DEFORMED PILE SHAFT FOR PROVIDING GRIPPING CONTACT WITH A SUPPORTING MEDIUM AND RESISTING THE SUPPORTING MEDIUM FROM SHEARING

A pile includes a shaft; and a soil displacement head or a helical blade with a leading edge and a trailing edge, operatively connected to a first end of the shaft; the shaft having deformations formed thereon to provide a gripping interface between a supporting medium and the shaft.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
PRIORITY INFORMATION

The present application claims priority, under 35 U.S.C. § 119(e), from U.S. Provisional Patent Application, Ser. No. 62/748,493, filed on Oct. 21, 2018. The entire content of U.S. Provisional Patent Application, Ser. No. 62/748,493, filed on Oct. 21, 2018, is hereby incorporated by reference.

BACKGROUND

Conventional piles are metal tubes having either a circular or a rectangular cross-section. Such piles are mounted in the ground to provide a support structure for the construction of superstructures. The piles are provided in sections that are driven into the ground.

An example of a conventional pile is illustrated in FIG. 1. More specifically, FIG. 1 is a schematic view of one embodiment of an auger grouted pile.

As illustrated in FIG. 1, an auger grouted pile 100 includes an elongated, tubular pipe 102 with a hollow central chamber, a top section 104 and a bottom section 106. Bottom section 106 includes a soil (medium) displacement head 108. Top section 104 includes a reverse auger 110. Soil (medium) displacement head 108 has a helical blade 112 that has a leading edge 114 and a trailing edge 116.

The leading edge 114 of helical blade 112 cuts into the soil (medium) as the pile is rotated into the soil (medium) at such contact point. The soil (medium) displacement head 108 may be equipped with a point 118 to promote this cutting.

The soil (medium) passes over helical blade 112 and thereafter past trailing edge 116. The uppermost portion of helical blade 112 includes a deformation structure 120 that displaces the soil (medium) to create irregularities in an annulus formed by a lateral compaction element 119.

It is noted that some conventional piles have a cutting tip that permits them to be rapidly deployed. By rotating the pile, the helical blade pulls the pile into the ground (medium), thus greatly reducing the amount of downward force necessary to bury the pile. Unfortunately, the rotary action of the pile also loosens the soil which holds the pile in place. This reduces the amount of vertical support the pile provides.

Sometimes, grout or other supporting medium is introduced around the pile in an attempt to solidify the volume around the pile and thus compensate for the loose soil. In addition, to providing grout to the area around the pile, the grout, to be effective, needs to be able to grip or have a frictional contact with the pile to prevent any slippage between the grout and the pile, thereby strengthening the vertical support the pile provides.

U.S. Pat. No. 6,817,810 discloses a helical pile that includes a shaft with rounded notches laid out in a precise non-random pattern to facilitate a helical plate to be screwed onto the shaft.

The rounded notches are only on the extreme corners of the square shaft and thereby the rounded notches do not provide a substantial resistance to shear in the supporting medium or grout that may be added to the bore hole. Moreover, the rounded nature of the notches on the shaft does not provide gripping or frictional contact with the grout to prevent slippage between the grout and the pile.

Additionally, the very small area of the notches on the shaft does not provide gripping or frictional contact with the supporting medium or grout to prevent any slippage between the supporting medium or grout and the pile.

Therefore, it is desirable to provide a pile that is configured or shaped to provide gripping or frictional contact with the supporting medium or grout to prevent any slippage between the supporting medium or grout and the pile, thereby strengthening the vertical support the pile provides.

