression of the first layer, the first component comprising a plurality of affixed foam particles each including a first thermoplastic elastomeric material.
Type: Application
Filed: Nov 19, 2019
Publication Date: Jun 11, 2020
Inventors: Page J. Bailey (Portland, OR), Jay Constantinou (Beaverton, OR), Harleigh Doremus (Portland, OR), Luis Folgar (Beaverton, OR), Brandon Kvamme (Beaverton, OR), Joseph Thomas Muth (North Plains, OR), Denis Schiller (Vancouver, WA)
Application Number: 16/688,536