Also, it is desirable to provide a pile that is configured or shaped to resist the supporting medium or grout from shearing along its surface.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings are only for purposes of illustrating various embodiments and are not to be construed as limiting, wherein:

FIG. 1 illustrates a conventional pile;

FIG. 2 illustrates an example of a pile for providing gripping contact with a supporting medium or grout and resisting the supporting medium or grout from shearing;

FIG. 3 illustrates another example of a pile for providing gripping contact with a supporting medium or grout and resisting the supporting medium or grout from shearing;

FIG. 4 illustrates a third example of a pile for providing gripping contact with a supporting medium or grout and resisting the supporting medium or grout from shearing;

FIG. 5 illustrates a fourth example of a pile for providing gripping contact with a supporting medium or grout and resisting the supporting medium or grout from shearing;

FIGS. 6 and 7 illustrate a bottom section of the pile of FIG. 2;

FIGS. 8 and 9 illustrate a bottom section of the pile of FIG. 3;

FIGS. 10 and 11 illustrate a bottom section of the pile of FIG. 4;

FIGS. 12 and 13 illustrate a bottom section of the pile of FIG. 5;

FIG. 14 illustrates another example of bottom section of the pile of FIG. 2;

FIG. 15 illustrates another example of bottom section of the pile of FIG. 3;

FIG. 16 illustrates another example of bottom section of the pile of FIG. 4;

FIG. 17 illustrates another example of bottom section of the pile of FIG. 5;

FIG. 18 illustrates a pile having an auger for providing gripping contact with a supporting medium or grout and resisting the supporting medium or grout from shearing;

FIG. 19 illustrates another example of a pile for providing gripping contact with a supporting medium or grout and resisting the supporting medium or grout from shearing; and

FIG. 20 illustrates a pile.

DETAILED DESCRIPTION

For a general understanding, reference is made to the drawings. In the drawings, like references have been used throughout to designate identical or equivalent elements. It is also noted that the drawings may not have been drawn to scale and that certain regions may have been purposely drawn disproportionately so that the features and concepts may be properly illustrated.

An example of a pile for providing gripping contact with a supporting medium or grout and resisting the supporting medium or grout from shearing is illustrated in FIG. 2. More specifically, FIG. 2 is a schematic view of one embodiment of a pile.

As illustrated in FIG. 2, a pile 100 includes a threaded shaft 300. A bottom section of the pile 100 includes a soil (medium) displacement head 108. Soil (medium) displacement head 108 has a helical blade 112 that has a leading edge 114 and a trailing edge 116.

It is noted that the threaded shaft 300 may be realized by including a single continuous raised helical thread (rib) on the outer surface of the shaft or a single continuous helical channel on the outer surface of the shaft. It is further noted that the threaded shaft 300 may be realized by including a plurality of raised rings, each raised ring encircling the outer surface of the shaft. It is also noted that the threaded shaft 300 may be realized by including a plurality of ringed channels, each ringed channel encircling the outer surface of the shaft.

The leading edge 114 of helical blade 112 cuts into the soil (medium) as the pile 100 is rotated. The soil (medium) displacement head 108 may be equipped with a point 118 to promote this cutting.

The soil (medium) passes over helical blade 112 and thereafter past trailing edge 116. As the soil (medium) passes over helical blade 112, the soil (medium) is laterally compacted by lateral compaction elements 119 (lateral compaction elements 200 are discussed in more detail below with respect to FIGS. 6, 8, 10, and 12). The lateral compaction elements 119 create an annulus having outer wall 500 and void 510.

The uppermost portion of helical blade 112 may include a deformation structure 120 (located near the trailing edge 116) that displaces the soil (medium) to create a spiral groove in the outer wall 500 of the annulus.

After the pile 100 is driven into position, supporting medium or grout (not shown) may be introduced into the void 510 of the annulus. The supporting medium or grout can be introduced by means of gravity or pressure into the void 510 of the annulus.

Additionally, since the pile 100 may be a hollow tube, the supporting medium or grout can be introduced into the void 510 of the annulus through the hollow tube by means of gravity or pressure, wherein the pile 100 would include openings (not shown) that allows the supporting medium or grout to leave the pile and enter into the void 510 of the annulus.

The introduced supporting medium or grout surrounds the threaded shaft 300 of the pile 100. The threaded surface of the threaded shaft 300 of the pile 100 provides a gripping interface between the supporting medium or grout and the pile 100, as well as, provides an interface that resists the supporting medium or grout from shearing along the surface between the supporting medium or grout and the pile 100.

Another example of a pile for providing gripping contact with the supporting medium or grout and resisting the supporting medium or grout from shearing is illustrated in FIG. 3. More specifically, FIG. 3 is a schematic view of one embodiment of a pile.

As illustrated in FIG. 3, a pile 100 includes a shaft 400 having projections 410 on the outer surface. The projections 410 may be randomly placed on the outer surface of the shaft 400 or be placed in a pattern. The projections 410 extend out from the outer surface of the shaft 400 into the void 510 of an annulus without coming into contact with an outer wall 500 of the annulus.

Preferably, the projections 410 increase the area of the skin resistance with the supporting medium or grout to resist the grout from shearing along the surface between the supporting medium or grout and the shaft 400.

A bottom section of the pile 100 includes a soil (medium) displacement head 108. Soil (medium) displacement head 108 has a helical blade 112 that has a leading edge 114 and a trailing edge 116.

The leading edge 114 of helical blade 112 cuts into the soil (medium) as the pile 100 is rotated. The soil (medium) displacement head 108 may be equipped with a point 118 to promote this cutting.

The soil (medium) passes over helical blade 112 and thereafter past trailing edge 116. As the soil (medium) passes over helical blade 112, the soil (medium) is laterally compacted by lateral compaction elements 119 (discussed in more detail below). The lateral compaction elements 119 create an annulus having outer wall 500 and void 510.

The uppermost portion of helical blade 112 may include a deformation structure 120 that displaces the soil (medium) to create a spiral groove in the outer wall 500 of the annulus.

After the pile 100 is driven into position, supporting medium or grout (not shown) may be introduced into the void 510 of the annulus. The supporting medium or grout can be introduced by means of gravity or pressure into the void 510 of the annulus.

Additionally, since the pile 100 may be a hollow tube, the supporting medium or grout can be introduced into the void 510 of the annulus through the hollow tube by means of gravity or pressure, wherein the pile 100 would include openings (not shown) that allows the supporting medium or grout to leave the pile and enter into the void 510 of the annulus.

The introduced supporting medium or grout surrounds the projections 410 of the shaft 400. The projections 410 of the shaft 400 provide gripping interface between the supporting medium or grout and the shaft 400, as well as, provide an interface that resists the supporting medium or grout from shearing along the surface between the supporting medium or grout and the shaft 400.

A third example of a pile for providing gripping contact with the supporting medium or grout and resisting the supporting medium or grout from shearing is illustrated in FIG. 4. More specifically, FIG. 4 is a schematic view of one embodiment of a pile.

As illustrated in FIG. 4, a pile 100 includes a shaft 400 having indentations 420 on the outer surface. The indentations 420 may be randomly placed on the outer surface of the shaft 400 or be placed in a pattern. The indentations 420 extend inwardly from the outer surface of the shaft 400 away from the void 510 of an annulus.

Preferably, the indentations 420 increase the area of the skin resistance with the supporting medium or grout to resist the supporting medium or grout from shearing along the surface between the supporting medium or grout and the shaft 400.

A bottom section of the pile 100 includes a soil (medium) displacement head 108. Soil (medium) displacement head 108 has a helical blade 112 that has a leading edge 114 and a trailing edge 116.

The leading edge 114 of helical blade 112 cuts into the soil (medium) as the pile 100 is rotated. The soil (medium) displacement head 108 may be equipped with a point 118 to promote this cutting.

The soil (medium) passes over helical blade 112 and thereafter past trailing edge 116. As the soil (medium) passes over helical blade 112, the soil (medium) is laterally compacted by lateral compaction elements 119 (discussed in more detail below). The lateral compaction elements 119 create an annulus having outer wall 500 and void 510.

The uppermost portion of helical blade 112 may include a deformation structure 120 that displaces the soil (medium) to create a spiral groove in the outer wall 500 of the annulus.

After the pile 100 is driven into position, supporting medium or grout (not shown) may be introduced into the void 510 of the annulus. The supporting medium or grout can be introduced by means of gravity or pressure into the void 510 of the annulus.

Additionally, since the pile 100 may be a hollow tube, the supporting medium or grout can be introduced into the void 510 of the annulus through the hollow tube by means of gravity or pressure, wherein the pile 100 would include openings (not shown) that allows the supporting medium or grout to leave the pile and enter into the void 510 of the annulus.

The introduced supporting medium or grout surrounds the indentations 420 of the shaft 400. The indentations 420 of the shaft 400 provide gripping interface between the supporting medium or grout and the shaft 400, as well as, provide an interface that resists the supporting medium or grout from shearing along the surface between the supporting medium or grout and the shaft 400.

A fourth example of a pile for providing gripping contact with the supporting medium or grout and resisting the supporting medium or grout from shearing is illustrated in FIG. 5. More specifically, FIG. 5 is a schematic view of one embodiment of a pile.

As illustrated in FIG. 5, a pile 100 includes a shaft 400 having indentations 420 and projections 410 on the outer surface. The indentations 420 and projections 410 may be randomly placed on the outer surface of the shaft 400 or be placed in a pattern. The indentations 420 extend inwardly from the outer surface of the shaft 400 away from the void 510 of an annulus, and the projections 410 extend out from the outer surface of the shaft 400 into the void 510 of an annulus without coming into contact with an outer wall 500 of the annulus.

Preferably, the projections 410 and the indentations 420 increase the area of the skin resistance with the supporting medium or grout to resist the supporting medium or grout from shearing along the surface between the supporting medium or grout and the shaft 400.

A bottom section of the pile 100 includes a soil (medium) displacement head 108. Soil (medium) displacement head 108 has a helical blade 112 that has a leading edge 114 and a trailing edge 116.

The leading edge 114 of helical blade 112 cuts into the soil (medium) as the pile 100 is rotated. The soil (medium) displacement head 108 may be equipped with a point 118 to promote this cutting.

The soil (medium) passes over helical blade 112 and thereafter past trailing edge 116. As the soil (medium) passes over helical blade 112, the soil (medium) is laterally compacted by lateral compaction elements (discussed in more detail below). The lateral compaction elements create an annulus having outer wall 500 and void 510.

The uppermost portion of helical blade 112 may include a deformation structure 120 that displaces the soil (medium) to create a spiral groove in the outer wall 500 of the annulus.

After the pile 100 is driven into position, supporting medium or grout (not shown) may be introduced into the void 510 of the annulus. The supporting medium or grout can be introduced by means of gravity or pressure into the void 510 of the annulus.

Additionally, since the pile 100 may be a hollow tube, the supporting medium or grout can be introduced into the void 510 of the annulus through the hollow tube by means of gravity or pressure, wherein the pile 100 would include openings (not shown) that allows the supporting medium or grout to leave the pile and enter into the void 510 of the annulus.

The introduced supporting medium or grout surrounds the indentations 420 and projections 410 of the shaft 400. The indentations 420 and projections 410 of the shaft 400provide gripping interface between the supporting medium or grout and the shaft 400, as well as, provide an interface that resists the supporting medium or grout from shearing along the surface between the supporting medium or grout and the shaft 400.

FIGS. 6 and 7 are side and perspective views of the bottom section of the pile of FIG. 2. The bottom section includes at least one lateral compaction element. In the embodiment shown in FIGS. 6 and 7, there are three such lateral compaction elements. The lateral compaction element 200 near the end of the pile has a diameter less than the diameter from the lateral compaction element 220 near deformation structure 120. The lateral compaction element 210 in the middle has a diameter that is between the diameters of the other two lateral compaction elements.

In this fashion, the soil is laterally compacted by the first lateral compaction element 200, more compacted by the second lateral compaction element 210 (enlarging the diameter of the bored hole) and even more compacted by the third lateral compaction element 220.

The helical blade 112 primarily cuts into the soil and only performs minimal soil compaction. The deformation structure 120 is disposed above the lateral compaction elements (200, 210, and 220). After the widest compaction element 220 has established an annulus with a regular diameter, deformation structure 120 cuts into the edge of the outer wall 500 of the annulus to leave a spiral pattern in the annulus's perimeter or circumference.

It is noted that, as illustrated in FIG. 7, the deformation structure 120 has a height that changes over the length of the deformation structure 120 from its greatest height at end 206 to a lesser height at end 208 as the deformation structure 120 coils about the pile in a helical configuration.

FIGS. 8 and 9 are side and perspective views of the bottom section of the pile of FIG. 3. The bottom section includes at least one lateral compaction element. In the embodiment shown in FIGS. 8 and 9, there are three such lateral compaction elements. The lateral compaction element 200 near the end of the pile has a diameter less than the diameter from the lateral compaction element 220 near deformation structure 120. The lateral compaction element 210 in the middle has a diameter that is between the diameters of the other two lateral compaction elements.

In this fashion, the soil is laterally compacted by the first lateral compaction element 200, more compacted by the second lateral compaction element 210 (enlarging the diameter of the bored hole) and even more compacted by the third lateral compaction element 220.

The helical blade 112 primarily cuts into the soil and only performs minimal soil compaction. The deformation structure 120 is disposed above the lateral compaction elements (200, 210, and 220). After the widest compaction element 200 has established an annulus with a regular diameter, deformation structure 120 cuts into the edge of the outer wall 500 of the annulus to leave a spiral pattern in the annulus's perimeter or circumference.

It is noted that, as illustrated in FIG. 9, the deformation structure 120 has a height that changes over the length of the deformation structure 120 from its greatest height at end 206 to a lesser height at end 208 as the deformation structure 120 coils about the pile in a helical configuration.

FIGS. 10 and 11 are side and perspective views of the bottom section of the pile of FIG. 4. The bottom section includes at least one lateral compaction element. In the embodiment shown in FIGS. 10 and 11, there are three such lateral compaction elements. The lateral compaction element 200 near the end of the pile has a diameter less than the diameter from the lateral compaction element 220 near deformation structure 120. The lateral compaction element 210 in the middle has a diameter that is between the diameters of the other two lateral compaction elements.

In this fashion, the soil is laterally compacted by the first lateral compaction element 200, more compacted by the second lateral compaction element 210 (enlarging the diameter of the bored hole) and even more compacted by the third lateral compaction element 220.

The helical blade 112 primarily cuts into the soil and only performs minimal soil compaction. The deformation structure 120 is disposed above the lateral compaction elements (200, 210, and 220). After the widest compaction element 200 has established an annulus with a regular diameter, deformation structure 120 cuts into the edge of the outer wall 500 of the annulus to leave a spiral pattern in the annulus's perimeter or circumference.

It is noted that, as illustrated in FIG. 11, the deformation structure 120 has a height that changes over the length of the deformation structure 120 from its greatest height at end 206 to a lesser height at end 208 as the deformation structure 120 coils about the pile in a helical configuration.

FIGS. 12 and 13 are side and perspective views of the bottom section of the pile of FIG. 5. The bottom section includes at least one lateral compaction element. In the embodiment shown in FIGS. 12 and 13, there are three such lateral compaction elements. The lateral compaction element 200 near the end of the pile has a diameter less than the diameter from the lateral compaction element 220 near deformation structure 120. The lateral compaction element 210 in the middle has a diameter that is between the diameters of the other two lateral compaction elements.

In this fashion, the soil is laterally compacted by the first lateral compaction element 200, more compacted by the second lateral compaction element 210 (enlarging the diameter of the bored hole) and even more compacted by the third lateral compaction element 220.

The helical blade 112 primarily cuts into the soil and only performs minimal soil compaction. The deformation structure 120 is disposed above the lateral compaction elements (200, 210, and 220). After the widest compaction element 200 has established an annulus with a regular diameter, deformation structure 120 cuts into the edge of the outer wall 500 of the annulus to leave a spiral pattern in the annulus's perimeter or circumference.

It is noted that, as illustrated in FIG. 13, the deformation structure 120 has a height that changes over the length of the deformation structure 120 from its greatest height at end 206 to a lesser height at end 208 as the deformation structure 120 coils about the pile in a helical configuration.

FIG. 14 illustrates another example of a bottom section of the pile of FIG. 2. As illustrated in FIG. 14, the pile includes a threaded shaft 300.

It is noted that the threaded shaft 300 may be realized by including a single continuous raised helical thread (rib) on the outer surface of the shaft or a single continuous helical channel on the outer surface of the shaft. It is further noted that the threaded shaft 300 may be realized by including a plurality of raised rings, each raised ring encircling the outer surface of the shaft. It is also noted that the threaded shaft 300 may be realized by including a plurality of ringed channels, each ringed channel encircling the outer surface of the shaft.

The bottom section of the pile also includes a soil (medium) loosen bit or head 600 to loosen the soil (medium) around the pile as the pile is driven therein. The soil (medium) loosen bit or head 600 includes a lateral compaction structure 700 to laterally compact the loosen soil (medium) to create an annulus with an outer wall 500 and a void 510.

FIG. 15 illustrates another example of a bottom section of the pile of FIG. 3. As illustrated in FIG. 15, the pile includes a plurality of projections 410 on the outer surface of a shaft 400.

The bottom section of the pile also includes a soil (medium) loosen bit or head 600 to loosen the soil (medium) around the pile as the pile is driven therein. The soil (medium) loosen bit or head 600 includes a lateral compaction structure 700 to laterally compact the loosen soil (medium) to create an annulus with an outer wall 500 and a void 510.

FIG. 16 illustrates another example of a bottom section of the pile of FIG. 4. As illustrated in FIG. 16, the pile includes a plurality of indentations 420 on the outer surface of a shaft 400.

The bottom section of the pile also includes a soil (medium) loosen bit or head 600 to loosen the soil (medium) around the pile as the pile is driven therein. The soil (medium) loosen bit or head 600 includes a lateral compaction structure 700 to laterally compact the loosen soil (medium) to create an annulus with an outer wall 500 and a void 510.

FIG. 17 illustrates another example of a bottom section of the pile of FIG. 5. As illustrated in FIG. 17, the pile includes a plurality of projections 410 and a plurality of indentations 420 on the outer surface of a shaft 400.

The bottom section of the pile also includes a soil (medium) loosen bit or head 600 to loosen the soil (medium) around the pile as the pile is driven therein. The soil (medium) loosen bit or head 600 includes a lateral compaction structure 700 to laterally compact the loosen soil (medium) to create an annulus with an outer wall 500 and a void 510.

FIG. 18 illustrates a pile 1000 that includes a shaft 1100. The pile 1000 includes an auger 1200. The pile 1000 has a blade 1300 that has a leading edge and a trailing edge. The leading edge of blade 1300 cuts into the soil as the pile 1000 is rotated. The pile 1000 may be equipped with a point 1600 to promote this cutting. The soil passes over blade 1300 and thereafter past trailing edge.

The pile 1000 includes a lateral compaction element 1500, located on the elongated, tubular pipe 1100 between the auger 1200 and the blade 1300. The lateral compaction element 1500 laterally compacts the loosen soil (medium) to form an annulus or core.

It is noted that auger 1200 provides a gripping interface between the supporting medium or grout and the shaft 1100, as well as, provide an interface that resists the supporting medium or grout from shearing along the surface between the supporting medium or grout and the shaft 1100.

FIG. 19 illustrates a pile 2000 that includes a threaded shaft 2100. The pile 2000 has a blade 2300 that has a leading edge and a trailing edge. The leading edge of blade 2300 cuts into the soil as the pile 2000 is rotated. The pile 2000 may be equipped with a point 2600 to promote this cutting. The soil passes over blade 2300 and thereafter past trailing edge.

The threaded shaft 2100 provides a gripping interface between the supporting medium or grout and the threaded shaft 2100, as well as, provides an interface that resists the supporting medium or grout from shearing along the surface between the supporting medium or grout and the threaded shaft 2100. FIG. 20 illustrates a pile 3000 that includes a shaft 3100. The pile 3000 has a blade 3300 that has a leading edge and a trailing edge.

The leading edge of blade 3300 cuts into the soil as the pile 3000 is rotated. The pile 3000 may be equipped with a point 3600 to promote this cutting. The soil passes over blade 3300 and thereafter past trailing edge.

In the various embodiments described above, the shaft may be a solid bar, a solid pipe, a hollow bar, or a hollow pipe. Moreover, in the various embodiments described above, the shaft may be round, rectangular, or square.

In the various embodiments described above, the supporting medium may be grout.

In the various embodiments described above, the embodiments are applicable to a displacement pile and/or a helical pile.

A pile includes a shaft and a soil displacement head, operatively connected to a first end of the shaft, having a helical blade with a leading edge and a trailing edge; the shaft having deformations formed thereon to provide a gripping interface between a supporting medium or grout and the pile.

The deformations may be threads. The threads may be formed on an entire length of the shaft.

The deformations may be a plurality of projections projecting away from the shaft. The deformations may be a plurality of indentations projecting into the shaft. The deformations may be a plurality of indentations projecting into the shaft and a plurality of projections projecting away from the shaft.

The pile may include a lateral compaction element, located within the helical blade to laterally compact a medium, as the pile is driven into the medium, to create an annulus in the medium. The pile may include a deformation structure disposed above the lateral compaction element to create a spiral deformation in an outer wall of the annulus.

A pile, includes a shaft and a medium loosen bit to loosen a medium around the pile as the pile is driven therein; the medium loosen bit including a lateral compaction structure to laterally compact the loosen medium to create an annulus; the shaft having deformations formed thereon to provide a gripping interface between a supporting medium or grout and the pile.

The deformations may be threads. The threads may be formed on an entire length of the shaft. The deformations may be a plurality of projections projecting away from the shaft. The deformations may be a plurality of indentations projecting into the shaft. The deformations may be a plurality of indentations projecting into the shaft and a plurality of projections projecting away from the shaft.

A pile includes a shaft and a helical blade, operatively connected to a first end of the shaft, having a leading edge and a trailing edge; the shaft having deformations formed thereon to provide a gripping interface between a supporting medium and the pile.

The deformations may be threads. The threads may be formed on an entire length of the shaft. The deformations may be a plurality of projections projecting away from the shaft. The deformations may be a plurality of indentations projecting into the shaft. The deformations may be a plurality of indentations projecting into the shaft and a plurality of projections projecting away from the shaft.

A pile includes a shaft and a soil displacement head, operatively connected to a first end of the shaft, having a helical blade with a leading edge and a trailing edge; the shaft having continuous deformations formed thereon to provide a gripping interface between a supporting medium and the shaft.

The continuous deformations may be a plurality of raised rings on a surface of the shaft. The continuous deformations may be a plurality of ringed channels on a surface of the shaft.

The plurality of raised rings may be formed on an entire length of the shaft. The plurality of ringed channels may be formed on an entire length of the shaft.

The pile may include a lateral compaction element, located within the helical blade to laterally compact a medium, as the pile is driven into the medium, to create an annulus in the medium.

The pile may include a deformation structure disposed above the lateral compaction element to create a spiral deformation in an outer wall of the annulus.

A pile includes a shaft and a medium loosen bit to loosen a medium around the pile as the pile is driven therein; the medium loosen bit including a lateral compaction structure to laterally compact the loosen medium to create an annulus; the shaft having a continuous helical structure formed thereon to provide a gripping interface between a supporting medium and the shaft.

A pile includes a shaft and a helical blade, operatively connected to a first end of the shaft, having a leading edge and a trailing edge; the shaft having a plurality of protrusions formed thereon to provide a gripping interface between a supporting medium and the shaft.

The shaft may further include a plurality of indentations projecting into the shaft.

A pile includes a shaft and a helical blade, operatively connected to a first end of the shaft, having a leading edge and a trailing edge; the shaft having a plurality of indentations randomly formed thereon to provide a gripping interface between a supporting medium and the shaft.

It will be appreciated that several of the above-disclosed embodiments and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the claims.

Claims

1. A pile, comprising:

a shaft; and
a soil displacement head, operatively connected to a first end of said shaft, having a helical blade with a leading edge and a trailing edge;
said shaft having continuous deformations formed thereon to provide a gripping interface between a supporting medium and said shaft.

2. The pile, as claimed in claim 1, wherein said continuous deformations are a plurality of raised rings on a surface of said shaft.

3. The pile, as claimed in claim 1, wherein said continuous deformations are a plurality of ringed channels on a surface of said shaft.

4. The pile, as claimed in claim 1, wherein said plurality of raised rings is formed on an entire length of said shaft.

5. The pile, as claimed in claim 1, wherein said plurality of ringed channels is formed on an entire length of said shaft.

6. The pile, as claimed in claim 1, further comprising:

a lateral compaction element, located within said helical blade to laterally compact a medium, as the pile is driven into the medium, to create an annulus in the medium.

7. The pile, as claimed in claim 6, further comprising:

a deformation structure disposed above said lateral compaction element to create a spiral deformation in an outer wall of the annulus.

8. The pile, as claimed in claim 2, further comprising:

a lateral compaction element, located within said helical blade to laterally compact a medium, as the pile is driven into the medium, to create an annulus in the medium.

9. The pile, as claimed in claim 8, further comprising:

a deformation structure disposed above said lateral compaction element to create a spiral deformation in an outer wall of the annulus.

10. The pile, as claimed in claim 3, further comprising:

a lateral compaction element, located within said helical blade to laterally compact a medium, as the pile is driven into the medium, to create an annulus in the medium.

11. The pile, as claimed in claim 10, further comprising:

a deformation structure disposed above said lateral compaction element to create a spiral deformation in an outer wall of the annulus.

12. A pile, comprising:

a shaft; and
a medium loosen bit to loosen a medium around the pile as the pile is driven therein;
said medium loosen bit including a lateral compaction structure to laterally compact the loosen medium to create an annulus;
said shaft having a continuous helical structure formed thereon to provide a gripping interface between a supporting medium and said shaft.

13. A pile, comprising:

a shaft; and
a helical blade, operatively connected to a first end of said shaft, having a leading edge and a trailing edge;
said shaft having a plurality of protrusions formed thereon to provide a gripping interface between a supporting medium and said shaft.

14. The pile, as claimed in claim 13, wherein said shaft further includes a plurality of indentations projecting into said shaft.

15. A pile, comprising:

a shaft; and
a helical blade, operatively connected to a first end of said shaft, having a leading edge and a trailing edge;
said shaft having a plurality of indentations randomly formed thereon to provide a gripping interface between a supporting medium and said shaft.
Patent History
Publication number: 20200190762
Type: Application
Filed: Oct 21, 2019
Publication Date: Jun 18, 2020
Inventor: Benjamin G. Stroyer (East Rochester, NY)
Application Number: 16/658,830
Classifications
International Classification: E02D 5/56 (20060101); E02D 5/24 (20060101);